
he
p-

la
t

09
04

.0
37

5
*0
90
4.
03
75
*

Automated generation of lattice QCD Feynman rules

A. Harta, G.M. von Hippelb, R.R. Horganc, E.H. Müllera

aSUPA, School of Physics and Astronomy, University of Edinburgh, King’s Buildings,

Edinburgh EH9 3JZ, U.K.
bDeutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany

cDAMTP, CMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, U.K.

Abstract

The derivation of the Feynman rules for lattice perturbation theory from ac-
tions and operators is complicated, especially for highly improved actions such
as HISQ. This task is, however, both important and particularly suitable for
automation. We describe a suite of software to generate and evaluate Feyn-
man rules for a wide range of lattice field theories with gluons and (relativistic
and/or heavy) quarks. Our programs are capable of dealing with actions as
complicated as (m)NRQCD and HISQ. Automated differentiation methods are
used to calculate also the derivatives of Feynman diagrams.

Key words: Quantum Chromodynamics, QCD, lattice QCD, perturbation
theory
PACS: 11.15.Ha, 12.38.Gc
2000 MSC: 81-04, 81T13, 81T15, 81T18, 81T25, 81V05, 65S05, 41A58

PROGRAM SUMMARY

Manuscript Title: Automated generation of lattice QCD Feynman rules

Authors: A. Hart, G.M. von Hippel, R.R. Horgan, E.H. Müller.

Program Title: HiPPy, HPsrc

Journal Reference:

Catalogue identifier:

Licensing provisions: GPLv2 (see note in Sec. 1.1.)

Programming languages: Python, Fortran95

RAM: Problem specific, typically less than 1GB for either code.

Keywords: Quantum Chromodynamics, QCD, lattice QCD, perturbation theory

PACS: 11.15.Ha; 12.38.Gc

Classification: 4.4 Feynman diagrams; 11.5 Quantum Chromodynamics, Lattice Gauge

Theory

Nature of problem:

Derivation and use of perturbative Feynman rules for complicated lattice QCD ac-

tions.

Solution method:

An automated expansion method implemented in Python (HiPPy) and code to use

expansions to generate Feynman rules in Fortran95 (HPsrc).

Preprint submitted to Computer Physics Communications April 20, 2009

ar
X

iv
:0

90
4.

03
75

v2
 [

he
p-

la
t]

 2
0

A
pr

 2
00

9

Restrictions:

No general restrictions. Specific restrictions are discussed in the text.

Running time:

Very problem specific, depending on the complexity of the Feynman rules and the

number of integration points. Typically between a few minutes and several weeks.

2

LONG WRITE-UP

1. Introduction

Non–abelian gauge theories are the most important ingredient in our present
understanding of elementary particles and their interactions. In particular,
quantum chromodynamics (QCD) is now universally believed to be the cor-
rect theory of the strong interactions. However, while perturbation theory has
been used successfully in describing the scattering of particles by partons, the
perturbative series does not converge at hadronic energy scales. Moreover, the
phenomena of confinement and the hadronic spectrum are fundamentally be-
yond the reach of perturbation theory. Therefore, non-perturbative Monte Carlo
simulations of lattice-regularised QCD are crucial in order to obtain a full de-
scription and understanding of QCD phenomena.

The lattice regularisation with a lattice spacing a does, however, introduce
a sharp momentum cutoff at the momentum scale π/a. Connecting lattice mea-
surements to their continuum counterparts therefore requires renormalisation
factors accounting for the excluded high-frequency modes. In particular, renor-
malisation is needed for QCD matrix elements, and for fixing the bare quark
masses to be used in the lattice Lagrangian. Renormalisation is also necessary
to determine the running of the strong coupling constant αs and to relate the
lattice regularisation scale Λlat to ΛQCD. Since the lattice regularisation also
introduces discretisation errors, renormalisations are also used to “improve” the
lattice action in order to reduce these discretisation errors at a given lattice
spacing.

While in some cases the renormalisation constants can be determined non-
perturbatively [1, 2], results at finite lattice spacing can depend upon the method
used (cf. e.g. [3]), and non-perturbative methods do not cope well with oper-
ators that mix under renormalisation. For these reasons, lattice perturbation
theory plays an important role in determining the renormalisation constants
needed to extract continuum predictions from lattice QCD.

Given the breakdown of perturbation theory in low energy QCD, one might
doubt whether it could work on the lattice. An argument in favour of its use
is given in [4]: since the renormalisation factors may be thought of as compen-
sating for the ultraviolet modes excluded by the lattice regulator, and since for
typical lattice spacings a . 0.1 fm, the excluded modes have momenta in excess
of 5 GeV, the running QCD coupling αs(π/a) is small enough that perturbation
theory should rapidly converge. The wide range of results reviewed in [5, 6] show
that perturbation theory is useful for a large range of lattice QCD processes.
The assumption that non-perturbative effects do not contribute on these short
length scales, can be tested directly in some cases by comparing higher order
perturbative calculations with Monte Carlo simulations performed at a range
of weak couplings [7, 8, 9, 10, 11, 12]), or by using so-called stochastic tech-
niques [13]. In all these cases, the non-perturbative contributions turned out to
be small. Other comparisons, such as [3], cannot distinguish non-perturbative
effects from higher-order perturbative corrections.

