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AbstratUsing the thermodynami Bethe ansatz method we derive an in�nite set of integral non-linearequations for the spetrum of states/operators in AdS/CFT. The Y-system onjetured in [1℄for the spetrum of all operators in planar N = 4 SYM theory follows from these equations. Inpartiular, we present the integral TBA type equations for the spetrum of all operators withinthe sl(2) setor. We prove that all the kernels and free terms entering these TBA equations arereal and have nie fusion properties in the relevant mirror kinematis. We �nd the analogue ofDHM formula for the dressing kernel in the mirror kinematis.
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2-2 3-3Figure 1: T-shaped \fat hook" (T-hook) uniting two SU(2j2) fat hooks, see [2℄ for details on fathooks and super algebras.1 IntrodutionReently, a set of funtional equations, the so alled Y -system, de�ning the spetrum of all loaloperators in planar AdS/CFT orrespondene, was proposed by three of the urrent authors [1℄.The Y-system has the form of funtional equationsY +a;sY �a;sYa+1;sYa�1;s = (1 + Ya;s+1)(1 + Ya;s�1)(1 + Ya+1;s)(1 + Ya�1;s) ; (1)where f� � f(u � i=2) are simple shifts in the imaginary diretion. The funtions Ya;s(u) arede�ned only on the nodes marked by ; ; ; ; on Fig.1. Its solutions with appropriate analytialproperties de�ne the energy of a state (anomalous dimension of an operator in N=4 SYM) throughthe formula1 E =Xj �1(u4;j) + 1Xa=1 Z 1�1 du2�i ���a�u log �1 + Y �a;0(u)� : (2)where ��n is the mirror \momentum" de�ned in the text below and the rapidities u4;j are �xed bythe exat Bethe ansatz equations Y1;0(u4;j) = �1 : (3)The Y-system is equivalent to the Hirota bilinear equationT+a;sT�a;s = Ta+1;sTa�1;s + Ta;s+1Ta;s�1 ; (4)where the funtions Ta;s(u) are non-zero only on the visible part of the 2D lattie drawn on Fig.1and Ya;s = Ta;s+1Ta;s�1Ta+1;sTa�1;s : (5)It was shown that the Y-system passes a few non-trivial tests, and in partiular it is ompletelyonsistent with the asymptoti Bethe ansatz (ABA) [4, 5, 6, 7℄, is ompatible with the rossing1In some ases the integration ontour ould enirle singularities of the integrand situated away from the realaxe. In the large L asymptotis these singularities an be responsible for the L�usher �-terms. See also disussion insetion 7. 1



relation [3℄ and reprodues the �rst wrapping orretions at weak oupling for Konishi and othertwist two operators [8, 9, 10℄.In this paper, we will provide a derivation of the Y -system similar in spirit to that employedin the derivation of the TBA-type non-linear integral equations for the �nite volume spetra ofrelativisti 2-dimensional models. It is based on the Matsubara trik relating the ground state ofa eulidean QFT on a ylinder to the free energy of the same theory in �nite temperature. If wetake instead of the ylinder a torus with a small irumferene L and a large irumferene R wean represent the partition funtion in two di�erent hannels as a sum over energiy levels. In thelarge R limit, we an identify the free energy F(L) per unit length of a \mirror" QFT living in thespae setion along the in�nite diretion of the torus and having a temperature T = 1=L, with theground state energy E0(L) of the original QFT living on a spae irle of the radius LZ(L;R) =Xk e�L ~Ek(R) =Xj e�REj(L) !R!1 e�RF(L) = e�RE0(L) :In the relativisti QFT's the original theory and the mirror theory are essentially equivalent anddi�er only in the boundary onditions [11℄. An example of suh a TBA alulation, useful for ourfurther purposes, for the SU(2) priniple hiral �eld (PCF), an be seen in the Appendix A of [12℄.In the supersting sigma model on AdS5 � S5 bakground in the light one gauge relevant to ourproblem, we have to deal with the non-relativisti original and mirror sigma models (see [13, 14℄).Partiularly important for our disussion is the form of the energy and momentum of theelementary exitations for both the physial and mirror theories in in�nite volume. They areonveniently parameterized in terms of the Zhukowsky variables,x(u) + 1x(u) = ug (6)whih admits two solutions, one of them outside the unit irle jx(u)j > 1 and another inside theunit irle, jx(u)j < 1. The energy �a(u) and momentum pa(u) of the physial bound states arethen given by [15℄ �a(u) = a+ 2igx[+a℄ � 2igx[�a℄ ; pa(u) = 1i log x[+a℄x[�a℄ (7)where x[�a℄ � x(u� ia=2) are evaluated in the physial kinematis where jx[�a℄j > 1.The mirror energy and momentum are obtained by the usual Wik rotation (E; p) ! (ip; iE).To stress this we denote the mirror energy by ip�a and the mirror momentum by i��a. The quantities��a and p�a are de�ned preisely as in (7) where x[a℄ are now evaluated in the mirror kinematis wherejx[a℄j > 1 but jx[�a℄j < 1, for a > 0.Let us now return to our general review of the TBA method. This method is based on theso alled string hypothesis: all the eigenstates of an integrable model in the in�nite volume arerepresented by bound states (the simplest ones are alled \strings") desribed by some density �A.In terms of these densities the asymptoti Bethe equations simply read��A(u) + �A(u) = i2� d��A(u)du �KBA(v; u) � �B(v) : (8)Here KBA(v; u) = 12�i ddu logSAB(u; v) is the kernel desribing the interation between the boundstates A and B whih satter via an S-matrix SAB. i��A is the momentum of a magnon labeled byA. For the same reasons as mentioned above in the disussion of the AdS=CFT dispersion relations2



