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DESY-09-043Mar
h 2009Saturation and linear transport equation.K. KutakDESY Notkestrasse 85, 22607 Hamburg, Germany(April 30, 2009)Abstra
tWe show that the GBW saturation model provides an exa
t solution to the one-dimensional linear transport equation. We also show that it is motivated by the BKequation 
onsidered in the saturated regime when the di�usion and the splittingterm in the di�usive approximation are balan
ed by the nonlinear term.1 Introdu
tionPerturbative Quantum Chromodynami
s (pQCD) at high energies 
an be formulated in
oordinate spa
e in the dipole pi
ture [1℄. If we in parti
ular fo
us on Deep Inelasti
S
attering the s
attering pro
ess 
an be des
ribed in this pi
ture as intera
tion of virtualphoton whi
h has just enough energy to disso
iate into a '
olor dipole' with the hadroni
target 
arrying most of the total energy. The intera
tion pro
ess is des
ribed here bythe dipole-nu
leus s
attering amplitude. The formal formulation and appli
ation of thedipole pi
ture leads to high energy pQCD evolution equations for the dipole amplitudeand in parti
ular to a BFKL equation for this quantity [2℄ whi
h together with a 
ertainfa
torisation theorem allows to 
al
ulate observables in the dipole pi
ture. However, leav-ing out the formal approa
h one 
an also model the dipole amplitude. The Gole
-BiernatW�ustho� saturation model developed roughly 10 years ego [3℄ is a quite well tested modelfor the dipole amplitude whi
h in
ludes saturation e�e
ts. It was motivated by require-ments that at the high energy limit of QCD the total 
ross se
tion for hadroni
 pro
essesshould obey unitarity requirements. At present there are mu
h more sophisti
ated ap-proa
hes to introdu
e these requirements in a des
ription of s
atterings at high energies[4, 5, 6, 7, 8℄. However, one 
an still ask the question if there is any dynami
s behind theGBW model or to put it di�erently is there any equation to whi
h formula proposed byGole
-Biernat and W�ustho� is a solution? And what is the role of the initial 
onditions?In this arti
le we want to answer these questions.The Letter is organized as follows: in the next se
tion we show that the GBW modelprovides exa
t solution to the one-dimensional transport equation. We show this for theunintegrated gluon density and for the dipole amplitude in the momentum spa
e. In thethird se
tion we relate the derived transport equation to the BK equation whi
h allowsus to 
on
lude that the GBW model is well based in pQCD.
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2 GBW model and a transport equation2.1 Momentum spa
e analysisThe GBW amplitude following form GBW 
ross se
tion and related to it by �(x; r) =2 R d2bN(x; r; b) reads (here we are interested in the original formulation without evolutionin the hard s
ale [9℄): N(x; r; b) = �(b0 � b)"1� exp�� r24R20�# (1)where b is the impa
t parameter of the 
ollision de�ned as distan
e between 
enter of theproton with radius b0 and 
enter of a dipole s
attering on it, r is a transversal size of thedipole, x is the Bjorken variable, R0(x)= 1Q0 � xx0��=2 is the so 
alled saturation radius andits inverse de�nes saturation s
ale, Qs(x)=1=R0(x) and x0, � are free parameters. Thisamplitude saturates for large dipoles r�2R0 and exhibits geometri
al s
aling whi
h hasbeen 
on�rmed by data [10℄.2.1.1 Transport equation for unintegrated gluon densityThe dipole amplitude (1) 
an be related to the unintegrated gluon density whi
h 
onvo-luted with the kT dependent o�-shell matrix elements allows to 
al
ulate observables inthe high energy limit of QCD. This relation is the following (after assumption that thedipole is mu
h smaller than the target) [11, 12℄:f(x; k2; b) = N
4�s�2k4r2k Z d2r2� exp(�ik � r)N(x; r; b)r2 (2)where r and k are two-dimensional ve
tors in transversal plane of the 
ollision and r � jrj,k � jkjPerforming this transformation we obtain the known result [13℄:f(x; k2; b) = N
2�2�s �(b0 � b)R20(x)k4 exp ��R20(x)k2� (3)Now motivated by the fa
t that this formula exhibits a maximum both as a fun
tion of xfor �xed k2 and as a fun
tion of k2 for �xed x, we di�erentiate f(x; k2; b) with respe
t tox and f(x; k2; b)=k2 with respe
t to k2. We obtain:�xf(x; k2; b) = �f(x; k2; b)(1� R20(x)k2)xQ20 (4)�k2 f(x; k2; b)k2 = f(x; k2; b)(1� R20(x)k2)k4Q20 (5)Dividing eqn. (4) by (5) and rearranging the terms and de�ningF(x; k2; b) = f(x; k2; b)=k2,Y = lnx0=x, L = ln k2=Q20 we obtain:�YF(Y; L; b) + ��LF(Y; L; b) = 0 (6)2



