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DESY-09-043Marh 2009Saturation and linear transport equation.K. KutakDESY Notkestrasse 85, 22607 Hamburg, Germany(April 30, 2009)AbstratWe show that the GBW saturation model provides an exat solution to the one-dimensional linear transport equation. We also show that it is motivated by the BKequation onsidered in the saturated regime when the di�usion and the splittingterm in the di�usive approximation are balaned by the nonlinear term.1 IntrodutionPerturbative Quantum Chromodynamis (pQCD) at high energies an be formulated inoordinate spae in the dipole piture [1℄. If we in partiular fous on Deep InelastiSattering the sattering proess an be desribed in this piture as interation of virtualphoton whih has just enough energy to dissoiate into a 'olor dipole' with the hadronitarget arrying most of the total energy. The interation proess is desribed here bythe dipole-nuleus sattering amplitude. The formal formulation and appliation of thedipole piture leads to high energy pQCD evolution equations for the dipole amplitudeand in partiular to a BFKL equation for this quantity [2℄ whih together with a ertainfatorisation theorem allows to alulate observables in the dipole piture. However, leav-ing out the formal approah one an also model the dipole amplitude. The Gole-BiernatW�ustho� saturation model developed roughly 10 years ego [3℄ is a quite well tested modelfor the dipole amplitude whih inludes saturation e�ets. It was motivated by require-ments that at the high energy limit of QCD the total ross setion for hadroni proessesshould obey unitarity requirements. At present there are muh more sophistiated ap-proahes to introdue these requirements in a desription of satterings at high energies[4, 5, 6, 7, 8℄. However, one an still ask the question if there is any dynamis behind theGBW model or to put it di�erently is there any equation to whih formula proposed byGole-Biernat and W�ustho� is a solution? And what is the role of the initial onditions?In this artile we want to answer these questions.The Letter is organized as follows: in the next setion we show that the GBW modelprovides exat solution to the one-dimensional transport equation. We show this for theunintegrated gluon density and for the dipole amplitude in the momentum spae. In thethird setion we relate the derived transport equation to the BK equation whih allowsus to onlude that the GBW model is well based in pQCD.

http://arxiv.org/abs/0903.3521v2


2 GBW model and a transport equation2.1 Momentum spae analysisThe GBW amplitude following form GBW ross setion and related to it by �(x; r) =2 R d2bN(x; r; b) reads (here we are interested in the original formulation without evolutionin the hard sale [9℄): N(x; r; b) = �(b0 � b)"1� exp�� r24R20�# (1)where b is the impat parameter of the ollision de�ned as distane between enter of theproton with radius b0 and enter of a dipole sattering on it, r is a transversal size of thedipole, x is the Bjorken variable, R0(x)= 1Q0 � xx0��=2 is the so alled saturation radius andits inverse de�nes saturation sale, Qs(x)=1=R0(x) and x0, � are free parameters. Thisamplitude saturates for large dipoles r�2R0 and exhibits geometrial saling whih hasbeen on�rmed by data [10℄.2.1.1 Transport equation for unintegrated gluon densityThe dipole amplitude (1) an be related to the unintegrated gluon density whih onvo-luted with the kT dependent o�-shell matrix elements allows to alulate observables inthe high energy limit of QCD. This relation is the following (after assumption that thedipole is muh smaller than the target) [11, 12℄:f(x; k2; b) = N4�s�2k4r2k Z d2r2� exp(�ik � r)N(x; r; b)r2 (2)where r and k are two-dimensional vetors in transversal plane of the ollision and r � jrj,k � jkjPerforming this transformation we obtain the known result [13℄:f(x; k2; b) = N2�2�s �(b0 � b)R20(x)k4 exp ��R20(x)k2� (3)Now motivated by the fat that this formula exhibits a maximum both as a funtion of xfor �xed k2 and as a funtion of k2 for �xed x, we di�erentiate f(x; k2; b) with respet tox and f(x; k2; b)=k2 with respet to k2. We obtain:�xf(x; k2; b) = �f(x; k2; b)(1� R20(x)k2)xQ20 (4)�k2 f(x; k2; b)k2 = f(x; k2; b)(1� R20(x)k2)k4Q20 (5)Dividing eqn. (4) by (5) and rearranging the terms and de�ningF(x; k2; b) = f(x; k2; b)=k2,Y = lnx0=x, L = ln k2=Q20 we obtain:�YF(Y; L; b) + ��LF(Y; L; b) = 0 (6)2