we use this notation to emphasize that the momenta of these mirror partiles are obtained fromthe energy of the physial partiles �A(u) by the Wik rotation. Finally ��A is the density of holesassoiated with the bound state A.To ompute the free energy we must minimize the funtionalF = XA Z 1�1 du�(Lip�A + hA) �A � ��A log�1 + ��A�A�+ ��A log�1 + �A��A��� (9)with respet to �A(u), ��A(u) and exlude Æ��A by the use of the onstraint imposed by the BAE's (8).The physial origin of eah term in the expression for the free energy is as follows: The �rst termaounts for the energy (times inverse \temperature"L); the term in the square brakets representthe entropy ontribution; we added a generi hemial potential hA for eah kind of bound states.This hemial potential is needed if the theory ontains fermioni exitations, as is the ase for theAdS/CFT system, sine we want to ompute the Witten index rather than the thermal partitionfuntion where the physial fermions are periodi. This amounts to hoosing hA = i� = log(�1)for the fermioni states and hA = 0 for the bosoni states.The minimization of the free energy yields the TBA equationslogYA(u) = KAB(u; v) � log[1 + 1=YB(v)℄ + iLp�A(u) + hA (10)for the quantities YA = ��A�A . Finally, at this saddle point, the free energy an be simply written asF =XA Z du2�i d��Adu log (1 + 1=YA(u)) : (11)In this way one obtains the �nite volume ground state energy for a generi integrable �eld theory.The exited physial states are reovered by the usual proedure of analyti ontinuation [16, 17,18, 19℄ and will be also disussed in this paper.In what follows, we will apply the TBA method to the \mirror" superstring sigma model andderive this AdS/CFT Y-system onjetured in [1℄. The atual TBA equations arising as an in-termediate step towards the Y-system, may be very useful for the numerial alulations of theenergies of low-lying states.2 The starting point: Beisert-Staudaher equationsThe basis of our derivation of TBA for AdS/CFT are the Beisert-Staudaher (BS) ABA equationsof [4, 5, 7℄ in their mirror form [20, 14℄. We write them in our ompat notations, introduing threetypes of Baxter funtionsR(�)l (u) � KlYj=1 x(u)� x�l;jqx�l;j ; B(�)l (u) � KlYj=1 1x(u) � x�l;jqx�l;j ; Ql(u) = KlYj=1(u�ul;j) = (�g)KlRl(u)Bl(u):(12)The index l takes the values l = 1L; 2L; 3L or l = 1R; 2R; 3R parametrizing the rapidities of theleft and right SU(2j2) wings of the model, orrespondingly. R(�) and B(�) with no subsriptl orrespond to the roots x4;j of the middle node and Rl; Bl without superript (+) or (�) arede�ned as in (12) with x�j replaed by xj. In these notations the left wings ABA's read:1 = Q+2LB(�)Q�2LB(+) �����u1L;k ; �1 = Q��2L Q+1LQ+3LQ++2L Q�1LQ�3L ����u2L;k ; 1 = Q+2LR(�)Q�2LR(+) �����u3L;k (13)3



with a similar set of equations for the right wing replaing L ! R. The Bethe equation for themiddle node for the full AdS/CFT ABA of [5℄ �x the positions of the u4;j roots from2�1= 24eR ��1 �Q��4Q++4 B+1LR+3LB�1LR�3L B+1RR+3RB�1RR�3R� B+(+)B�(�)!2 S2 35 K4Yj=1 x+4;jx�4;j  x+4;kx�4;k!K1R�K3R+K1L�K3L2 �������u=u4;k (14)for the sl(2) favored grading. The dressing fator is S(u) = Qj �(x(u); x4;j) where � is the BESdressing kernel [7℄ (see [21℄ for a nie integral representation of the dressing kernel).3 Bound states and TBA equations for the mirror \free energy"To write the TBA for the full AdS/CFT, we have to �nd the BAE's for the densities of all omplexesof Bethe roots in the in�nite volume R = 1. The string hypothesis implies the full desriptionof the in�nite volume solutions. They are easy to lassify: there is only one type of momentumarrying omplexes, strings in the middle nodes, similar to standard SU(2) strings [15℄; the restare the same omplexes as found by Takahashi in the Hubbard model [22, 23℄ (see also [24℄).As the result, we �nd that in the large R limit of BAE's the roots regroup into the followingbound states:u4 = u+ ij ; j = �n� 12 ; : : : ; n� 12 : middle node bound states : nuL;R2 = u+ ij ; j = �n� 22 ; : : : ; n� 22 : L;R string bound states : �nuL;R3 = u+ ij ; j = �n� 12 ; : : : ; n� 12uL;R2 = u+ ij ; j = �n� 22 ; : : : ; n� 22 : L;R trapezia : �nuL;R1 = u+ ij ; j = �n� 32 ; : : : ; n� 32uL;R1 = u : L;R single fermion : �uL;R3 = u : L;R single fermion : �where by u we denote the real enter of a omplex. Thus the index A in formulae (8-11) takes thevalues A = f �n; �; �; �n; ng (15)or, in the notation used in [1℄ for the points on the T-hookA = f(1;�n); (2;�2); (1;�1); (n;�1); (n; 0)g : (16)2This equation is idential to the eq.(6.6) from [14℄. The fators of x+=x� outside of the square brakets anbe easily reonstruted from the unimodularity of the r.h.s. of (14). We thank the referee for pointing us out thismisprint whih fortunately does not a�et any of our results in the previous version of the preprint.4