3

Lattice perturbation theory therefore provides a reliable, and the only sys-
tematically improvable, method for determining the full range of renormalisation
constants [5].

As in the continuum, the calculation of lattice Feynman diagrams is a two–
stage process. First, the lattice action and any operator insertions are Taylor–
expanded in the (bare) coupling constant to give the propagators and vertices
that form the Feynman rules (the “vertex expansion” stage). Secondly, these
rules are then used to construct and numerically evaluate Feynman diagrams,
possibly after some algebraic simplification (the “Feynman diagram evaluation”
stage).

The latter task is more complicated than in the continuum due to the pres-
ence of Lorentz symmetry violating terms at finite lattice spacing, and on a
finite lattice volume also by the more complicated nature of discrete momen-
tum sums as compared to momentum integrals. Diagrams are therefore usually
evaluated using numerical routines like Vegas [14, 15], or proprietary math-
ematical packages, possibly after manipulation using other computer algebra
packages like Form [16].

The greater difficulty is posed, however, by the task of vertex expansion.
Deriving the Feynman results on the lattice is far more complicated than in the
continuum for a number of reasons. Firstly, lattice gauge fields are elements
of the gauge Lie group itself rather than of its Lie algebra. To obtain the
perturbative expansion of the action, we must therefore expand exponentials
of non–commuting objects. As a consequence, the Feynman rules even for the
simplest lattice action are already much more complicated than their continuum
counterparts.

Secondly, modern lattice theories generally contain a large number of addi-
tional (renormalisation group irrelevant) terms chosen to improve specific as-
pects of the Monte Carlo simulation, such as the rate of approach to the con-
tinuum or chiral limits of QCD. Since there is no unique prescription for these
terms, and the best choice depends on which quantities we are most interested
in simulating, a large number of different lattice actions and operators are in
use. Subtle though the differences between the lattice formulations may be, each
choice provides a completely separate regularisation of QCD with its own set
of renormalisation constants and in particular its own lattice Feynman rules.
For a long time, the complications of the perturbative expansion have led to
the calculations of renormalisation factors lagging far behind new developments
in the improvement of lattice theories. In many cases this has restricted the
physical predictions that could be obtained from the simulations.

An automated method for deriving lattice Feynman rules for as wide a range
of different theories as possible is therefore highly desirable. The vertex expan-
sion should be fast enough not to impose undue constraints on the choice of
action. To avoid human error, the user should be able to specify the action in a
compact and intuitive manner. Since the evaluation of the Feynman diagrams
can be computationally intensive, and will often need to be carried out in par-
allel on costly supercomputing facilities, parsimony dictates that the Feynman
rules should be calculated in advance on a different system, and rendered as ma-

4

chine readable files that can be copied to the supercomputer for the Feynman
diagram evaluation stage.

In this paper we describe a pair of software packages for deriving the Feyn-
man rules for arbitrary lattice actions1 and for evaluating the resulting vertices
in a numerical Feynman diagram calculation. Our algorithm is based through
our older algorithm [17] on the seminal work of Lüscher and Weisz [18]. A dif-
ferent implementation of the latter has been used in [19, 20, 21], and a similar
method is employed in [22].

The new feature of the algorithm presented here is that it is capable of
expanding not only gluonic actions like the algorithm of [18], and fermionic
actions like our algorithm from [17], but also far more complicated multiply-
smeared fermionic actions with reunitarisation such as HISQ [23], and that it
supports taking advantage of the factorisation inherent in some lattice actions,
such as improved lattice formulations of NRQCD [24].

As in [18] and [17], the vertex expansion is performed completely indepen-
dently of any boundary conditions, allowing for instance, the use of twisted
periodic boundary conditions as a gauge–invariant infrared regulator [25, 26] or
for changing the discrete momentum spectrum in other ways [27].

We have used the software packages described for calculations of the renor-
malised anisotropy in gauge theories [28, 29], to study the mean link in Landau
gauge for tadpole improvement [11], to measure the electromagnetic decays of
heavy quark systems using NRQCD [30, 31, 32, 33], to calculate the radiative
corrections to the gluonic action due to Highly Improved Staggered (HISQ) sea
quarks [34, 35] and the renormalisation of the self energy of heavy quarks using
moving NRQCD (mNRQCD) [36].

The code is flexible and can be easily extended, as has already been done
for lattice–regularised chiral perturbation theory [37], perturbative calculations
in the Schrödinger functional [38, 39] and anisotropy calculations [40].