whih is the �rst order linear wave equation also known as the transport equation. As itis linear it annot generate saturation dynamially but it an propagate well the initialondition leading to a suessful phenomenology [3℄. It desribes the hange (wave) in thepartile distribution owing into and out of the phase spae volume with veloity �. Thiswave propagates in one diretion. The quantity F(x; k2; b) gains here the interpretationof a number density of gluons with momentum fration x with the transversal momentumk2 at distane b from the enter of the proton. The general solution of (6) an be foundby the method of harateristis and is given by:F(Y; L; b) = F0(L� �Y; b) (7)One an go bak from (6) to (3) using following initial ondition at x = x0:F(x=x0; k2; b) = N2�2�s �(b0 � b)k2 exp(�k2) (8)This initial ondition has saturation built in, sine the gluon density vanishes for smallk2. One an also try a di�erent initial ondition at large k2:F(x = x0; k2; b) � 1k2 (9)whih gives solution without the saturation e�et:F(x; k2; b) � 1k2 � xx0�� (10)Knowing the properties of the linear �rst order partial di�erential equation we see that theproperty of saturation of GBW was a onsequene of the wave solution whih relates x andk2 supplemented by initial onditions with saturation built in. We also see that the ritialline of the GBW saturation model visualizing, the dependene of the saturation sale onx, Qs(x) = Q0 �x0x ��=2 is in fat from the mathematial point of view the harateristisof the transport equation.2.1.2 Transport equation for the dipole amplitude in momentum spaeSimilar investigations an be repeated for the momentum spae representation of thedipole amplitude N(x; r; b) whih we denote by �(x; k2; b).�(x; k2; b) = Z d2r2� exp(�ik � r)N(x; r; b)r2 (11)A nonlinear pQCD evolution equation like the Balitksy-Kovhegov (BK) equation writtenfor � (in large target approximation) takes quite simple form and an be related diretlyto the statistial formulation of the high energy limit of QCD (see [14℄ and referenestherein). Applying this transformation to (1) we obtain:�(x; k2; b) = 12�(b0 � b) � �0; k2Q20 �x0x ��� (12)3



where �(0; z) = R1z dtt e�z. To obtain the partial di�erential equation we proeed similarlyas before and upon di�erentiating (12) with respet to k2 and also with respet to x andintroduing Y = lnx0=x, L = ln k2=k20 we obtain:�Y �(Y; L; b) + ��L�(Y; L; b) = 0 (13)whih is, as before, the transport equation whih supplemented with the initial ondition,�(x=x0; k2; b) = 12�(b0 � b)� �0; k2Q20� (14)gives bak (12).2.2 Relation to pQCDIt is tempting to investigate the relation between (6) and the high energy pQCD evolutionequations like [5, 6, 8℄. Let us fous here in partiular on the form of the BK equation inlarge ylindrial target approximation for the dipole amplitude in momentum spae forwhih the nonlinear term is just a simple loal quadrati expression. The BK equationfor the dipole amplitude in the momentum spae reads:�Y �(Y; k2; b) = ���� ��log k2��(Y; k2; b)� ��2(Y; k2; b) (15)where � = N�s2� and �() = 2 (1) �  () �  (1 � ) is the harateristi funtion ofthe BFKL kernel whih allows for emission of dipoles and therefore drives the rise of theamplitude. The role of the nonlinear term is roughly to allow for multiple satteringsof dipoles whih ontributes with negative sign and slows down the rise of the ampli-tude. This equation provides unitarization of the dipole amplitude [15℄ for �xed impatparameter and admits traveling wave solution in the di�usion approximation[16℄.2.2.1 Analyti approahThe analyti solution of (15) within the di�usion approximation relying on expanding thekernel of (15) up to seond order and mapping it to the Fisher-Kolmogorov equation hasbeen obtained by Munier and Peshanski [17℄. It reads:�(Y; k2; b) = �(b0�b)s 2��00() ln� k2Q2s(Y )�� k2Q2s(Y )��1 exp �� 12��00()Y ln2� k2Q2s(Y )��(16)where  = 0:373 and Q2s(Y ) is emergent saturation sale given by:Q2s(Y ) = Q20e����0()Y� 32 log Y� 3(1�)2q 2����00() 1pY +O(1=Y ) (17)By inspetion we see that (16) does not obey the transport equation. The problem isaused by the di�usion term. However, we an onsider the asymptoti regime alled4



