
ar
X

iv
:1

20
2.

15
00

v1
  [

ph
ys

ic
s.

ed
-p

h]
  7

 F
eb

 2
01

2

Physics on Smallest Scales - An Introduction to

Minimal Length Phenomenology

Martin Sprenger1,2, Piero Nicolini1 and Marcus Bleicher1

1Institute for Theoretical Physics, Goethe University and Frankfurt Institute for

Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany
2DESY Theory Group, DESY Hamburg, Notkestr. 85, 22603 Hamburg, Germany

E-mail: sprenger@fias.uni-frankfurt.de

nicolini@th.physik.uni-frankfurt.de

bleicher@th.physik.uni-frankfurt.de

Abstract.

Many modern theories which try to unite gravity with the Standard Model of

particle physics, as e.g. string theory, propose two key modifications to the commonly

known physical theories:

• the existence of additional space dimensions

• the existence of a minimal length distance or maximal resolution

While extra dimensions have received a wide coverage in publications over the last ten

years (especially due to the prediction of micro black hole production at the LHC), the

phenomenology of models with a minimal length is still less investigated. In a summer

study project for bachelor students in 2010 we have explored some phenomenological

implications of the potential existence of a minimal length. In this paper we review the

idea and formalism of a quantum gravity induced minimal length in the generalised

uncertainty principle framework as well as in the coherent state approach to non-

commutative geometry. These approaches are effective models which can make model-

independent predictions for experiments and are ideally suited for phenomenological

studies. Pedagogical examples are provided to grasp the effects of a quantum gravity

induced minimal length.
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1. Introduction

Quantising gravity is one of the most important problems in modern theoretical physics. Even

though people have been working on it for more than 50 years, there is no complete theory

of quantum gravity up to this date. A major obstacle in finding the correct theory is the

absence of any experimental quantum gravity signal. Out of this frustration, a new research

field has emerged in the last decade which employs effective theories to describe quantum

gravity effects and to look for possible experimental signatures. This field is called quantum

gravity phenomenology. The effective theories are build by using standard quantum field

theory or general relativity and implementing one or several features that are supposed to

arise in a full theory of quantum gravity. As there are effects which appear in the majority

of candidate theories, quantum gravity phenomenology can implement these effects and make

predictions independently of any fundamental formulation. Furthermore, predictions can be

made without employing the heavy machinery of string theory or loop quantum gravity from

which it is usually very difficult to foresee experimental signatures.

The effect we want to study in this article is the appearance of a minimal length. The fact

there is a radical change in the nature of space-time comes as no surprise. In fact, we have

to take into account that quantum field theory and general relativity treat space-time very

differently. While general relativity treats space-time as a dynamical entity using the metric

tensor gµν , in quantum field theory space and time are mere labels on which fields are defined.

The idea of a minimal length dates far back, long before the birth of modern candidate

theories of quantum gravity (cf. [1]) and appears in all recent formulations like the path-

integral quantisation [2], string theory [3], loop quantum gravity [4] and other approaches

[5], [6]. To motivate the emergence of a minimal length, recall from optics that to probe

a structure of length λ one needs photons of wavelength λ or less. To resolve smaller and

smaller structures, the energy of the photons (which is proportional to the inverse of the

wavelength, λ ∼ 1
Eγ

) has to be increased. However, when gravity is taken into account,

there is the possibility that the energy density is large enough to create a black hole and

all information on the structure one wants to probe is lost behind a horizon. Therefore, a

fundamental (minimal) length scale naturally emerges in quantum gravity that accounts for a

limited resolution of space-time. As there is only one natural length scale present in quantum

gravity, this minimal length is expected to appear at the Planck scale, ℓP ≈ 10−35 m. If the

minimal length were of that order, current and near-future experiments would have no chance

to observe minimal length effects. However, our description of gravity has only been tested

down to length scales of the order of 0.1 mm by direct measurements of Newton’s law [7] and

down to 1 TeV−1 ≈ 10−19 m = 10−4 fm by indirect searches at particle colliders [8]. Therefore

the minimal length might lie anywhere between the Planck scale and 10−4 fm. In the rest of

the article we want to introduce an effective theory modeling a minimal length and study two

scenarios in this framework.