The structure of this paper is as follows. In the next Section, we review the
basic expansion algorithm described in Ref. [17], outlining some improvements
in, for instance, the handling of automatic derivatives and spin matrices. In
Sec. 3, we present novel extensions to the algorithm that are needed to describe
complicated fermion actions, including HISQ, NRQCD and mNRQCD.

Sec. 4 provides details of the implementation of the algorithm in the HiPPy

and HPsrc codes and of their installation, testing and use. We make some
concluding remarks in Sec. 5. Technical details are relegated to the appendices.

1.1. Licence

The HiPPy and HPsrc codes are released under the second version of the
GNU General Public Licence (GPL v2). Therefore anyone is free to use or
modify the code for their own calculations.

1We shall use the term “action” so as to include measurement operators here and in the

following.

5

As part of the licensing, we ask that any publications including results from
the use of this code or of modifications of it cite Refs. [18, 17] as well as this
paper.

Finally, we also ask that details of these publications, as well as of any bugs
or required or useful improvements of this core code, would be communicated
to us.

2. Theoretical background

In this section we describe the algorithms used to give the most efficient,
yet generic, implementation of the Feynman rules for lattice actions. These
extend the original work of Lüscher and Weisz [18] and developments described
in Ref. [17].

2.1. Fields on the lattice

We consider a D-dimensional hypercubic spacetime lattice with lattice spac-
ing a and extent Lµa in the µ-direction:

Λ =
{

(x1, . . . , xD) ∈ R
D
∣

∣

∣
∀ µ ∈ {1, . . . , D} :

xµ

a
∈ {0, . . . , Lµ − 1}

}

(1)

where lattice sites are labelled by a vector x ∈ Λ. In the following, we will usu-
ally set a = 1 (a lattice anisotropy can be introduced by rescaling the coupling
constants in the action [28]). Let eµ be a right-handed orthonormal basis, and
e−µ ≡ −eµ.

A lattice path consisting of l links starting at site x can be specified by an
ordered set of directions given by integers, si ∈ {−D, . . . ,−1, 1, . . . , D}:

L(x,y; s) ≡ {x,y; s = [s0, s1, . . . , sl−1]} , (2)

with the j th point on the path being

zj =

{

x , j = 0 ,
zj−1 + aesj−1

, 0 < j ≤ l ,
(3)

and y ≡ zl.
For periodic boundary conditions, the momentum vectors are

k =
2π

a

(

k̄1

L1
, . . . ,

k̄D

LD

)

, 0 ≤ k̄µ < Lµ , k̄µ ∈ Z , (4)

and the Fourier expansion of a function φ is

φ̃(k) =
∑

x

e−ik·xφ(x) , φ(x) =
1

V

∑

k

eik·xφ̃(k) , (5)

where V =
∏

µ Lµ is the lattice volume.

6

Twisted boundary conditions [41] provide a useful gauge-invariant infrared
regulator in perturbative calculations [18]. These change the momentum spec-
trum, converting colour factors into “twist matrices” associated with momenta
interstitial to the reciprocal lattice (with the introduction of an additional quan-
tum number, “smell”, for fermions [42, 43, 11]). The HPsrc code fully supports
such boundary conditions but for simplicity we only discuss periodic boundary
conditions in this paper.

Following Ref. [18], we denote the gauge field associated with a link as
Uµ>0(x) ∈ SU(N), and define U−µ(x) = U†

µ(x − aeµ). The gauge potential
Aµ ∈ alg(SU(N)) associated with the midpoint of the link is defined through

Uµ>0(x) = exp
(

agAµ

(

x +
a

2
eµ

))

=
∞
∑

r=0

(

agAµ(x + a
2eµ)

)r

r!
(6)

where g is the bare coupling constant. In terms of the anti-Hermitian generators
of SU(N),

Aµ = Aa
µ Ta, [Ta, Tb] = −fabcTc, Tr (TaTb) = −

1

2
δab . (7)

Quark fields ψ(x) transform according to the representation chosen for the gen-
erators Ta, which we take to be the fundamental representation (other choices
will affect the colour factors, but not the structure of our algorithm).

2.2. Perturbative expansion of Wilson lines

The Wilson line L(x,y, U) associated with the lattice path L(x,y; s) is a
product of links

L(x,y, U) =

l−1
∏

i=0

Usi
(zi) =

l−1
∏

i=0

exp
[

sgn(si)agA|si|

(

zi +
a

2
esi

)]

. (8)

As all actions and operators can be written as sums of Wilson lines (possibly
terminated by fermion fields), our goal is to efficiently expand L in terms of the
gauge potential in momentum space:

L(x,y;A) =
∑

r

(ag)r

r!

