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Reently, one of us in ollaboration with Mikhail Kalmykov found [1℄ a newrelation between some spei� Feynman integrals, whih is atually absent in mod-ern omputer programs based on the integration-by-parts (IBP) tehnique [2℄ (fora reent review, see Ref. [3℄). The new relation arises in the framework of the so-alled di�erential redution (see Refs. [1,4℄ and referenes ited therein) developedby these authors during last several years. This dereases the number of masterintegrals and, thus, leads to a simpli�ation of alulations.In this short note, we reover this relation diretly in the framework of the IBPtehnique by introduing an e�etive mass originating from the redution of one-loop integrals to simple propagators (see Refs. [5,6℄ and Eq. (2) below). In fat,this relation is found to be a speial ase of a whole family of new relations betweenmaster integrals.
�;m�;M�; 0 p2 = �m2

Figure 1: Two-loop sunset diagram J012(�; �; �) involving propagators with masses 0, M ,and m raised to the powers �, �, and �, respetively, taken on the mass shell p2 = �m2.Following Ref. [1℄, let us onsider the two-loop self-energy sunset-type diagramJ012 with on-shell kinematis, de�ned asJ012(�; �; �) = 1�n Z dnk1dnk2[(p� k1)2℄�[(k1 � k2)2 +M2℄�[k22 +m2℄� ����p2=�m2 ; (1)where n = 4� 2" is the dimensionality of spae time. It is depited in Fig. 1.Considering the standard Feynman representation of the following one-loop di-agram as a one-fold integralI(�1; �2) � 1�n=2 Z dnk[k2 +M21 ℄�1 [(p� k)2 +M22 ℄�2= �(�1 + �2 � n=2)�(�1)�(�2) Z 10 ds sn=2�1��1sn=2�1��2[p2 +M21 =s+M22 =s℄�1+�2�n=2 ; (2)with s = 1� s, we an interpret this as an integral over a new propagator with thee�etive mass M21 =s +M22 =s. In previous papers [5,6℄, this proedure was used toderease the numbers of loops in analyses of di�erent types of master integrals and,thus, to simplify alulations.Using Eq. (2) with M1 = M and M2 = 0, we an represent the onsideredtwo-loop diagram J012(�; �; �) as the one-fold integralJ012(�; �; �) = �(� + � � n=2)�(�)�(�) Z 10 dss�+1�n=2s�+1�n=2 I12(�; � + � � n=2); (3)2



where I12(�1; �2) = 1�n=2 Z dnk[(p� k)2 +m2℄�1 [k2 +M2=s℄�2 ����p2=�m2 (4)is a one-loop on-shell diagram.Applying the IBP proedure to the one-loop integral I(�1; �2) onsidered inEq. (2), with the distinguished line arrying the index �1 (see, for example, Ref. [5℄),1we have the general relation(n� 2�1 � �2)I(�1; �2) = �2 hI(�1 � 1; �2 + 1)� �p2 +M21 +M22� I(�1; �2 + 1)i� 2�1M21 I(�1 + 1; �2): (5)Thus, for I12(1; �2) onsidered in Eq. (4), we an apply Eq. (5) with M1 = m,M2 =M=ps, p2 = �m2, and �1 = 1. The result is(n�2��2)I12(1; �2) = �2I12(0; 1+�2)��2M2s I12(1; 1+�2)�2m2I12(2; �2); (6)where the tadpole I12(0; 1 + �2) has the formI12(0; 1 + �2) = �(�2 + "� 1)�(�2 + 1) � sM2��2+"�1: (7)Integrating Eq. (6) with �2 = � + � � n=2, multiplied by the fator�(� + � � n=2)�(�)�(�) 1s�+1�n=2s�+1�n=2as on the r.h.s. of Eq. (3), over s, we obtain(4� 3"� � � �)J012(�; �; 1) = �sin[�(2� "� �)℄ �(� + � � 3 + 2")�(�)�(�) (M2)3�2"�����M2�J012(�; 1 + �; 1) � 2m2J012(�; �; 2): (8)Putting � = � = 1, we reover the new relation disovered in Ref. [1℄ as a speialase of a more general lass of relations between IBP master integrals.In onlusion, applying the IBP proedure to a one-loop integral with an e�etivemass in one of its propagators, we produed the new relation (8) between ordinaryIBP master integrals. This relation oinides for � = � = 1 with the one reentlydisovered in Ref. [1℄, but it is more general and obtained in a more straightforwardway. We intend to extend this analysis to the ase of the o�-shell sunset diagramsin a future work. The e�etive-mass proedure applied here to redue the numberof master integrals with respet to the one ahieved by the ordinary IBP proeduremay in priniple be applied whenever the onsidered topology ontains a bubblesubdiagram. We expet that relations between ordinary IBP master integrals thusobtained may be usefully implemented in modern omputer pakages based on theIBP proedure.1I.e. the fator oming in IBP proedure has the form n = d(k � k1)�=dk�, where k � k1 is themomentum of the propagator arrying the index �1.3
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