whi
h is the �rst order linear wave equation also known as the transport equation. As itis linear it 
annot generate saturation dynami
ally but it 
an propagate well the initial
ondition leading to a su

essful phenomenology [3℄. It des
ribes the 
hange (wave) in theparti
le distribution 
owing into and out of the phase spa
e volume with velo
ity �. Thiswave propagates in one dire
tion. The quantity F(x; k2; b) gains here the interpretationof a number density of gluons with momentum fra
tion x with the transversal momentumk2 at distan
e b from the 
enter of the proton. The general solution of (6) 
an be foundby the method of 
hara
teristi
s and is given by:F(Y; L; b) = F0(L� �Y; b) (7)One 
an go ba
k from (6) to (3) using following initial 
ondition at x = x0:F(x=x0; k2; b) = N
2�2�s �(b0 � b)k2 exp(�k2) (8)This initial 
ondition has saturation built in, sin
e the gluon density vanishes for smallk2. One 
an also try a di�erent initial 
ondition at large k2:F(x = x0; k2; b) � 1k2 (9)whi
h gives solution without the saturation e�e
t:F(x; k2; b) � 1k2 � xx0�� (10)Knowing the properties of the linear �rst order partial di�erential equation we see that theproperty of saturation of GBW was a 
onsequen
e of the wave solution whi
h relates x andk2 supplemented by initial 
onditions with saturation built in. We also see that the 
riti
alline of the GBW saturation model visualizing, the dependen
e of the saturation s
ale onx, Qs(x) = Q0 �x0x ��=2 is in fa
t from the mathemati
al point of view the 
hara
teristi
sof the transport equation.2.1.2 Transport equation for the dipole amplitude in momentum spa
eSimilar investigations 
an be repeated for the momentum spa
e representation of thedipole amplitude N(x; r; b) whi
h we denote by �(x; k2; b).�(x; k2; b) = Z d2r2� exp(�ik � r)N(x; r; b)r2 (11)A nonlinear pQCD evolution equation like the Balitksy-Kov
hegov (BK) equation writtenfor � (in large target approximation) takes quite simple form and 
an be related dire
tlyto the statisti
al formulation of the high energy limit of QCD (see [14℄ and referen
estherein). Applying this transformation to (1) we obtain:�(x; k2; b) = 12�(b0 � b) � �0; k2Q20 �x0x ��� (12)3



where �(0; z) = R1z dtt e�z. To obtain the partial di�erential equation we pro
eed similarlyas before and upon di�erentiating (12) with respe
t to k2 and also with respe
t to x andintrodu
ing Y = lnx0=x, L = ln k2=k20 we obtain:�Y �(Y; L; b) + ��L�(Y; L; b) = 0 (13)whi
h is, as before, the transport equation whi
h supplemented with the initial 
ondition,�(x=x0; k2; b) = 12�(b0 � b)� �0; k2Q20� (14)gives ba
k (12).2.2 Relation to pQCDIt is tempting to investigate the relation between (6) and the high energy pQCD evolutionequations like [5, 6, 8℄. Let us fo
us here in parti
ular on the form of the BK equation inlarge 
ylindri
al target approximation for the dipole amplitude in momentum spa
e forwhi
h the nonlinear term is just a simple lo
al quadrati
 expression. The BK equationfor the dipole amplitude in the momentum spa
e reads:�Y �(Y; k2; b) = ���� ��log k2��(Y; k2; b)� ��2(Y; k2; b) (15)where � = N
�s2� and �(
) = 2 (1) �  (
) �  (1 � 
) is the 
hara
teristi
 fun
tion ofthe BFKL kernel whi
h allows for emission of dipoles and therefore drives the rise of theamplitude. The role of the nonlinear term is roughly to allow for multiple s
atteringsof dipoles whi
h 
ontributes with negative sign and slows down the rise of the ampli-tude. This equation provides unitarization of the dipole amplitude [15℄ for �xed impa
tparameter and admits traveling wave solution in the di�usion approximation[16℄.2.2.1 Analyti
 approa
hThe analyti
 solution of (15) within the di�usion approximation relying on expanding thekernel of (15) up to se
ond order and mapping it to the Fisher-Kolmogorov equation hasbeen obtained by Munier and Pes
hanski [17℄. It reads:�(Y; k2; b) = �(b0�b)s 2��00(