2. Generalised Uncertainty Principle

Let us now discuss how to introduce a minimal length into standard quantum mechanics by the

so-called generalised uncertainty principle. Pioneering work on this approach can be found in

[9], [10]. One of the fundamental concepts in quantum mechanics is the Heisenberg uncertainty

principle (see, for example, [11])

∆x∆p ≥ h̄, (1)
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where ∆x is the uncertainty in position and ∆p is the uncertainty in momentum. The

Heisenberg uncertainty principle prevents us from measuring the position and the momentum

of a particle simultaneously to arbitrary precision. However, it is always possible to measure

the position of a particle with better and better accuracy if one compensates for that by making

the momentum uncertainty larger and larger. As an extremal case, particles in momentum

eigenstates (i.e. with vanishing momentum uncertainty) are completely delocalised. Now,

imagine Eq.(1) had an extra term proportional to (∆p)2 on the right-hand side:

∆x∆p ≥ h̄(1 + β(∆p)2) (2)

The above argument for position measurements with increasing accuracy runs into problems,

because increasing ∆p makes the right-hand side grow even faster than the left-hand side. At

one point, it will not be possible to fulfill the inequality anymore, therefore there is a minimal

∆x 6= 0 for which the inequality holds. This means there is a maximal resolution of position

or, in turn, a minimal length. The introduction of the extra term looks artificial, but this

exact form of the modification arises for example in string theory [12]. In quantum mechanics,

such uncertainty relations usually follow from the non-commutativity of the corresponding

operators. For example, Eq.(1) follows from

[x̂, p̂] = ih̄, (3)

where [·, ·] is the commutator, and in general

∆A∆B ≥ 1

2

〈[

Â, B̂
]〉

, (4)

where 〈...〉 denotes the expectation value. The modified Heisenberg uncertainty relation Eq.(2)

therefore follows from a commutator

[x̂, p̂] = ih̄(1 + βp̂2) (5)

and can be obtained by an extension of the usual operator representation in momentum space,

x̂ = ih̄∂p, to

x̂ = ih̄(1 + βp2)∂p. (6)

The momentum operators remain unchanged for simplicity‡. This representation already

includes the effects of a minimal length. It is therefore possible to recalculate standard quantum

mechanical problems and find modifications due to the minimal length.

The commutator Eq.(5) belongs to a larger class of commutators of the form

[x̂i, p̂j ] = ih̄δij(1 + f(p2)), (7)

where f(p2) is a generic function which has to vanish for small momenta and should preserve

symmetries such as rotations but is otherwise arbitrary. The most general momentum space

representation of x̂i then looks like

x̂i = ih̄(1 + f(p2))∂pi . (8)

Recall from quantum mechanics that

[[x̂i, x̂j] , p̂k] + [[x̂j, p̂k] , x̂i] + [[p̂k, x̂i] , x̂j ] = 0. (9)

This is not a mere coincidence but holds for all elements of a mathematical structure called

Lie algebra and is called the Jacobi identity. The position and momentum operators in the

‡ One can also investigate theories with non-commuting momenta, see e.g. [13],[14].



Physics on Smallest Scales - An Introduction to Minimal Length Phenomenology 4

GUP model still form a Lie algebra. Therefore, the position commutator is already fixed by

Eqs.(7),(9) and reads

[x̂i, x̂j ] = −2ih̄ (x̂ip̂j − x̂j p̂i) f
′(p2), (10)

where f ′(p2) is the derivative of f(p2) with respect to p2. This commutator looks complicated,

but the important point is that it is non-vanishing as long as f ′(p2) 6= 0, again indicating a

minimal length.

Several points should be noted here. First of all, as shown in [9], by introducing the new

commutation relations, the position operator is no longer Hermitian. Still, one can keep the

symmetry of the position operator by introducing a modified momentum integration measure

d3p→ d3p

1 + f(p2)
, (11)

because, for states |ψ〉, |φ〉 whose wavefunction vanishes at infinity,

(〈ψ| x̂) |φ〉 =

∞
∫

−∞

dp

1 + f(p2)
ψ∗(p)ih̄(1 + f(p2))∂pφ(p)

=

∞
∫

−∞

dp

1 + f(p2)

