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Fast Partile Traking With Wake FieldsM. Dohlus, K. Fl�ottmann, C. HenningAbstratTraking alulations of harged partiles in eletromagneti �elds require in priniple the simul-taneous solution of the equation of motion and of Maxwell's equations. In many traking odes asimpler and more eÆient approah is used: external �elds like that of the aelerating struturesare provided as �eld maps, generated in separate omputations and for the alulation of self �eldsthe model of a partile bunh in uniform motion is used. We desribe how an externally omputedwake funtion an be approximated by a table of Taylor oeÆients and how the wake �eld kikan be alulated for the partile distribution in a traking alulation. The integrated kik, rep-resenting the e�et of a distributed struture, is applied at a disrete time. As an example, weuse our approah to alulate the emittane growth of a bunh in an undulator beam pipe due toresitive wall wake �eld e�ets.
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INTRODUCTIONSelf onsistent partile traking needs the simultaneous solution of the equation of motionfor a multi partile system (N � 103 � � � 109) and of Maxwell's equations. The e�ort isusually rather high, as the eletro-magneti �eld alualation in time domain has to resolvethe dimension of the bunh and of the surrounding geometry: a large volume has to bedisretized with high resolution, and a good spatial resolution is related to a �ne time step[1℄.Supposed the partile energy is high enough for ultra-relativisti approximations, themotion is approximately uniform and the betatron wavelength is large ompared to ge-ometri dimensions as avities, magnets and wake generating disontinuities. Then theeletromagneti problem an be split into independent sub-problems: external �elds, wake�eld interations and simpli�ed self-interations. The separation of external �elds is possi-ble without these onditions, but the wake �eld approah is based on an idealised setup asskethed in Fig. 1: a disontinuity, either of geometry or of material properties or of both,is enlosed by semi-in�nite beam pipes. Several generations of wake �eld odes have beendeveloped to solve this problem [2{6℄. The model of simpli�ed self interations alulates soalled \spae harge fores" for a partile distribution in uniform motion, using a Lorentztransformation and solving an eletrostati �eld [8{10℄.This report is about the appliation of wake �elds in a traking program. The e�et of adistributed wake�eld generating struture is replaed by a disrete kik at a disrete time,alulated from a wake funtion that is determined with help of a wake �eld ode. Thewake funtion has to be desribed by a exible format. We propose a hybrid formulation:the dependeny on the longitudinal oordinate s (between soure and observer partile) istabulated and the transverse dependeny (o�set of soure and observer partile) is Taylorexpanded. Therefore the wake funtion is stored in a table of Taylor oeÆents. The pointto point interation between all partiles is alulated by a onvolution method. Thereforethe line harge density and generalized line harge densities (the �rst and seond transversemoments) are alulated on a grid by a binning and smoothing tehnique.Our method is implemented in the spae harge ode ASTRA [9℄. As an example wealulate the emittane growth of a bunh in an undulator beam pipe due to resitive wallwake �eld e�ets. In this example the wake per length in a 30 m beam pipe is modeled2



by about 60 diskrete kiks. The example onsiders a real foussing lattie, olletive andindividual transverse motion and simultaneously longitudinal and transverse e�ets (whihannot be separeted from eah other).COORDINATE SYSTEM AND WAKE FUNCTIONThe partiles are traked in global Cartesian oordinates with (x; y; z; px; py; pz), theomponents of loation and momentum, while wake �elds are alulation in a loal oodinatesystem with (u; v; w; pu; pv; pw) omponents. The oordinates of both systems are relatedby: � ~ex ~ey ~ez �0BBB� xnynzn 1CCCA = ~ro + � ~eu ~ev ~ew �0BBB� unvnwn 1CCCA (1)� ~ex ~ey ~ez �0BBB� px;npy;npz;n 1CCCA = � ~eu ~ev ~ew �0BBB� pu;npv;npw;n 1CCCA (2)with n the partile index, ~ro the vetor to the origin of the wake geometry, ~ew the unity vetorinto nominal diretion of partile motion and ~eu, ~ev the orthonormal transverse vetors. Thedisrete wake indued kiks are added to the partile momenta when the enter of mass ofthe distribution passes the plane ~ro + u~eu + v~ew. The setup is skehed in Fig. 1.For simpliity we set ~ro = ~0 for the following. A soure partile with harge qs on thetrajetory ~rs(t) = us~eu + vs~ev + t~ew is followed by a observer partile with harge qo andtrajetory ~ro(t) = uo~eu + vo~ev + (t � s)~ew. The soure partile auses the eletromagenti�eld ~E(s), ~B(s). The total hange of momentum of the observer partile is�~p = qo Z 1�1 � ~E(s)(~ro(t); t) + ~ew � ~B(s)(~ro(t); t)� dt: (3)For the de�nition of the wake funtion we follow [7℄ with~wf(us; vs; uo; vo; s) = qoqs�~p: (4)The wake funtion is ausal in the s oordinate, the transverse and longitudinal omponents3