∑

k1,µ1,a1

. . .
∑

kr,µr,ar

Ãa1
µ1

(k1) . . . Ã
ar
µr

(kr)×

Vr(k1, µ1, a1; . . . ;kr, µr, ar) . (9)

The vertex functions Vr factorise as

Vr(k1, µ1, a1; . . . ;kr, µr, ar) = Cr(a1, . . . , ar) Y
L
r (k1, µ1; . . . ;kr, µr) (10)

with a momentum- and path-independent Clebsch–Gordan (colour) factor Cr

Cr(a1, . . . , ar) =

r
∏

i=1

Tai
. (11)

7

It is therefore more efficient to calculate just the expansion of the reduced vertex
functions, Y L

r (with an appropriate description of the colour trace structure
where ambiguous — see Appendix B of Ref. [17] for further details). The reduced
vertex function can be written as a sum of terms, each of which contains an
exponential. For convenience, we will call each term a “monomial”:

Y L
r (k1, µ1; . . . ;kr, µr) =

nr({µ})
∑

n=1

f (r,{µ})
n exp





i

2

r
∑

j=1

kj · v
(r,{µ})
n,j



 , (12)

where for each combination of r Lorentz indices we have nr terms, each with an
amplitude f and locations v of the r factors of the gauge potential, which are
drawn from the locations of the midpoints of the links in the path L. To avoid
floating point ambiguities, we express the components of all position D-vectors
as integer multiples of a

2 (accounting for the factor of 1
2 in the exponent).

In the HPsrc code, we use the convention that all momenta flow into the
vertex, so

∑r
i=1 ki = 0.

Eqn. (12) makes clear that the number of monomials depends not just on
the number of gluons r, but also on the choice of Lorentz indices {µ}, and that
each monomial has a different amplitude and set of r positions. For clarity
of presentation, we will, however, suppress these additional arguments in later
expressions (notably Eqns. (17, 21, 26, 44, 45)).

2.2.1. Implementation notes

The generation of the Feynman rules for generic momenta thus reduces to a
calculation of the amplitudes f and locations v of the monomials that build up
the various reduced vertices Yr.

This is all carried out in the HiPPy code, a description of which can be found
in Sec. 4 of Ref. [17]. The amplitudes and locations defining each monomial are
encoded as an instance of the class Entity, and the collection of monomials that
make up the reduced vertices is encoded as an instance of class Field. The data
structures have been chosen to ensure that equivalent monomials are combined
to minimise the size of the reduced vertex description.

Once expanded, the monomials required for the reduced vertices at each
order are written to disk as a text file.

The HPsrc code reads these (previously generated) vertex files at runtime.
For given momenta {k}, lorentz indices {µ} and colour indices, the Yr are
constructed as given in Eqn. (12), which is then multiplied by the appropriate
Clebsch-Gordan colour factor(s) to form the (Euclidean) Feynman rule, −Vr.

2.3. Realistic actions: the fermion sector

Realistic lattice fermion and gauge actions require some refinements to this
generic description. We begin with the fermion sector. The most general gauge-
and translation-invariant action can be written as

SF (ψ,U) =
∑

x

∑

W

hW ψ̄(x) ΓW W (x,y, U)ψ(y) (13)

8

and consists of Wilson lines W defined by open paths W(x,y; s), each carry-
ing an associated coupling constant hW and a spin matrix ΓW (possibly the
identity).

Using the convention that all momenta flow into the vertex, the perturbative
expansion is

SF (ψ,A) =
∑

r

gr

r!

∑

k1,µ1,a1

. . .
∑

kr,µr,ar

Ãa1
µ1

(k1) . . . Ã
ar
µr

(kr)×

∑

p,q,b,c

˜̄ψb(p)VF,r(p, b; q, c; k1, µ1, a1; . . . ; kr, µr, ar) ψ̃
c(q) . (14)

The Euclidean Feynman rule for the r-point gluon–fermion–anti-fermion vertex
is −grVF,r, where the symmetrised vertex is:

VF,r(p, b; q, c;k1, µ1, a1; . . . ;kr, µr, ar) =

1

r!

∑

σ∈Sr

σ · CF,r(b, c; a1, . . . , ar) σ · YF,r(p, q;k1, µ1; . . . ;kr, µr) , (15)

where Sr is the permutation group of r objects and σ ∈ Sr is applied to the
gluonic variables, {k}, {µ} and {a}. The normalisation factor of r! for this is
additional to the r! factor arising from the Taylor expansion of the exponential
in Eqn. (14). The reduced vertex YF,r =

∑

W hWYW
F,r is the sum of contributions

from paths W.
In most cases the Clebsch-Gordan colour factor is the matrix element:

CF,r(b, c; a1, . . . , ar) = (Ta1
. . . Tar

)bc , (16)

and the reduced vertex function has the structure:

YF,r(p, q;k1, µ1; . . . ;kr, µr) =

nr({µ})
∑

n=1

Γn fn×

exp





i

2



p · x + q · y +
r
∑

j=1

kj · vn,j







 , (17)

where we understand Γn ≡ Γr,{µ},n. Cases with more complicated colour struc-
tures do arise, for example the use of traceless field strengths in QCD. Such
structures are accommodated in the codes; monomials with different colour
structures are distinguished using “pattern lists” (discussed in Appendix B of
Ref. [17]) and appropriate colour factors are applied to each when the Feynman
rule is constructed.