(

ih̄(1 + f(p2))∂pψ(p)
)∗
φ(p) = 〈ψ| (x̂ |φ〉) (12)

as one can check by partial integration. Note that this operator would not be symmetric if we

had not included the compensating factor in the integration measure. The symmetry of p̂ is

obvious. As momenta are still commuting, we can use the momentum eigenbasis as in ordinary

quantum mechanics, however, working with the modified integration measure. A second point

concerns the position eigenbasis. As the theory contains an inherent uncertainty in position,

position eigenstates (i.e. states which have zero uncertainty in position) cannot exist in this

framework. The next best thing to use are states with minimal position uncertainty. In [9], it

is shown how to construct these states and the corresponding maximum localisation (quasi-

)basis. For our purposes, however, it is enough to look at momentum eigenstates which still

are plane waves, but with a modified dispersion relation

λ(p) = 2πh̄

(∫

dp

1 + f(p2)

)−1

, (13)

where λ cannot be smaller than the minimal length. Now we have all tools we need to calculate

problems at hand, for more details on the GUP model we refer to [9] and [10].

3. Non-commutative Geometry

Before continuing to study examples, let us briefly mention a different class of effective theories

giving rise to a minimal length, non-commutative geometry (NCG). Instead of starting with

a modification in the commutator between position and momentum operators, NCG modifies

the commutator between position operators:

[x̂µ, x̂ν ] = iθµν , (14)

where θµν is an antisymmetric matrix with entries of dimension of an area that govern the

non-commutative behaviour. There are several possibilities to implement such a theory, the

most popular being based on the Moyal product. In this framework the usual product is

replaced by the ⋆-product which can be represented in 4 dimensions by

(f ⋆ g)(x) =

∫

d4yd4k

(2π)4
f

(

xµ +
1

2
θµνkν

)

g(xµ + yµ)eikνy
ν

, (15)
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cf. [16]. This suffers from some technical difficulties which we do not want to describe here,

for reviews see [15], [16].

In recent years, another approach to NCG has been developed, the coherent state approach. In

this framework, position eigenstates are replaced by coherent position states. This is achieved

by the action of an operator eθ△ on the classical position eigenstates δ(3)(x), where θ is the

minimal length squared and △ is the Laplace operator. Using the relation

eθ△δ(3)(x) =
eθ△

(2π)3

∫

d3p ei~x~p =
1

(2π)3

∫

d3p e−θp2ei~x~p (16)

it is shown in [17], [18] that all modifications can be accounted for by a modified integration

measure

d3p→ d3p e−θp2 . (17)

This, however, is nothing but the GUP model with

f(p2) = eθp
2 − 1, (18)

cf. Eq.(11). Therefore, these models are equivalent and in the following we will use the GUP

model with the choice Eq.(18) for f(p2). Plane waves will then have a dispersion relation

λ(p) =
2πh̄

√
θ
√
π
2 erf

(√
θp
) , (19)

where erf(x) is the error function erf(x) = 2√
π

x
∫

0
e−t2dt.

4. A simple example...

One of the first problems in quantum mechanics every student has to solve is the potential

barrier. One finds that particles can tunnel through a barrier even though their energy is

smaller than the height of the potential. Applied to a potential of the form

V (r) =
e2

4πǫ0

Z − 2

r
θ(r − r0), (20)

with e being the electron charge, ǫ0 the electric constant, Z the proton number of the nucleus

and r0 the radius of the nucleus (see figure 1), this potential is used to describe the alpha

decay of nuclei. It already takes into account that two protons are taken from the nucleus by

the alpha particle and that the potential is only effective when the alpha particle is outside

the nucleus with radius r0. Starting from the potential barrier, one can approximate the

tunneling probability for the Coulomb potential by splitting it up into several rectangular

potential barriers and multiplying the probabilities to tunnel through each segment. For a

constant potential V , the wavefunction is a momentum eigenstate given by

ψ(x) = Aeikx +Be−ikx, (21)

with A,B constants and where k is given by

k =
p

h̄
=

√

2m

h̄2
(E − V ). (22)

In the limit of infinitely many segments, one obtains the well-known WKB result (see [11])

T =

exp

(

−2
b
∫

a
dx
√

2m
h̄2 (V (x)−E)

)

(

1 + 1
4 exp

(

−2
b
∫

a
dx
√

2m
h̄2 (V (x)− E)

))2 , (23)
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Figure 1. Coulomb potential for α decay

where a and b are the classical turning points E(a) = V (a), E(b) = V (b) and T is the tunneling

probability. To rederive this result including a minimal length, recall that in the GUP model

the momentum basis remains unchanged, except for a modification of the integration measure.