are related by the Panofsky-Wenzel-Theorem��s(~wf � ~eu) = � ��uo (~wf � ~ew) ; (5)��s(~wf � ~ev) = � ��vo (~wf � ~ew) ; (6)and the longitudinal omponent is a harmoni funtion of transverse oordinates� �2�u2o + �2�v2o� (~wf � ~ew) = 0: (7)For the following we use salar omponent funtions~wf(us; vs; uo; vo; s) = �� ~eu ~ev ~ew �0BBB� hu(us; vs; uo; vo; s)hv(us; vs; uo; vo; s)hw(us; vs; uo; vo; s)1CCCA : (8)The implementation of wake �elds in Astra is based on a seond order Taylor expansion ofthe longitudinal wake in the transverse oordinates
hw(us; vs; uo; vo; s) = 2666666664

1usvsuovo
3777777775
t 2666666664

h00(s) h01(s) h02(s) h03(s) h04(s)0 h11(s) h12(s) h13(s) h14(s)0 h12(s) h22(s) h23(s) h24(s)0 h13(s) h23(s) h33(s) h34(s)0 h14(s) h24(s) h34(s) �h33(s)
3777777775
2666666664

1usvsuovo
3777777775 : (9)

This approah ful�lles Eq. (7). The transverse omponents are uniquely related to thelongitudinale wake by ausality and Panofsky-Wenzel-Theorem:hu(us; vs; uo; vo; s) = h(i)03 (s) + 2h(i)13 (s)us + 2h(i)23 (s)vs + 2h(i)33 (s)uo + 2h(i)34 (s)vo ; (10)hv(us; vs; uo; vo; s) = h(i)04 (s) + 2h(i)14 (s)us + 2h(i)24 (s)vs + 2h(i)34 (s)uo � 2h(i)33 (s)vo ; (11)with the integrated oeÆient funtionsh(i)��(s) = � Z s�1 h��(x)dx : (12)Speial ases for geometries with symmetry of revolution are the monopole and dipole wake.The monopole wake ~wf(us; vs; uo; vo; s) = �h00(s)~ew (13)4



is purely longitudinal and independent on o�set parameters. The transverse part of thedipole wake depends linear on the o�set of the soure partile. Due to symmetry the oeÆ-ient funtions h13(s) and h24(s) are idential. Therefore the dipole wake funtions is~wf(us; vs; uo; vo; s) = �(us~eu + vs~ev)2h(i)13 (s)� (usuo + vsvo)~ew2h13(s) : (14)DISTRIBUTED SOURCEFor an arbitrary distribution of soure partiles with harges qs;n, total harge qb =P qs;nand trajetories ~rs;n(t) = us;n~eu + vs;n~ev + (t + ws;n)~ew, the hange of momentum of theobserver partile is �~p = qo Xn qs;n ~wf(us;n; vs;n; uo; vo; s� ws;n) : (15)The wake potential~W (uo; vo; s) = 1qb Xn qs;n ~wf(us;n; vs;n; uo; vo; s� ws;n): (16)haraterises the shape dependent wake kik. It an be omputed with eletromagneti�eld alulation programs as [2, 3, 6℄ for ontinuous gaussian soure distributions. Usu-ally the wake funtion is extrapolated from wake potential omputations for small souredistributions.The partile summation in Eq. (15) is replaed by a volume integration�~p = qo Z %(~u; ~v; ~w)~wf(~u; ~v; uo; vo; s� ~w)d~ud~vd ~w (17)with %(u; v; w) the harge density. Formally this an be expressed with a Taylor expansionof the wake funtion as�~p = qo Z %(~u; ~v; ~w)Xijmn �~wijmn(s� ~w)~ui~vjumo vno � d~ud~vd ~w : (18)Changing the order of summation and integration �~p an be written as sum of one dimen-sional onvolution integrals�~p = qo Xijmnumo vno Z �ij( ~w)~wijmn(s� ~w)d ~w ; (19)5