As there are no permutation symmetries in CF,r, there is no advantage to
carrying out any symmetrisation in the HiPPy expansion code. In the HPsrc

code, symmetrisation of the Feynman rule shown in Eqn. (15) carries a poten-
tially significant computational overhead: the reduced vertices must be calcu-
lated afresh for each permutation. Not all such permutations may be needed

9

because symmetries of a Feynman diagram can reduce the number of distinct
contributions to its value from the terms in Eqn. (15). For this reason, sym-
metrisation is not carried automatically in the HPsrc code and the user must
therefore explicitly construct all permutations requiring a different calculation
from Eqn. (15), applying the appropriate normalisation factor.

2.4. Realistic actions: the gluon sector

A typical gluonic action is

S(ψ,U) =
∑

x

∑

P

cP Re Tr [P (x,x, U)] , (18)

built of Wilson loops P defined by closed paths P(x,x; s), each with coupling
constant cP . The perturbative action is

SG(A) =
∑

r

gr

r!

∑

k1,µ1,a1

. . .
∑

kr,µr,ar

Ãa1
µ1

(k1) . . . Ã
ar
µr

(kr)×

VG,r(k1, µ1, a1; . . . ; kr, µr, ar) . (19)

The Euclidean Feynman rule for the r-point gluon vertex function is (−grVG,r),
and the vertex VG,r is [18]

VG,r(k1, µ1, a1; . . . ;kr, µr, ar) =

1

r!

∑

σ∈Sr

σ · CG,r(a1, . . . , ar) σ · YG,r(k1, µ1; . . . ;kr, µr) , (20)

The reduced vertex YG,r =
∑

P cPY
P
G,r is the sum of contributions from paths P.

As before, the (r!) factor normalises the symmetrisation. Y P
G,r can be expanded

as

Y P
G,r(k1, µ1; . . . ;kr, µr) =

nr
∑

n=1

fn exp

(

i

2

∑

i

ki · vn,i

)

. (21)

In most cases we expect the lattice action to be real. Thus, for every monomial
(fn; {vn,i}) in Eqn. (21), there must be a corresponding term ((−1)rf∗n; {−vn,i}).
We can therefore speed up the evaluation of the Feynman rules by removing the
latter term, and replacing the exponentiation in Eq. (21) with “cos” for r even,
and with “i sin” for r odd. This can either be done by recognising conjugate
contours in the action (e.g. S = 1

2 Tr[P + P †]) and expanding only one, or by
attaching a flag to each monomial to signal whether its complex conjugate has
already been removed.

If in addition the action has the form Eq. (18) with a single trace in the
fundamental representation, the colour factors are

CG,r(a1, . . . , ar) =
1

2
[Tr (Ta1

. . . Tar
) + (−1)r Tr (Tar

. . . Ta1
)] . (22)

10

which has a number of permutation symmetries:

σ · CG,r = χr(σ) CG,r , where χr(σ) =

{

1 for σ a cyclic permutation,

(−1)r for σ the inversion.

(23)
There is thus a great advantage in carrying out some of the symmetrisation
in Eqn. (20) at the expansion stage in the HiPPy code. Many of the extra
monomials generated by symmetrising over subgroup Zr (generated by cyclic
permutations and inversion) are equivalent and can be combined in the HiPPy

code, significantly reducing the number of exponentiation operations required
to construct the partially-symmetrised Y ′

G,r:

VG,r(k1, µ1, a1; ...; kr, µr, ar) =
∑

σ∈Sr/Zr

σ · CG,r(a1, ..., ar)×

σ · Y ′
G,r(k1, µ1; ...; kr, µr) , (24)

Y ′
G,r =

∑

P
σ∈Zr

cPχr(σ) σ · Y P
G,r . (25)

The χr(σ) factors go into the amplitudes of the new monomials coming from
the partial symmetrisation.

The number of symmetrisation steps remaining to be carried out in the
HPsrc code is the number of cosets in Sr/Zr (one for r ≤ 3, three for r = 4,
twelve for r = 5 etc.). These symmetrisation steps (and the normalisation) are
carried out automatically in the HPsrc gluon vertex modules.

2.5. Diagram differentiation

In many cases, such as when computing wavefunction renormalisation con-
stants, one needs to calculate the derivative of a Feynman diagram with respect
to one or more momenta. Whilst derivatives can be computed numerically
using an appropriate local difference operator, such differencing schemes are
frequently numerically unstable and require computing the Feynman diagram
multiple times. Automatic differentiation methods [44] are a stable and cost-
saving alternative.