Multiplying the Bethe equations along eah omplex we obtain the fused equations (8) for thedensities (of partiles and holes, �A(u) and ��A(u)) of the enters of omplexes (10). It is useful tointrodue the following notation for YA:nY �n ;Y � ;Y � ;Y �n ;Y �no = (Y �n ; Y � ; 1Y � ; 1Y �n ; 1Y �n) (17)In partiular notie that the Y funtions Ya;s arrange niely into a T-shaped form as depited inFig.1. As shown below, these funtions are preisely those appearing in the Y -system (1).The only omplexes whih arry energy and momentum are those made out of middle noderoots u4;j , ��A = ÆA; n��n ; p�A = ÆA; np�n (18)where ��n and p�n are explained after (7). The fused kernels KAB are given by
KAB = AnB m + + m mn +Kn�1;m�1 �Kn�1 +Kn�1 0 0+ �Km�1 0 0 +Km�1 �B(01)1m+ �Km�1 0 0 +Km�1 �R(01)1mn 0 �Kn�1 +Kn�1 +Kn�1;m�1 �R(01)nm �B(01)n�2;mn 0 B(10)n1 �R(10)n1 �R(10)nm � B(10)n;m�2 �2Snm � B(11)nm +R(11)nm (19)

where the blok entrees of this in�nite matrix are de�ned asKn � 12�i ddv log u� v + in=2u� v � in=2 ; Knm � m�12Xj=�m�12 n�12Xk=�n�12 K2j+2k+2 (20)Snm(u; v) � 12�i ddv log �(x�n(u); x�m(v)) (21)B(ab)nm (u; v) � n�12Xj=�n�12 m�12Xk=�m�12 12�i ddv log b(u+ ia=2 + ij; v � ib=2 + ik)b(u� ia=2 + ij; v + ib=2 + ik) (22)R(ab)nm (u; v) � n�12Xj=�n�12 m�12Xk=�m�12 12�i ddv log r(u+ ia=2 + ij; v � ib=2 + ik)r(u� ia=2 + ij; v + ib=2 + ik) (23)where r(u; v) = x(u)� x(v)px(v) ; b(u; v) = 1=x(u) � x(v)px(v) : (24)In the table above we only wrote the interation between the omplexes of the left SU(2j2) wing,between those omplexes and the middle node bound states, as well as between the middle nodebound states themselves. The right wing interation is of ourse absolutely idential and the
5



omplexes of di�erent wings do not interat. Equations (10) in the notation of (17) then readlog Y � = +Km�1 � log 1 + 1=Y �m1 + Y �m +R(01)1m � log(1 + Y m) + log(�1) (25)log Y � = �Km�1 � log 1 + 1=Y �m1 + Y �m � B(01)1m � log(1 + Y m)� log(�1) (26)log Y �n = �Kn�1;m�1 � log(1 + Y �m)�Kn�1 � log 1 + Y �1 + 1=Y � (27)+ �R(01)nm + B(01)n�2;m� � log(1 + Y m)log Y �n = Kn�1;m�1 � log(1 + 1=Y �m) +Kn�1 � log 1 + Y �1 + 1=Y � (28)log Y n = L log x[�n℄x[+n℄ + �2Snm �R(11)nm + B(11)nm � � log(1 + Y m) (29)� B(10)n1 � log(1 + 1=Y +) +R(10)n1 � log(1 + Y +) + �R(10)nm + B(10)n;m�2� � log(1 + Y m)� B(10)n1 � log(1 + 1=Y �) +R(10)n1 � log(1 + Y �) + �R(10)nm + B(10)n;m�2� � log(1 + Y �m)All onvolutions are to be understood in the usual sense with the seond variable being integratedover so that K � f = R dvK(u; v)f(v). Summation over the repeated index m is assumed (m =2; : : : ;1 for the onvolutions involving pyramids �m and strings �m and m = 1; : : : ;1 for theonvolutions with the middle node bound states m). There are still some ambiguities involved inthese integral equations onerning the hoie of the integration ontours. We will disuss this, stillnot ompletely eluidated, point when we will onsider equations for the exited states where someof the ambiguities will be lifted.4 Derivation of the AdS/CFT Y-systemWe will now derive, from the TBA equations, the Y-system (1) and (4) for the AdS/CFT spetrumonjetured in [1℄. We shall do it separately for eah type of exitations.The key idea in the derivation is to use the disrete Laplae operator ating on the free variableu and free index n in the TBA equations. We notie that�Kn(u) � Kn(u+ i=2� i0) +Kn(u� i=2 + i0) �Kn+1(u)�Kn�1(u) = Æn;1Æ(u)As a simple onsequene of this identity we �nd�Knm(v � u) = �R(11)nm (v; u) = Æn;m+1Æ(v � u) + Æn;m�1Æ(v � u)�R(01)nm (v; u) = �R(10)nm (v; u) = Æn;mÆ(v � u) (30)whereas the Laplaian kills all other kernels, �Snm = 0, et. For example, the fat that the dressingfator is killed by the Laplaian follows from its harmoni form�nm(u; v) = e�(u+in=2;v+in=2)+�(u�in=2;v�in=2)��(u�in=2;v+in=2)��(u+in=2;v�in=2) (31)6



without any singularities in the physial kinematis (this fat was already used in [1℄ when on-struting the large L solutions of the Y -system). By virtue of these identities we an easily omputethe ombinations log Y +nY �nY n+1Y n�1 , log Y +nY �nY n+1Y n�1 and log Y +nY �nY n+1Y n�1 , where f� � f(u� i=2 � i0),using respetively (28), (27) and (29). We �ndlog Y +nY �nY n+1Y n�1 = log(1 + 1=Y n+1)(1 + 1=Y n�1) ; n > 2 (32)and log Y +2Y �2Y 3 = log (1 + Y +)(1 + 1=Y 3)1 + 1=Y + (33)for the string bound states. The equations for Y1;n at n � �2; as well as their derivation, aresimilar. For the pyramid omplexes we obtainlog Y +nY �nY n+1Y n�1 = log 1 + Y n(1 + Y n+1)(1 + Y n�1) ; n > 2 (34)andlog Y +2Y �2Y 3 = log (1 + Y )(1 + Y 2)Y +(1 + Y 3)(1 + Y +) � log Y +Y + +Xn (R(01)n1 � B(01)n1 ) � log(1 + Y n) :The �rst term in the r.h.s. of this equation reprodues again the orret struture of the Y-system(1). In fat, we will see below that the last two terms anel eah other and hene this equationperfetly �ts the Y-system (1). Finally, for the middle node bound states, we kill again the kernelswhen applying the disrete Laplae operator and obtainlog Y +nY �nY n+1Y n�1 = log (1 + Y n)(1 + Y �n)(1 + Y n+1)(1 + Y n�1) ; n > 1 (35)and log Y +1Y �1Y 2 = log 1 + Y +1 + Y 2 : (36)We are left with the equations for the two fermioni nodes Y1;1 = Y + and Y2;2 = Y + (for Y1;�1and Y2;�2 it will be similar). We onsider �rst the node Y1;1. Combining equations (25) foru ! u � i=2 � i0 with equations (27) and (28) for real u and n = 2 we obtain (again using thefusion properties of several kernels),log Y ++Y �+Y 2Y 2 = log (1 + 1=Y 2)(1 + Y 1)1 + Y 2 (37)perfetly reproduing the the equation for Y1;1 from the Y -system (1). Finally, to �nd the equationfor the last fermion node Y2;2 we simply add up equations (26) and (25) to getlog Y +Y + =Xm �R(01)1m � B(01)1m � � log(1 + Y m) (38)This shows indeed that the two last terms in (35) anel. The equation for Y22 = Y + is not apart of Y -system (1) sine in the standard form it would ontain the ratio 1+Y231+1=Y32 = 00 . It is thus7