) ln� k2Q2s(Y )�� k2Q2s(Y )�

�1 exp �� 12��00(

)Y ln2� k2Q2s(Y )��(16)where 

 = 0:373 and Q2s(Y ) is emergent saturation s
ale given by:Q2s(Y ) = Q20e����0(

)Y� 32

 log Y� 3(1�

)2q 2����00(

) 1pY +O(1=Y ) (17)By inspe
tion we see that (16) does not obey the transport equation. The problem is
aused by the di�usion term. However, we 
an 
onsider the asymptoti
 regime 
alled4



"front interior" [17, 18℄, region where transverse momenta k is 
lose to the saturations
ale Qs(Y ) and rapidity Y is large and where the 
ondition ln2 � k2Q2s(Y )� =2��00(

)Y <<1is satis�ed. In this regime (16) simpli�es to:�(Y; k2; b) = �(b0 � b)s 2��00(

) � k2Q2s(Y )�

�1 log[k2=Q2s(Y )℄ (18)Pro
eeding as in the previous se
tions we obtain the following wave equation:�Y �(Y; L; b) + �BK�L�(Y; L; b) = 0 (19)where �BK = � logQ2s(Y )=�Y . In the limit where �BK does not depends on energy [19℄we obtain: �BK = ���0(

) (20)2.2.2 Numeri
al resultsNow let us investigate the exa
t numeri
al solution of the BK equation in the di�usionapproximation to see how its terms arrange to redu
e to the transport equation in thesaturation regime. Following [16℄ we represent the BFKL kernel of the BK equation as apower series around 

:�(��L)�(Y; L; b) = ��(

) + (��L � 

)�0(

) + 12!(��L � 

)2�00(

) + :::��(Y; L; b)(21)Taking terms up to the se
ond order and rearranging them we obtain the following equa-tion: � �Y �(Y; L; b)�L�(Y; L; b) = ��00(

)� �D�(Y; L; b)� �2(Y; L; b)�L�(Y; L; b) (22)where D = �0(

)� 

�00(

) + 12(��L � 

)2�000(

).The right hand side of this equation using the analogy to the transport equation shouldde�ne velo
ity of the wave. Solving numeri
ally (22) with the initial 
ondition �(0; L; b) =�(b0 � b)e�L2 we obtain results for wave velo
ities whi
h are shown on Fig. (1a).De�ning ratio: R�D�(Y; L; b)� �2(Y; L; b)�00(

)�L�(Y; L; b) (23)and plotting it we observe (Fig. (1b)) that in the saturation region (small L, large Y )the se
ond term in (22) is proportional to the �rst one and approa
hes 2��00(

) whi
htogether with the �rst term gives the velo
ity of a wave traveling towards higher valuesof log k2. Using this fa
t we 
an write in that in asymptoti
 limit Y !1:� �Y �(Y; L; b)�L�(Y; L; b) = ���00(

)��BK (24)whi
h is the same as (19). The numeri
al value �BK = 0:92 is 
learly di�erent as 
omparedto GBW approa
h where velo
ity � = 0:27 (four 
avor �t) is a free parameter whi
h is to5
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Figure 1: Velo
ity of wave plotted as a fun
tion of lnk2 for four di�erent values of rapidity:Y=5, 10, 20, 30 (a). Ratio R de�ned in the text for four di�erent values of rapidity: Y=5, 10,20, 30. This plot shows that at saturation region the BK equation redu
es to transport equation.be determined by data. However, in the 
ase of the BK equation � is a number only in theasymptoti
 region. When 
ontributions beyond asymptoti
 ones are taken into a

ountlike di�usion, proper kinemati
s in emission of dipoles, renormalization group e�e
ts [20℄it be
omes a quite 
ompli
ated fun
tion of energy.3 Con
lusionsIn this note we have shown that the GBW saturation model is the exa
t solution of aone-dimensional linear transport equation of the form (6). We 
on
lude that sin
e (6)is a linear equation the saturation property has to be provided in the initial 
ondition.We found that for the GBW model this equation is universal for the unintegrated gluondensity f(x; k2; b) and the dipole amplitude in momentum spa
e �(x; k2; b) but the detailsof the shape of the wave depends on the initial 
ondition whi
h is di�erent for ea
h ofthem. We also studied the relation of the transport equation to the BK equation in thedi�usion approximation. We have shown that in the region of phase spa
e where di�usionand splitting pro
esses are of the same order as the nonlinear term, the GBW model is
onsistent with the BK equation.4 A
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