We can easily construct the differentiated Feynman vertex using Eqn. (12).
If we want to differentiate with repsect to momentum component qν , we first
construct a rank r object τ = [τ1, . . . , τr] which represents the proportion of
momentum q in each leg of the Feynman diagram. Momentum conservation
dictates

∑

i τi = 0. For instance, for a gluon 3-point function with incoming
momenta (p,−p + 2q,−2q), we would have τ = [0, 2,−2]. The differentiated
vertex is

d

dqν
Y L

r (k1, µ1; . . . ;kr, µr) =

nr
∑

n=1

ifn

2





r
∑

j=1

τjvn,j;ν



 exp





i

2

r
∑

j=1

kj · vn,j





(26)

11

and so on for higher derivatives. We may therefore simultaneously calculate as
many differentials as we need for the cost of just one exponentiation. If this
momentum expansion is placed into an appropriate data structure for which
appropriately overloaded operations have been defined, it is straightforward to
create the Taylor series for a Feynman diagram by simply multiplying the vertex
factors together. We use a slightly modified version of the TaylUR package
[45, 46] to do this, which encodes the Taylor series expansion in the HPsrc

Fortran code as a derived type taylor, for which all arithmetic operations and
elementary functions have been overloaded so as to respect Leibniz’s and Faà
di Bruno’s rules for higher derivatives of products and functions.

In calculations that require only certain higher-order derivatives, the tay-
lor multiplication can be significantly sped up by defining a mask that only
propagates certain terms in the Taylor expansion. This has not, however, been
implemented in the distributed version of the code.

2.6. Spin algebra

The Feynman rules for fermions contain spin matrices (which may be Pauli
matrices, e.g. for NRQCD, or Dirac matrices for relativistic fermions). We can
expand a generic spin matrix W using a basis {Γi}:

W =
∑

i∈I(W)

wiΓi (27)

The product of any two spin basis matrices Γi and Γj is another basis matrix
(with label nij) times a phase:

ΓiΓj = φijΓnij
, (28)

We choose the basis so that these phases φij are real. Where another convention
is desired, the amplitudes wi need to be adjusted appropriately.

For Pauli matrices, we use a basis {Γi} = {1, iσk} and I(W) ⊆ {0, . . . , 3},
giving:

iσj .iσk =

{

1 j = k,

ǫjkm iσm j 6= k.
(29)

For the (Euclidean) Dirac matrices, we choose {Γi} = {1, γµ, σµν , γ5γµ, γ5} and
I(W) ⊆ {0, . . . , 15}. We define γ5 ≡ γ1γ2γ3γ4 and note the definition here
σµν ≡ 1

2 [γµ, γν]. The multiplication for the basic γ matrices is thus

γµγν =

{

1 µ = ν,

σµν µ 6= ν.
(30)

12

We can thus write the product of two general spin matrices as

WW ′ =





∑

j∈I(W)

wjΓj









∑

k∈I(W ′)

w′
kΓk





=
∑

i∈I(WW ′)









∑

j∈I(W),k∈I(W ′)
njk=i

wjw
′
kφjk









Γi (31)

where I(WW ′) = {nij | i ∈ I(W), j ∈ I(W ′)}.
We use this implicit representation of the spin matrices. Matrix opera-

tions on explicit Dirac matrices take O(43) operations and introduce additional
rounding errors. Eqn. (31), by contrast, needs |I(W)|× |I(W ′)| multiplications,
depending on how many basis matrices are needed to describe W and W ′. If
|I(W)|, |I(W ′)| < 8, the latter method is more efficient and this is almost always
the case.

There are greater gains when inverting spin matrices of the form

S−1 = a01 +

4
∑

µ=1

aµγµ , (32)

as we might do when obtaining the propagator of a relativistic quark (for
NRQCD, the propagator is spin diagonal in the Pauli matrices and trivial to
invert). The inverse is

S = b01 −
4
∑

µ=1

bµγµ , bi = ai

(

a2
0 −

4
∑

µ=1

a2
µ

)−1

, (33)

which is far more efficient than inverting a 4 × 4 matrix. Inversion of a gen-
eral spin matrix (not of the form Eqn. (32)) is less efficient with an implicit
representation, but this is irrelevant in most perturbative calculations.

Since all basis matrices except the identity are traceless, taking the trace of
a spin matrix is a free operation in the implicit representation.

2.6.1. Implementation notes

In the HiPPy code, spin basis matrices are associated with monomials using
an appropriate integer i, which is part of the Entity data structure. When terms
are multiplied together, the factors φjk are absorbed into the amplitude f of
the resulting monomial.

In the HPsrc code, we represent a spin matrix W as a defined type, spinor,
which is encoded as a double array

(n; i1, . . . , in;w1, . . . , wn) ≡

n
∑

k=1

wkΓik
. (34)

13

It turns out to be significantly more efficient for the order of terms in this array
to not necessarily match a standard order of basis elements {Γi}, hence the use
of the index array ik. In particular, this allows us to omit basis elements with
zero coefficient.

Arithmetic operations have been overloaded to act appropriately on objects
of this type, including implemention of the multiplication table. During inver-
sion, an additional function argument, short spinor, is used to employ the
more efficient expression in Eqn. (33).