natural that one an not render this equation loal if we only use the �nite Y funtions, see also[25℄. However, in terms of the T-funtions appearing in 5 we believe, and partially heked, thatHirota equation 4 is well de�ned on the full T-shaped fat-hook of �gure 1.All these equations preisely reprodue the Y -system (1) under the identi�ationnY �n ; Y � ; Y � ; Y �n ; Y �no = fY1;�n; Y2;�2; Y1;�1; Yn;�1; Yn;0g (39)mentioned in the previous setion!5 Integral equations for exited statesIn this setion we will onsider the non-linear integral TBA-type equations for exited states. Forsimpliity we shall onsider only the states in the SL(2) setor, orresponding to operators of theform tr (DSZJ) + permutations. Notie that sine none of the wings are exited the Y -funtionswill have the symmetry Ya;s = Ya;�s whih also means that Y + = Y � � Y ; : : : . To onsidersuh exited states we employ the standard analyti ontinuation trik [16, 17, 19℄ where we pikextra singularities in the onvolutions with Y 1 at the points where Y 1(u4;j) = �1. This proedureontains some ambiguities and the result should be onsidered as a onjeture. In this way, the freeenergy (11) beomes (2) while the non-linear integral equations of setion (3) are modi�ed by theterms in the square braketslog Y = +Km�1 � log 1 + 1=Y m1 + Y m +R(01)1m � log(1 + Y m) + "log R(+)R(�)#+ log(�1) (40)log Y = �Km�1 � log 1 + 1=Y m1 + Y m � B(01)1m � log(1 + Y m)� "log B(+)B(�)#� log(�1) (41)log Y n = �Kn�1;m�1 � log(1 + Y m)�Kn�1 � log 1 + Y1 + 1=Y + �R(01)nm + B(01)n�2;m� � log(1 + Y m)+ 264 n�12Xk=�n�12 log R(+)(u+ ik)R(�)(u+ ik) + n�32Xk=�n�32 log B(+)(u+ ik)B(�)(u+ ik)375 (42)log Y n = Kn�1;m�1 � log(1 + 1=Y m) +Kn�1 � log 1 + Y1 + 1=Y (43)log Y n = L log x[�n℄x[+n℄ + �2Snm �R(11)nm + B(11)nm � � log(1 + Y m) + 264 n�12Xk=�n�12 i�(u+ ik)375 (44)+ 2�R(10)n1 � log(1 + Y )� B(10)n1 � log(1 + 1=Y ) + �R(10)nm + B(10)n;m�2� � log(1 + Y m)�where �(u) = 1i log S2B(+)+R(�)�B(�)�R(+)+! : (45)and B and R and S ontaining the positions of rapidities of the exited states are de�ned in setion2. These rapidities are onstrained by the exat Bethe equationsY 1(u4;j) = �1 ; j = 1; : : : ;M : (46)8



In the onvolutions involving the fermioni Y -funtions Y and Y we integrate over v 2 [�2g; 2g℄ 3.We found that presription to be onsistent with the asymptotial large L solution of the Y-systemderived in [1℄. In fat as one an see from these integral equations we an think of the two funtionsY and 1=Y as two branhes of the same funtion. In this language the onvolutions an bereasted into some nie B-yle ontour integrals in the x(u) Riemann sheet. This is reminisent ofthe inversion symmetry in the BS equations whih allows one to redue the seven Bethe equationsto a smaller set of �ve equations [5℄.An important hek of these equations is the limit where L!1. The solution of the Y-systemin this limit was onstruted expliitly in [1℄. We heked numerially that for large L our integralequations are onsistent with the large volume solution.6 Physial and mirror hoies of branhesThe above system of TBA equations should be valid for any value of the spetral parameter uand it should be possible to analytially ontinue it to any point of the Riemann surfae of themulti-valued Y -funtions. But the hoie of branhes to formulate the TBA equations an be veryimportant for its good de�nition and in partiular for the future numerial appliations. In thissetion we will �x a partiular hoie of branhes in the kernels involved in the integral equations.This hoie will be quite unique, with the following nie properties for the Y -funtions and theintegration kernels:� They have only a minimal number of uts, in general only a pair of uts, whih means thatthey obey an ordinary fusion proedure where all the intermediate onstituents of a boundstate but the �rst and the last anel.� They are real funtions of the spetral parameter u on the real axis. It �ts well their physialmeaning in TBA as of the ratios of densities of physial partiles and holes.These properties will stem of ourse from the similar properties of integration kernels and freeterms (with no onvolutions) in the TBA equations (40)-(44).There are two natural possibilities to de�ne x(u) ompatible with (6). We de�ne two funtionsxph(u) = 12 �ug +rug � 2rug + 2� ; xmir(u) = 12  ug + is4� u2g2! : (47)They both solve (6). It is easy to hek that with this hoie of branhes (7) reprodues the physialand mirror dispersion relations, orrespondingly [14℄. They oinide above the real axes and havethe following properties under omplex onjugationxph = xph ; xmir = 1=xmir : (48)Basially both representations (47) desribe the same funtion, with the same Riemann surfae butextended from the upper half plane to the plane with the ut (�2g; 2g) for xph, and to the planewith the in�nite ut (�1;�2g) [ (2g;1) for the funtion xmir. One an say that they are twosetions of the same Riemann surfae.3Another possibility, onsistent with the in�nite length solution of [1℄, is to hoose v 2℄�1;�2g℄[[2g;1[. We willexamine that possibility in detail in the next setion. We thank G. Arutyunov and S. Frolov for the orrespondeneon this issue. 9