Since the free Hamiltonian is diagonal in momentum space, the solutions in all regions are still

momentum eigenstates. However, as shown before, these are plane waves with a modified

dispersion relation. For a constant potential V this would lead to solutions of the form

ψ(x) = Aeikx +Be−ikx, (24)

where k is now given by

k =

√
θπ

2h̄
erf
(√

θp
)

, (25)

see Eq.(19). Therefore, the only modification introduced by the minimal length is the

modification of the dispersion relation in Eq.(23) and the modified transmission probability is

given by

TML =

exp

(

−2θ−1
√
π
2

b
∫

a
dx erf

(

θ
√

2m
h̄2 (V (x)− E)

)

)

(

1 + 1
4 exp

(

−2θ−1
√
π
2

b
∫

a
dx erf

(

θ
√

2m
h̄2 (V (x)− E)

)

))2 . (26)

Realistic values for the radius of the nucleus and the strength of the potential are r0 ∼ 10 fm,

V0 ∼ 30 MeV. Numerical integration shows that for the most optimistic case of θ = 1 TeV−2

the relative difference of the two transmission probabilities is of the order of 10−6 as shown

in figure 2. The relative difference between the half-lives with and without minimal length

is, of course, of the same order of magnitude. Comparing this to experimental data found in

[19], we see that this is too small to be detectable with current statistics, which lies between

10−1 to 10−2 relative difference. However, using a large enough system of decaying particles,

it does not seem too far-fetched to hope for a bound on the minimal length from this effect in

the future.
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Figure 2. Relative difference in the tunneling probability with and without a minimal

length, for V0 = 30 MeV, a = 10 fm and θ = 1 TeV−2.

5. ...and a more complicated one

Our best description of particle physics, the Standard Model, consists of three generations

and in each generation there are two quarks, a charged lepton and a neutrino. The neutrinos

are named after the corresponding charged lepton, so there are electron neutrinos νe, muon

neutrinos νµ and tau neutrinos ντ . In nuclear processes, neutrinos are created in one of these

so-called flavours. It seems logical that neutrinos remain in the flavour state in which they were

created if they are not interacting. However, neutrinos behave differently. This was first noted

by the Homestake experiment in the 1960s which measured the flux of solar neutrinos (for a

review, see [22]). The measured flux turned out to be too small by a factor of three compared to

the theoretical predictions. It was not until 2001 that the SNO experiment could explain this

deficit [23]. The Homestake experiment was only sensitive to electron neutrinos and while solar

neutrinos are always created as electron neutrinos, SNO registered muon neutrinos and tau

neutrinos, as well, so that the total flux met the theoretical predictions. Therefore, neutrinos

seem to change their flavour upon free propagation. But if neutrinos do not propagate in

flavour eigenstates, in eigenstates of which quantity do they propagate? While the Standard

Model treats neutrinos as massless particles, it became clear that the idea of neutrinos having

a mass (a tiny mass, that is, current bounds can be found in [8]) could account very well for

the flavour oscillations as we will see.

For simplicity, we will assume there are only two flavours. In the following, Latin subscripts

stand for mass eigenstates while Greek indices stand for flavour eigenstates. Then, flavour

eigenstates in the flavour eigenbasis are given by

|να〉 =
(

1

0

)

, |νβ〉 =
(

0

1

)

. (27)

The basis change from the flavour eigenbasis to the mass eigenbasis will be described as usually

in quantum mechanics by a unitary matrix U , which in two dimensions can be parameterised

by a single angle:

U =

(

cos θ sin θ

− sin θ cos θ

)

(28)
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As we assume that the free Hamiltonian is diagonal in the mass eigenbasis, we can represent

it by the matrix

Ĥ =





√

p2 +m2
1 0

0
√

p2 +m2
2



 , (29)

where m1 and m2 are the masses of the mass eigenstates. A neutrino in a mass eigenstate

propagating freely can then be represented by a plane wave:

|νk(t)〉 = e−
i
h̄
Ekt |ν(0)〉 (30)

Collecting results, we can immediately write down the transition amplitude for a neutrino

created in flavour eigenstate |να〉 to be found in flavour eigenstate |νβ〉 after propagating

freely for a time t:

〈νβ|να(t)〉 = 〈νβ|U †e−
i
h̄
ĤtU |να〉 (31)

Putting in the explicit form of the matrices and the states Eqs.(27),(28),(29) we find