3. Even more realistic fermionic actions

Sec. 2 summarised the general method that was described in Ref. [17]. In
general, fermionic actions are much more complicated than gluonic actions and
several algorithmic improvements are needed to efficiently calculate the associ-
ated Feynman rules. We stress that by efficient we mean speed-ups of at least
an order of magnitude.

The algorithms described in this section can be used independently or to-
gether, with the choice configurable at runtime of the code. All of these features
have also been implemented using taylor-valued variables (as per Sec. 2.5) to
provide automatic differentiation of Feynman rules.

3.1. Summands and factors

In many cases an action has a block-like structure that we can exploit to make
the evaluation of the reduced vertices more efficient. This is particularly useful in
the case of NRQCD and mNRQCD actions, which can be heuristically written
as ψ̄(1 − ABCA)ψ. Such an action can be expanded directly in the HiPPy

code but the extremely large number of monomials makes this is inefficient (or
impossibly slow and memory-hungry). It is clear why: there is often little scope
for monomial compression between blocks. For instance, in (m)NRQCD, blocks
AB and CA live on different timeslices of the lattice, and no compression is
possible when combining them.

Instead, we recognise that the blocks are combined in a gauge covariant
manner, so that in AB, for instance, each contour in B starts where a contour
in A finishes. Summing over the start/end location of each block we obtain
a convolution of terms and can use the convolution theorem to construct the
overall reduced vertex (i.e. the momentum-space Fourier transform) from those
of the individual blocks.

We refer to the action as being a sum over terms that we call “summands”.
In the above example, there are two. Each summand is the convolution of
a number of “factors”, with one factor in the first summand and four in the
second.

The overall reduced vertex YF,r is the sum of the reduced vertices for each
summand. For each summand, YF,r is calculated by combining the reduced

vertices Y
(k)
F,r for each of N factors that make up that summand, k = 1 . . . N .

14

Table 1: The elements P in the set of ordered partitions, P (r), of the ordered set of the first

r integers, {1, 2, . . . , r}, for r = 1, 2 and 3.

r P |P |
1 {{1}} 1
2 {{1, 2}} 1

{{1}, {2}} 2

r P |P |
3 {{1, 2, 3}} 1

{{1, 2}, {3}} 2
{{1}, {2, 3}} 2
{{1}, {2}, {3}} 3

We generate these by expanding each factor of the action separately in the
HiPPy code, with the convolution then carried out in the HPsrc code.

Here we give the method for constructing YF,r for a summand with N factors
for general r. Expressions for specific r = 0 . . . 3 are given in Appendix A.

In giving the general expression, we first establish some useful notation.
Consider the ordered set of the first r integers: {1, 2, . . . , r}. We can form an
ordered partition of this set: {P1, P2, . . . , Pz}, where the cardinality z ≡ |{...}| is
the number of elements in the partition. The set of all such partitions we denote
P (r). For instance, the partitions P (r) for r = 1, 2, 3 are shown in Table 1. Note
that we do not consider unordered partitions (e.g. {{1, 3}, {2}}) because the
gauge fields are explicitly ordered in the paths (Wilson lines) making up the
action.

The general reduced vertex for a summand with N factors is then:

YF,r(p, q;k1, µ1; . . . ;kr, µr) =

∑

P∈P (r)

∑

1≤n1<n2<···<n|P |≤N







∏

Q∈P









ni−1
∏

k=ni−1+1

Y
(k)
F,0 (pi,−pi)





×Y
(ni)
F,|Q|(pi,−pi+1;kQ1

, µQ1
; . . . ;kQ|Q|

, µQ|Q|
)
]

×





N
∏

k=n|P |+1

Y
(k)
F,0 (−q, q)











(35)

where i = 1 . . . |P | is the position of element Q in the ordered set P and n0 = 0.
Momentum is conserved in the diagram, so p1 = p and subsequent pi+1 =
pi + kQ (with i defined as above). Here kQ refers to the summed momenta for
the set Q (e.g. k{1,2} ≡ k1 + k2), implying p|P | = −q.

3.2. Two-level actions

Fermion actions often use fattened links to reduce discretisation errors in
numerical simulations. By fattening or smearing a link, we will, in general, end
up with an N ×N complex colour matrix M , which can be expanded in powers
of the gauge field Aµ. It is often the case that this matrix is reunitarised by
projecting it back onto the gauge group SU(N) or, more usually, simply back

15

onto the related group U(N). Fattened links can then be further fattened, in
an iterative procedure. An example of this is the HISQ action.

To complement these numerical simulations, we need to do perturbative
calculations using the same actions. We confine our attention here to the HISQ
action (and simpler variants of the same form, for testing), with an iterated,
two-level smearing procedure with an intermediate reunitarisation:

UHISQ = (FASQ′ ◦ PU(3) ◦ FFAT7)[U] (36)

where U = exp(gA) is the unsmeared gauge field, PU(3) denotes the polar pro-
jection onto U(3) (as used in simulations, and not SU(3) [47]), and the FAT7
and ASQ’ (a slightly modified version of ASQ) smearings are defined in Ref. [23].