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C BFigure 2: Struture of the uts and onjugation paths on the mirror and physial sheets.We an plot them in Mathematia by running e.g.z=a+b I;xmr=1/2(z+I Sqrt[4-z^2℄);xph=1/2(z+Sqrt[z-2℄Sqrt[z+2℄);Plot3D[{Im[xph℄,Im[xmr℄+0.1},{a,-3,3},{b,-1,1},PlotStyle->{Red,Yellow}℄Notie that in the mirror ABA [14℄ (13) and (14) whih we started from, the hoie xmir isemployed [20, 14℄. However, for the physial ABA of Beisert and Staudaher [5℄ we only use thephysial hoie xph. Thus to have a link with the ABA in the physial hannel one should use thesame de�nition (12) with xj � xph(uj) ; x�j � xph(uj � i=2) ; (49)in various free terms (with no onvolutions) in the TBA equations.On the other hand, sine all the kernels in the TBA equations are oming from the mirrortheory, both arguments should be in mirror kinematis. Hene we speify in de�nitions (24) for theintegration kernels the following branhes4r(u; v) = xmir(u)� xmir(v)pxmir(v) ; b(u; v) = 1=xmir(u)� xmir(v)pxmir(v) : (50)With this hoie of branhes, it is easy to hek that the kernels R(ab)nm ; B(ab)nm entering our TBAintegral equations (40)-(44) are all real! In the next setion we show that the kernel involvingthe dressing fator, 2Snm, is real as a onsequene of rossing, up to a simple square root fatorwhih we identify there. Moreover, together with R11nm �B11nm appearing in (44), it has very simpleanalyti properties. Namely, it has only four branh points for eah of two variables, on�rmingthe nie fusion property announed above. We will also present a simple integral representation forthis ombination.6.1 Reality and rossingOne of the important onsequenses of the rossing for the SU(2) � SU(2) prinipal hiral modelonsidered in [12℄ was the reality of the funtion Y0 orresponding to the single middle node in the�nite size TBA equations. Here we show that exatly the same fenomenon is taking plae in thepresent AdS/CFT TBA equations.Similarly to the Beisert-Eden-Staudaher physial dressing fator, the mirror S-matrix oughtto be a pure phase. Let us here explain why this follows indeed in a simple way from the rossing4the same branhes are used in [30, 31℄ 10



relation for the dressing fator. The same argument an be easily adapted to prove that the leadinglarge volume Y -funtions found in [1℄ are indeed real.We present shematially the mirror and physial sheets on the �gures 2. They are naturallydevided by uts into three regions denoted by m1;m2;m3 and p1; p2; p3, orrespondingly. Sinexph(u) oinides with xmr(u) in the upper half-plane the regions p1 andm1 are equivalent, p1 = m1.Let us onsider two points uA and vA above the upper ut, i.e in the region p1 = m1. Conjugationin the mirror sheet sends these points to uB � ~uA and vB � ~vA (belonging to the physial sheet)while onjugation in the physial sheet maps them to uC � �uA and vC � �vA (belonging to themirror sheet).Notie that rossing ondition relates the dressing fator with argument uB with the dressingfator at the point uC . More preisely, we have [3℄�(uB ; vB)�(uC ; vB) = y�y+ x� � y�x+ � y� 1=x� � y+1=x+ � y+ ; x = xph(uB) ; y = xph(vB) (51)Notie also that we an now analytially ontinue both sides of this equality with respet to the vBroot, in partiular we an generate the rossing relation where vB is replaed by vC . Using againthe (analytially ontinued) rossing relation to transform vB into vC we get�(uC ; vC) = x�y+x+y��(uB ; vB) ; x = xph(uB) ; y = xph(vB) (52)Taking the omplex onjugate of this expression and using the fat that the dressing fator is apure phase on the physial sheet we get [14℄(�(�uA; �vA))� = x+y�x�y+ 1�(uA; vA) ; x = xmir(uA) ; y = xmir(vA) (53)Notie that we replaed xph(uA) and xph(vA) by their mirror ounterparts beause A is in the regionp1 = m1. Furthermore, in the left hand side, we expliitly wrote uC = �uA and vC = �vA to reognizethe expliit de�nition of the onjugated funtion on the mirror sheet. It is now lear that up to asimple fator of qx+y�x�y+ the dressing fator in the mirror theory is indeed a pure phase funtion.More preisely the ombination qx�y+x+y��(u; v) is a pure phase in the real axis of the mirror sheet.The same kind of arguments an be used to prove the reality of the large L Y-funtions of [1℄.6.2 Integral representationWe will show that the dressing phase on the mirror sheet admits some onise integral repre-sentation. Based on that representation we an expliitly see that it has very simple analytialproperties. In partiular, up to a simple multiplier, namely the simple square root fator identi�edin the previous setion, we an learly see that this dressing phase is indeed a pure phase funtion.6.2.1 A new representation of the dressing kernel in (mir,mir) kinematisWe will start form the DHM integral representation [21℄ for �(xph(u� i=2); xph(v � i=2)),� � exp �i�++ + i��� � i�+� � i��+� (54)11