〈νβ|να(t)〉 =
1

2
sin(2θ)

(

e−
i
h̄
E1t − e−

i
h̄
E2t
)

. (32)

As the energies are assumed to be much larger than the neutrino masses, the difference of

energies E1 − E2 can be approximated by

E1 −E2 =
√

p2 +m2
1 −

√

p2 +m2
2 = |p|

√

1 +
m2

1

p2
− |p|

√

1 +
m2

2

p2
(33)

≈ m2
1 −m2

2

2E
=

∆m2

2E
, (34)

where E = |p| and ∆m2 = m2
1 −m2

2. From that, we find the transition probability simply as

the square of the transition amplitude:

P (να → νβ) = |〈νβ|να(t)〉|2 = sin2(2θ) sin

(

∆m2

4E
t

)

. (35)

Indeed, we find an oscillatory behaviour for the neutrino.

To include the effect of the minimal length, note that in (30) use was made of the dispersion

ωk = Ek

h̄
. In the GUP model, this is modified as in Eq.(19)

ω(E) =

√
π

2

√
θ

h̄
erf
(√

θE
)

. (36)

Going through the above calculation again, the transition probability becomes

P (να → νβ) = sin2(2θ) sin2
(

∆m2

4E
exp(−θE2)t

)

, (37)

where the crucial step is given explicitly by

ω(E1)− ω(E2) =

√
π

2ℓ



erf



ℓ · p
√

1 +
m2

1

p2



− erf



ℓ · p
√

1 +
m2

2

p2









≈
√
π

2ℓ

(

erf (ℓE) +
ℓ√
π

m2
1

|p| e
−(ℓE)2

)

−
√
π

2ℓ

(

erf (ℓE) +
ℓ√
π

m2
2

|p| e
−(ℓE)2

)

=
∆m2

2E
e−(ℓE)2 . (38)
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Figure 3. Oscillation pattern for classical oscillations and modified oscillations for

several values of
√
θ.

The extension of this model to the realistic three flavour case is slightly more complicated,

but the general idea remains the same. In [24] we applied our model to data from the MINOS

experiment. The results are shown in figure 3. As you can see, there is a modification of the

oscillation pattern which, however, is very small for relevant values of
√
θ. However, in [24],

we found scenarios in which the effect is more pronounced and could lead to a strong bound on

the minimal length. In particular, gamma-ray bursts and active galactic nuclei are candidates

for the emission of ultra-high energetic cosmogenic neutrinos. These neutrinos might have

energies larger than
√
θ
−1

. According to Eq.(37) these neutrinos would not oscillate, leaving

a clear experimental signal.

6. Results

Both the GUP and the NCG approach presented in this article have been applied to a wide

variety of problems from quantum mechanics and general relativity. In this section, we want

to give a small overview over what has been investigated in these frameworks.

Besides basic problems in quantum mechanics such as the harmonic oscillator [9] and the

hydrogen atom [25], GUP has been extended to quantum field theories [10], [26] and used to

derive modifications for basic scattering processes such as e+e−-annihilation where it turns

out that the standard model cross section is reduced considerably [26]. Moreover, minimal

length thermodynamics has been studied from which a modification for stable neutron star

configurations was found in [21].

The coherent state approach to NCG has been applied mostly to black hole physics. Non-

commutative solutions have been obtained for all classical black hole solutions and show that

the singularity that plagues the classical solutions is tamed. Besides being regular everywhere,

these solutions have a finite temperature throughout their evaporation, thereby getting rid of

another divergence of the (semi-)classical theory [27], [28], [29]. Moreover, black holes have

been investigated in higher-dimensional space-time and for their phenomenology in collider

experiments [30], [31], [32]. Furthermore, the model was used to study the dimensionality of

space-time at the fundamental scale which turned out to show a fractal behaviour [33], [34].

Of course, this is just a small part of the literature, but this short list will provide a good

overview for the interested reader.
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7. Conclusions

In this article we have reviewed the GUP model and the coherent state approach to NCG as

effective models for quantum gravity. This allows us to make model-independent predictions

as the appearance of a minimal length is supported by most current candidate theories. These

approaches include the effect of a minimal length and, due to their simplicity, show a rich

phenomenology. Even though the effects are suppressed, the LHC and other near-future

experiments will be able to put limits on the minimal length and, thereby, shed light on the

nature of space-time.
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