with salar funtions �ij( ~w) = Z %(~u; ~v; ~w)~ui~vjd~ud~v ; (20)and ~wijmn(s) desribed in Tab. I. �00(w) is the line harge density. In the following we all�ij(w) generalized line harge densities.NUMERICAL REALIZATIONFor the numerial kik alulations three problems have to be solved: the alulationof generalized one dimensional density funtions �ij(s), the representation of oeÆientfuntions h��(s) and the onvolution of these funtions.Binning and SmoothingA ontinuization based on a binning and smoothing tehnique is used to onvert thepartile set with longitudinal positions fwng and disrete generalized harges fqs;nuinvjngto ontinuous generalized line harge densities �ij(s). Conventional binning distributes thepartile harges to Nbin equi-spaed bins ranging over the whole bunh length. The disad-vantages are a spaial resolution independent on partile density, and the bin boundariesare determined by extreme partiles (�rst and last partile). To ahive more exibility, weuse bins that ful�ll requirements for the length per bin as well as for the harge per bin, andwe utilize a multiple binning with Nsub di�erent onditions for the �rst and last bin.Therefore the bunh is split into NbinNsub sub-bins. All inner bins are omposed by Nsubonseutive sub-bins, the outer bins may ombine less sub-bins, as skethed in Fig. 2. Bydoing this, Nsub di�erent binnings are generated.The sub-binning is ontrolled by the linear ombination f(w) = Weqfw(w)+(1�Weq)fq(w)of two auxiliary funtions fw(w) and fq(w). These funtions inrease along the bunhmonotonously from zero to one. Funtion fw(w) is proportional to length while fq(w)inreases with the integrated bunh harge. The boundaries bk of the sub-bins are thesolutions of f(bk) = k=(NbinNsub). Setting Weq to one auses equi-spaed sub-bins, zeroleads to equi-harged sub-bins and a middle value generates a mixture of both onditions.The same bins and sub-bins are used for all generalized harges.Result of the binning proedure are NbinNsub+Nsub� 1 di�erent bins, eah haraterized6



by the bin enter b;k = (bk + bk+Nsub)=2, the bin width bw;k = (bk+Nsub � bk) and the binweights (the sums of generalized harges)Qij;k = 1Nsub Xn2bink qs;nuinvjn :The smoothing proedure replaes all bins by ontinuous funtions with ertain enters,widths and weights and samples the sum of these funtions on an equidistant grid:�ij;n = �ij(n�w) ; (21)�ij(w) = Xk Qij;kbw;k S(w � b;kbw;k ) : (22)The ASTRA implementation uses retangular, triangular and gaussian smoothing funtions:Sr(x) = 8<: 1 jxj < 0:50 otherwise ;St(x) = max(0; 1� jxj) ;Sg(x) = 1p2�p exp�� x22p2� ;with p � 1, a ontrol parameter. The grid density is determined by the smallest bin width.Representation of CoeÆient FuntionsEah oeÆient funtion h��(s) is desribed by oeÆients R��; L��; ~C�� and limitedauxiliary funtions q��(s), p��(s). For the following we skip the index. The representationis h(s) = q(s) + �(s)C +RÆ(s)�  ��s [LÆ(s) + p(s)℄ ; (23)with Æ(s) the dira funtion, �(s) the step funtion and C = ~C if ~C 6= 0. The term with 1=Cis skipped for ~C = 0. The representation is not unique, but very exible: every oe�ientR;L; C might vanish and the auxiliary funtions migth be idential to zero. The auxiliaryfuntions are polygons as skethed in Fig. 3. The table desription of auxiliary funtionh��(s) is listed in Tab. II. The entry "10� + �" desribes the subsript of the auxiliaryfuntion. For a omplete wake �eld representation all sub-tables of non vanishing oeÆientfuntions are staked to one tableTable = stak�h Nt 0 i ;Table1;Table2 : : :� ;7



with Nt the number of sub-tables. The order of sub-tables is arbitrary, vanishing oeÆientsneed no representation.ConvolutionAording to Eqs. (19,20) we need onvolution integrals of generalized harges with o-eÆient funtions and integrated oeÆient funtions:H(s) = Z �(x)h(s� x)dx ;H(i)(s) = Z �(x)h(i)(s� x)dx :For simpliity we skipped all lower indies. Using the representation Eq. (23) and auxiliaryfuntions A(s) = q(s) + �(s)=C ;B(s) = �p(s) ;Q(s) = Z s�1 q(~s)d~s ;C(s) = �Q(s) + p(s)� (s=C +R)�(s) ;the onvolutions an be rewitten asH(s) = R�(x)� L2�0(x) + Z �(x)A(s� x)dx + Z �0(x)B(s� x)dx ; (24)H(i)(s) = L2�(x) + Z �(x)C(s� x)dx : (25)The integrals are solved pieewise for the generalized harged densities Eq. (22) and polyg-onal oe�ient funtions.EXAMPLEThe example of partile motion in an undulator vauum hamber with resisitve wall wake�elds is based on parameters used in [11℄, see Tab. III. For the alulation with ASTRA, around stainless steel beam pipe with radius rb = 4:75 mm is used to ause signi�ant trans-verse e�ets. The undulator hamber of the real faility (FLASH) is made from aluminium.For the numerial simulation 63 quadrupoles of the FODO lattie are onsidered and the8