where ��� = �(u� i=2; v � i=2),�(u; v) = 1i Ijz1j=1 dz12� Ijz2j=1 dz22� 1z1 � xph(u) 1z2 � xph(v) log �(iw1 � iw2 + 1)�(iw2 � iw1 + 1) (55)and w1;2 = g(z1;2+1=z1;2). This representation is valid for the physial kinematis and in partiularfor u; v in the region p1. Sine p1 = m1 we an start with the same expression with xph(u) andxph(v) replaed by xmir(u) and xmir(v) for u and v in the region m1, above the upper ut.For the kernel S(u; v) � 12�i�v log �(u; v) appearing in our TBA equations we haveS(u; v) = �Z 2g�2g Z 2g�2g �R(10)(u;w1 � i0)� B(10)(u;w1 + i0)� G(w1 � w2)���R(01)(w2 � i0; v) � B(01)(w2 + i0; v)� dw1dw2 (56)where G(u) � �u2�i log �(1� iu)�(1 + iu) = 1Xa=1�K2a � 1a��+ � : (57)Let us briey reall how to derive this representation for the dressing kernel from the integralrepresentation (55). First the pole terms 1=(z1 � x(u)) and 1=(z2 �x(v)) are written as derivativesof log's whih will give rise to the B's and R's in this expression (in this setion we often omit thelower indies of B's and R's in whih ase they are equal to : : :11). The extra derivative to makea kernel out of the phase an also be transported to the log of gamma funtion by integration byparts and this generates the funtion G. The integration ontour around the unit irle in the z1;2variable is mapped to an integral from 2g to �2g slightly above the real axis and then bak from�2g to 2g slightly below the real axis for the variable w1;2. When w1 is above the real axis wehave z1 = xph(w1) = xmir(w1) but when we are below we have z1 = xph(w1) = 1=xmir(w1). Thisexplains why we get that ombination of R's and B's in the last formula.Now that we have transformed the original ontour integrals into usual integrals in the real axiswe an further replae the integration limits in this expression by �1 beause for jw1j > 2g wehave R(10)(u;w1� i0)�B(10)(u;w1+ i0) = 0 and similarly for w2. Hene we arrive at the followingintegral representation for the dressing kernel in the mirror kinematisS(u; v) = �Z 1�1 Z 1�1 �R(10)(u;w1 � i0)� B(10)(u;w1 + i0)�G(w1 � w2)���R(01)(w2 � i0; v) � B(01)(w2 + i0; v)� dw1dw2 : (58)Reall that this expression is derived for u and v in the region m1. The reason for whih we annotuse this integral representation everywhere on the mirror sheet is the presene of poles of R underthe integral at u = �w1 � i=2 � i0. To get rid of them we use the relations5 R(10) = K1 � B(10) ,5It is often useful to hange from R's to B's beause the latter are muh more regular than the former. Inpartiular, sine Im xmir(u); Im xmir(v) > 0 we an never have 1=xmir(u) = xmir(v) and thus B will be pole free whenboth variables are taken in the mirror sheet. Similarly, in the physial sheet, jxph(u)j; jxph(v)j > 1 and again B isregular. Only when u and v are in di�erent kinematis we should worry about regularity of the B funtions.
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R(01) = K1 � B(01) and then evaluate the integrals with K1 by poles using6Z K1(u� w1)G(w1 � w2)B(01) (w2 + i0; v) dw1dw2 = �B(01) (u+ i=2; v) � i2P(1)(v) ;Z B(10) (u;w1 + i0) G(w1 � w2)K1(w2 � v)dw1dw2 = �B(10) (u; v + i=2) ;where P(a)(v) = � 12��v log xmir(v + ia=2)xmir(v � ia=2) : (59)In this way, we get the following representation valid everywhere in m1;m2;m3 for both variablesS(u; v) = �B(11)(u; v) � i2P(1)(v) + Z 1�1 Z 1�1 h�B(10) (u;w1 + i0)� B(10) (u;w1 � i0)� ��G(w1 � w2)�B(01) (w2 + i0; v) � B(01) (w2 � i0; v)�i dw1dw2 : (60)We see that the integrals an be ombined to a ontour integral around the uts (�1;�2g)[(2g;1)!This implies that we an write the result in a fashion similar to (55). Introduing�̂(u; v) � 1i Zjz1j>1 dz12� Zjz2j>1 dz22� " 1(z1 � xmir(u)) � 1(z1 � xmir(u))#��" 1(z2 � xmir(v)) � 1(z2 � xmir(v))# log �(iu1 � iu2 + 1)�(iu2 � iu1 + 1) (61)with the integration going along the part of the real axes over (�1;�1) [ (1;1). Then for thephysial dressing fator, analytially ontinued to the mirror in both variables we get the followingrepresentation�m;m(u; v) = 1� 1=(x�y+)1� 1=(x+y�) �̂(u; v) ; �̂ � exp �i�̂++ + i�̂�� � i�̂+� � i�̂�+� ; (62)where x = xmir(u); y = xmir(v) and �̂�� = �̂(u� i=2; v� i=2). We see that the seond fator �̂ hasthe same properties under the fusion proedure on the mirror sheet as the physial dressing phase� had on the physial sheet { one simply replaes shifts by �i=2 by �in=2 for u and by �im=2 forv in �̂. Note that �̂ is a real funtion and thus �̂ is a pure phase. Thus �̂(u; v) is nothing but thedressing phase of the mirror theory!Finally let us present yet another interesting representation of the dressing phase in the mirrorkinematis. It is easy to see that R(10)(u;w) and R(01)(w; v), as funtions of w, are regular belowthe real axis. Moreover B(10)(u;w) and B(01)(w; v) are regular on the whole omplex plane exeptfor the Zhukoswky uts, see previous footnote. That implies that the terms with BB and RRin (58) vanish beause for those terms we an deform the integration ontour to +i1 and �i1,orrespondingly. For the remaining terms the integration with G an be done expliitly to yield2Snm(u; v) �R(11)nm (u; v) + B(11)nm (u; v) = �Kn;m(u� v)� iP(m)(v) (63)�2Xa=1 Z hB(10)n1 (u;w + ia=2)B(01)1m (w � ia=2; v) + B(10)n1 (u;w � ia=2)B(01)1m (w + ia=2; v)i dw6in these formulae, w is the variable being integrated over in the last onvolution13