Straightforward application of the expansion algorithm above is theoretically
possible but practically unfeasible: the number of monomials is huge and the
memory requirements of the HiPPy code quickly become excessive. We get
around this by taking advantage of the two-level structure inherent in the defi-
nition of the action and that the intermediate reunitarisation. This allows us to
express the partially-smeared gauge field as a member of the associated gauge
Lie algebra, allowing us to split the derivation and subsequent application of
the Feynman rules into two steps.

In the first step, the Feynman rules for the outer (or “top”) layer, the ASQ’
action, are derived in the same way as before. Representing the reunitarised
(and so far uncalculated) FAT7R smeared links by a new, Lie-algebra–valued
gauge potential, Bµ:

UFAT7R
µ (x) = (PU(3) ◦ FFAT7)[Uµ] = eBµ(x+

1
2 µ̂) , (37)

we can use the HiPPy code to expand the ASQ’ action in terms of Bµ as before.
We obtain similar position-space contributions

Vr =
gr

r!

∑

i

fASQ’
r;i ψ̄(xr;i)Bµ1

(vr;i,1) · · ·Bµr
(vr;i,r)Γr;iψ(yr;i) (38)

that Fourier transform to give monomials of the usual form.
To complete the derivation of the HISQ Feynman rules, we also need to

know the expansion of Bµ in terms of the original gauge potential Aµ. To
obtain this, we write inner (or “bottom”) layer, the FAT7-smeared link, as
FFAT7[U] = M = HW , where H† = H and W ∈ U(3) (we suppress Lorentz and
lattice site indices in the following). We again use the HiPPy code to obtain
an expansion

M = c[1 + aµAµ + aµνAµAν + . . .] (39)

where c is a normalisation constant which, for simplicity in the text, we assume
has been rescaled to unity. The notation here is, for instance,

aµνAµAν =
∑

x,y

aµν(x, y)Aµ(x+
1

2
µ̂)Aν(y +

1

2
ν̂) . (40)

16

Then unitarity of W implies that R ≡ MM† = H2 and hence W = R−1/2M
using the expansion

R−1/2 = (1 + (R− 1))−1/2 = 1 −
1

2
(R− 1) +

3

8
(R− 1)2 + . . . (41)

Rearranging the result as W = exp(B), i.e.

B = log(W) = (W − 1) −
1

2
(W − 1)2 + . . . (42)

finally yields the desired expansion of B. These formulæ are implemented in
this form in the HiPPy code.

Given this, we can now numerically reconstruct the HISQ Feynman rules for
any given set of momenta from Eqn. (38) by a convolution of the ASQ’ Feynman
rules of Eqn. (38) with the expansion of Bµ in terms of Aµ, summing up all the
different ways in which the gluons Aµ going into the vertex could have come
from the fields Bµ appearing in Eqn. (38).

In more detail, we now separately have the expansions of the ASQ’ action in
terms of the fattened gauge fields B, and of B in terms of the unfattened gauge
field A. To obtain the correct reduced vertex, we must find all the ways that we
can get unfattened gluons of the correct Lorentz polarisations (“directions”). In
doing this, we bear in mind that Bµ contains, in principle, gauge fields Aν in
all directions and not just ν = µ. Below we give an expression for the reduced
vertex for general r. Explicit formulæ for r ≤ 3, as implemented in the HPsrc

code, are given in Appendix B. Using the partitions P (r) as before, the reduced
vertex for a two-level action is::

YF,r(p, q;k1, µ1; . . . ;kr, µr) =
∑

P∈P (r)

∑

ν1,...,ν|P |

ZF,|P |(p, q;kP1
, ν1; . . . ;kP|P |

, ν|P |)

×
∏

Q∈P

Xνi

F,|Q|(kQ1
, µQ1

; . . . ;kQ|Q|
, µQ|Q|

) (43)

where i = 1 . . . |P | is again the position of element Q in the ordered set P . In
the algebra reduced vertex X, the momenta kQi

are each one of the arguments
to the overall reduced vertex Y . As before, in the field reduced vertex Z, kPj

refers to the summed momenta for the partition Pj .
In Fig. 1 we represent this expansion graphically for r = 2. Solid circles rep-

resent the YF,r, whilst crossed and open circles represent ZF,r and XF,r respec-
tively. Top-level, fattened gluons Bµ are represented by dashed (brown) lines,
whilst bottom-level, unfattened gluons Aµ are shown as wavy (blue) lines. The
two sub-diagrams represent the two partition contributions listed in Eqn. (53).

As we shall discuss later, this partitioning translates naturally into blocks
of code. For certain calculations, symmetries of the Feynman diagram will lead
to the contributions of some of these blocks being zero. We can then improve
the performance of the code by commenting them out in these circumstances.

17