resistive wall wake of the 30 m beam pipe is simulated by 62 disrete wake kiks (eah for�L = LFODO=2) applied in the middle of the drifts between the quadrupoles.The longitudinal wake per length of a round resistive beam pipe is approximated by~wf(us; vs; uo; vo; s) � ~ew = wr(s)�1 + 2usuo + vsvor2b � ; (26)with wr(s) = � 12� Z Zr(!) exp(j!s=)d! ;Zr(!) = Zs(!)2�rb (1 + j!"Zs(!)rb=2)�1 ;Zs(!) = pj!�=�(!) ;� the permeability, " the permittivity of vaum and �(!) the frequeny dependent ondu-tivity of the pipe [11, 12℄. therefore only three oeÆient funtionsh00(s) = ��Lwr(s) ;h13(s) = ��Lwr(s)r2b ;h24(s) = ��Lwr(s)r2b ;have to be alualted that are all proportional to wr(s), the longitudinal resistive wall wakeper length. In the wake table the oeÆients Np, R, L und ~C are set to zero (for �� = 00,13 and 24), only the auxiliary funtions u00(s), u13(s) and u24(s) are used. In Figs. 4the emittane growth due to dipole wake fores is shown along the undulator and omparedwith the analyti estimation from [11℄. The numerial result agrees well with the estimation,but the dipole model is inomplete. Fig. 5 shows the emittane growth due to monopoleand dipole wake �elds. The longitudinal wake auses an energy spread of abaut 2.4 MeVafter 30 meters. For o� axis partiles with that energy spread, the quadrupole foussing issigni�antly altered and the transverse emittane is further inreased.ACKNOWLEDGEMENTSWe thank Torsten Limberg, Rainer Wanzenberg and Igor Zagorodnov for useful disus-sions and omments on this work. 9
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i j m n ~wijmn(s) � ~eu ~wijmn(s) � ~ev ~wijmn(s) � ~ew0 0 0 0 �h(i)03 (s) �h(i)04 (s) �h00(s)1 0 0 0 �2h(i)13 (s) �2h(i)14 (s) �h01(s)0 1 0 0 �2h(i)23 (s) �2h(i)24 (s) �h02(s)0 0 1 0 �2h(i)33 (s) �2h(i)34 (s) �h03(s)0 0 0 1 �2h(i)34 (s) �2h(i)44 (s) �h04(s)2 0 0 0 0 0 �h11(s)1 1 0 0 0 0 �2h12(s)1 0 1 0 0 0 �2h13(s)1 0 0 1 0 0 �2h14(s)0 2 0 0 0 0 �h22(s)0 1 1 0 0 0 �2h23(s)0 1 0 1 0 0 �2h24(s)0 0 2 0 0 0 �h33(s)0 0 1 1 0 0 �2h34(s)0 0 0 2 0 0 h33(s)TABLE I: ~wijmn(s) funtion.
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Nq NpR /(Us) L /(Us2)~C /(1/U) 10� + �sq;1 /m q (sq;1) /Usq;2 /m q (sq;2) /U... ...sq;Nq /m q �sq;Nq� /Usp;1 /m p (sp;1) /(Us)sp;2 /m p (sp;2) /(Us)... ... /(Us)sp;Nq /m p �sp;Np� /(Us)TABLE II: Sub-table of auxiliary funtion h��(s). The unit U is V/As for �� = 00, V/(Asm) for�� = 01 � � � 04 and V/(Asm2) for all other oeÆients.
variable units valuesbeam energy E0 GeV 1bunh harge Q0 nC 1rms bunh length �z �m 50.0normalized emittane in the undulator �n �m 2.0undulator length L m 30.0undulator gap g mm 12.0pipe thikness (minimum) t mm 1.25beam optis beta funtion �� m 3FODO period length LFODO m 0.96Length of FODO quad LFODO mm 136.5TABLE III: Parameters for wake �eld alulation in undulator as asumed for TTF2.
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FIG. 4: Emittane growth along the undulator for dipole wakes in a stainless steel vauum hamberwith a radius of 4.75 mm: numerial simulation (solid line); analytial solution (dashed line).14
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FIG. 5: Emittane growth along the undulator for monopole and dipole wakes in a stainless steelvauum hamber with a radius of 4.75 mm: numerial simulation (solid line); analytial solution(dashed line).
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