where we wrote the result already after fusion, i.e. for the dressing fator between magnon boundstates n and m. Quite remarkably this ombination of kernels, whih is preisely the one appear-ing in the TBA equations ontains no uts apart from those at Im (u) = �n=2 in the u planeand Im (v) = �m=2 for the v variable, preisely as expeted. This property was also notiedindependently in [32℄.6.2.2 A new representation of the dressing kernel in the (mir,ph) kinematisIn this setion we analyse the dressing kernel when �(u; v) when the �rst variable u takes values inthe mirror sheet while the seond variable v lives in the physial sheet. This is preisely the asefor the free terms (without onvolutions) in the TBA equations. For example, in (43) the term �ontains S(u) = Qj �(u; u4;j) where u4;j are the Bethe roots of the physial theory while u is inthe mirror kinematis. The derivation of a nie integral re presentation for this dressing fator goesalong the same lines as in the previous setion. We �ndlog S(u) = � hB(10)(u;w + i0) �R(10)(u;w � i0)i � G � "log B(+)(u+ i0)B(�)(u+ i0) � log R(+)(u� i0)R(�)(u� i0)# (64)where R and B are de�ned like in (12) with x(u) = xmir(u) and x�j = xph(uj � i=1). As in theprevious setion this relation is derived in the region m1 = p1 and the next step is to transform thisexpression in suh a way that it allows for a trivial analytial ontinuation to the full mirror sheetfor the u variable. Atually the r.h.s. is not singular in m1;m2 (but not in m3), and thus shouldoinide with analytial ontinuation of the dressing fator. Next we reall thatB(+)(uj � i=2) = 0 ; R(�)(uj + i=2) = 0 (65)while logB(�) and logR(+) are regular in m1;m2;m3. Assuming u to be real we an again dropBB and RR terms and onvert R to B as in the previous setion to obtainlog S(u) = B(10)(u;w + i0) � G � log R(+)(u� i0)R(�)(u� i0) (66)� B(10)(u;w � i0) � G � log B(+)(u+ i0)B(�)(u+ i0) +K1 � G � log B(+)(u+ i0)B(�)(u+ i0)The last term an be omputed expliitly, K1 � G � log B(+)(u+i0)B(�)(u+i0) = � log B(+)(u+i=2)B(�)(u+i=2) �Pj 12 log x+jx�j ,and in this way we obtain the following integral representation valid in the full mirror sheet m1,m2 and m3log S = log B(�)+B(+)+ +Xj 12 log x+jx�j (67)+  B(10)(u;w + i0) � G � log R(+)(u� i0)R(�)(u� i0) + B(10)(u;w � i0) � G � log B(�)(u+ i0)B(+)(u+ i0)!
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Fusion is again trivial and yieldsm�12Xk=�m�12 log S(u+ ik) = m�12Xk=�m�12 log B(�)(u+ i=2 + ik)B(+)(u+ i=2 + ik) +Xj 12 log x[+m℄jx[�m℄j (68)+  B(10)m1 (u;w + i0) � G � log R(+)(~u� i0)R(�)(~u� i0) + B(10)m1 (u;w � i0) � G � log B(�)(~u+ i0)B(+)(~u+ i0)! :Using the same arguments as in the previous setion we ould expliitly eliminate G and one of theonvolutions in this representation at the expense of introduing an extra in�nite sum over a. Inthis way we ould derive an alternative integral representation very similar to that in (63).In the next setion, the reality property is disussed in further detail and in partiular we explainwhy the Y -funtions whih solve our integral equations are indeed real.6.3 Reality and Analytiity properties of Y 'sWe an easily hek using the expliit large L solution for the Y -funtions presented in [1℄ togetherwith the expliit representation of the dressing kernel derived in the previous setion that all Y -funtions are real when u is in the real axis7. To understand that this property atually holds forthe Y -funtions even at �nite L we should study the reality of several kernels in the TBA equationsand also the reality of the free term (without onvolutions). If both are real then the exat �niteL solution for Y -funtions will be also real. The reality property is of a partiular interest for thefuture numerial appliations of our equations whih an be now done by iterations starting fromthe known large L solution.The most ompliated equation to analyze is the one for the middle node, eq.(44), whih ontainsthe dressing fator in the (fused) kernel and in the free term. We will fous now only on thisequation sine the reality of all other equations an be heked trivially. Let us expliit in (44) onlythe \dangerous" terms:log Y n = 2Snm � log(1 + Y m) + n�12Xk=�n�12 i�(u+ ik) + 2R(10)n2 � log(1 + Y 2) + : : :where the : : : stand for the rest of the terms, whih are expliitly real. The reason why we alsokept the last term as dangerous (i.e. potentially not real) will beome lear below.Inside the kernel Snm the only non-real ontribution omes from the square root of � i2P(m) in(63) and the dangerous terms oming from the fusion of � are those in the �rst line of (68) so that7For the Y -funtions Y11 and Y22 assoiated to the fermioni roots this property is true for juj < 2g.