"front interior" [17, 18℄, region where transverse momenta k is lose to the saturationsale Qs(Y ) and rapidity Y is large and where the ondition ln2 � k2Q2s(Y )� =2��00()Y <<1is satis�ed. In this regime (16) simpli�es to:�(Y; k2; b) = �(b0 � b)s 2��00() � k2Q2s(Y )��1 log[k2=Q2s(Y )℄ (18)Proeeding as in the previous setions we obtain the following wave equation:�Y �(Y; L; b) + �BK�L�(Y; L; b) = 0 (19)where �BK = � logQ2s(Y )=�Y . In the limit where �BK does not depends on energy [19℄we obtain: �BK = ���0() (20)2.2.2 Numerial resultsNow let us investigate the exat numerial solution of the BK equation in the di�usionapproximation to see how its terms arrange to redue to the transport equation in thesaturation regime. Following [16℄ we represent the BFKL kernel of the BK equation as apower series around :�(��L)�(Y; L; b) = ��() + (��L � )�0() + 12!(��L � )2�00() + :::��(Y; L; b)(21)Taking terms up to the seond order and rearranging them we obtain the following equa-tion: � �Y �(Y; L; b)�L�(Y; L; b) = ��00()� �D�(Y; L; b)� �2(Y; L; b)�L�(Y; L; b) (22)where D = �0()� �00() + 12(��L � )2�000().The right hand side of this equation using the analogy to the transport equation shouldde�ne veloity of the wave. Solving numerially (22) with the initial ondition �(0; L; b) =�(b0 � b)e�L2 we obtain results for wave veloities whih are shown on Fig. (1a).De�ning ratio: R�D�(Y; L; b)� �2(Y; L; b)�00()�L�(Y; L; b) (23)and plotting it we observe (Fig. (1b)) that in the saturation region (small L, large Y )the seond term in (22) is proportional to the �rst one and approahes 2��00() whihtogether with the �rst term gives the veloity of a wave traveling towards higher valuesof log k2. Using this fat we an write in that in asymptoti limit Y !1:� �Y �(Y; L; b)�L�(Y; L; b) = ���00()��BK (24)whih is the same as (19). The numerial value �BK = 0:92 is learly di�erent as omparedto GBW approah where veloity � = 0:27 (four avor �t) is a free parameter whih is to5
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Figure 1: Veloity of wave plotted as a funtion of lnk2 for four di�erent values of rapidity:Y=5, 10, 20, 30 (a). Ratio R de�ned in the text for four di�erent values of rapidity: Y=5, 10,20, 30. This plot shows that at saturation region the BK equation redues to transport equation.be determined by data. However, in the ase of the BK equation � is a number only in theasymptoti region. When ontributions beyond asymptoti ones are taken into aountlike di�usion, proper kinematis in emission of dipoles, renormalization group e�ets [20℄it beomes a quite ompliated funtion of energy.3 ConlusionsIn this note we have shown that the GBW saturation model is the exat solution of aone-dimensional linear transport equation of the form (6). We onlude that sine (6)is a linear equation the saturation property has to be provided in the initial ondition.We found that for the GBW model this equation is universal for the unintegrated gluondensity f(x; k2; b) and the dipole amplitude in momentum spae �(x; k2; b) but the detailsof the shape of the wave depends on the initial ondition whih is di�erent for eah ofthem. We also studied the relation of the transport equation to the BK equation in thedi�usion approximation. We have shown that in the region of phase spae where di�usionand splitting proesses are of the same order as the nonlinear term, the GBW model isonsistent with the BK equation.4 AknowledgmentsI would like to thank Krzysztof Gole-Biernat for useful omments, suggestions and forareful reading of manusript. Disussions and omments by G�osta Gustafson and HannesJung are also aknowledged. I would like also to thank Anna Ohab-Marinek and RikardEnberg for useful orrespondene. 6
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