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we an re-write the dangerous terms in the r.h.s of (44) as8log Y n = �iP(m) � log(1 + Y m) +Xj log x+jx�j (69)+ log "B(�)(u+ in2 )B(�)(u� in2 )#2 Q(u� in+12 )Q(u� in�12 )Q(u+ in+12 )Q(u+ in�12 ) + 2R(10)n2 � log(1 + Y 2) + : : :Now we notie that the �rst line is nothing but the total orreted momentum (ompare with theexpression (2) for the orreted energy) whih should vanish due to the string theory level mathingonstraint!9 Thus, the only danger stems from both terms in the seond line: in fat, the are notreal (even though the kernel R(10)n2 is real) but their ombination will be shown to be real.The reason for the seond term to be not real is that the funtion Y 2 ontains pole divergenieson the real axis loated preisely at the positions of the Bethe roots uj . This an be seen from thefree terms (ontaining no onvolutions) in the TBA equation (42). We see that i� n = 2 then wedo get singularities in the real axis oming from the zeros of R(�)(u+ i=2) = 0 whih are preiselythe Bethe roots uj . The zeros of this funtion indue, via this integral equation, the poles in Y 2 .10Analyzing all other TBA equations in a similar way we an easily see that no other free terms giverise to poles in the real axis for any other Y -funtion.Now let us explain why the seond line in (69) is expliitly real. The onvolution in the preseneof these poles should be understood as 2R(10)n2 � log(1 + Y 2(u � i0)) whih we an re-write as aprinipal value integral (whih will be of ourse expliitly real) plus half of eah residue of thesingularities at the Bethe roots, i.e.112R(10)n2 � log(1 + Y 2(u� i0)) = 2R(10)n2 �p:v: log(1 + Y 2) + log R(�)(u+ in2 )B(+)(u+ in2 )R(�)(u� in2 )B(+)(u� in2 )The last term in this expression is not real. However it an be easily seen that it ombines withthe �rst term in the seond line of (69) to give a real ontribution!This onludes our hek of reality of all the kernels and free terms in all TBA equations. Thereality means that the Y -funtions solving these equations will be real, at least on some streth ofthe real u-axis.7 Disussion and onlusionsThe integral equations we present are suitable for the numerial study. In the large L limit we androp all onvolutions ontaining the blak nodes Y n and reover in this way the large L solutions of8To simplify the �rst line in (68) we use the identityn�12Xk=�n�12 log �B(�)(u+ i=2 + ik)B(+)(u+ i=2 + ik)�2B(+)(u+ i=2 + ik)R(�)(u� i=2 + ik)B(�)(u� i=2 + ik)R(+)(u+ i=2 + ik) = log "B(�)(u+ in2 )B(�)(u� in2 )#2 Q(u� in+12 )Q(u� in�12 )Q(u+ in+12 )Q(u+ in�12 )9the gauge theory analogue of level mathing is the iliity of the trae in the de�nition of loal gauge invariantoperators10For n > 2 we also have poles for the orresponding Y -funtions but they will lie away from the real axis.11Notie that the residues at these singularities depend only on the prefator of the log sine when integrating byparts we get a log derivative whih has always unit residue.16



[1℄ (we also heked this statement numerially). However, ompared with the Y -system equationin funtional form these equations are of easy numerial implementation and the iteration from thelarge L solution to the �nite L ase is now aessible. This numerial approah is urrently underinvestigation.In onlusion, we derived in this paper the system of non-linear integral equations of the TBAtype desribing, in priniple, the spetrum of the states/operators in the full planar AdS/CFTsystem, inluding the low lying ones, suh as Konishi operator. Not only these equations on�rmour Y-system onjetured in [1℄ but they also give a pratial way to the numerial alulationof the anomalous dimensions as funtions of the oupling �. An alternative, usually numeriallyquite eÆient, would be the derivation of the Destri-DeVega type equations along the guidelinespresented in [12℄ for the SU(2) prinipal hiral �eld. In any ase, a better understanding of theanalytial struture of these equations is needed for the eÆient numeris.A point whih we do not ompletely understand in detail onerns the role of the so alled �-term ontributions in the TBA equations. In partiular we might need to pik extra ontributionsin (2) oming from further singularities whih might arise in the Yn;0 funtions. In the large L limitsuh extra terms ould probably be identi�ed with the L�usher's � term ontributions. The role ofthese extra ontributions, if they are present at all, needs to be further eluidated.One more unlear point onerns the underlying PSU(2; 2j4) symmetry of the problem. In ourapproah the starting point is the string theory in the light one gauge where this symmetry isbroken to SU(2j2)2. It would be extremely interesting to understand how the full superonformalsymmetry emerges in the TBA equations.Interesting questions yet to be onsidered onern the derivation of a full set of �nite sizeBethe equations for any type of exitations of the theory, again along the lines of [12℄ as wellas the generalization of these TBA equations to another integrable example of the AdS/CFTorrespondene, the ABJM duality [26℄ (see [27, 28, 29℄ and referenes therein for the integrabilityrelated works on this theory).The set of TBA equations derived here should give us aess to the full spetrum of AdS/CFTfor any oupling. Hopefully it will help to understand deep physial reasons of the integrability ofN = 4 SYM theory. Knowing the exat results always helps understanding physis.Note AddedAfter the work on this projet was already �nished the paper [30℄ appeared where essentially thesimilar equations for the vauum have been derived exept the orner, fermioni nodes Y2;�2. Theorresponding equation 5.71 proposed in [30℄ appears to be inorret. We derive here the orretequation and also propose the TBA equations for the exited states.12Note Added for preprint arXiv:0902.4458v3When we were preparing a paper with the results of the new setion 6, the seond version ofthe paper arXiv:0904.4575 [32℄ appeared where a part of our new results, onerning the fusionproperties for the mirror dressing fator, was established. We deided to update our old paperwith these new results. We also stated more expliitly our preferable hose of the ontours andbranhes in the integral equations. It is onsistent with [20, 14℄ and agrees with that of [30, 31℄.We also show that for that hoie the Y -funtions for exited states have partiulary nie analytiproperties and are real.12 In the preprint arXiv:0902.3930v2 of [30℄, whih appeared after our preprint arXiv:0902.4458v1 of the urrentpaper, the eq. 5.16 (equation 5.71 in arXiv:0902.3930v1), assoiated with Y2;2, was indeed reognized to be inorret.17
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