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Abstra
tUsing the thermodynami
 Bethe ansatz method we derive an in�nite set of integral non-linearequations for the spe
trum of states/operators in AdS/CFT. The Y-system 
onje
tured in [1℄for the spe
trum of all operators in planar N = 4 SYM theory follows from these equations. Inparti
ular, we present the integral TBA type equations for the spe
trum of all operators withinthe sl(2) se
tor. We prove that all the kernels and free terms entering these TBA equations arereal and have ni
e fusion properties in the relevant mirror kinemati
s. We �nd the analogue ofDHM formula for the dressing kernel in the mirror kinemati
s.
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2-2 3-3Figure 1: T-shaped \fat hook" (T-hook) uniting two SU(2j2) fat hooks, see [2℄ for details on fathooks and super algebras.1 Introdu
tionRe
ently, a set of fun
tional equations, the so 
alled Y -system, de�ning the spe
trum of all lo
aloperators in planar AdS/CFT 
orresponden
e, was proposed by three of the 
urrent authors [1℄.The Y-system has the form of fun
tional equationsY +a;sY �a;sYa+1;sYa�1;s = (1 + Ya;s+1)(1 + Ya;s�1)(1 + Ya+1;s)(1 + Ya�1;s) ; (1)where f� � f(u � i=2) are simple shifts in the imaginary dire
tion. The fun
tions Ya;s(u) arede�ned only on the nodes marked by ; ; ; ; on Fig.1. Its solutions with appropriate analyti
alproperties de�ne the energy of a state (anomalous dimension of an operator in N=4 SYM) throughthe formula1 E =Xj �1(u4;j) + 1Xa=1 Z 1�1 du2�i ���a�u log �1 + Y �a;0(u)� : (2)where ��n is the mirror \momentum" de�ned in the text below and the rapidities u4;j are �xed bythe exa
t Bethe ansatz equations Y1;0(u4;j) = �1 : (3)The Y-system is equivalent to the Hirota bilinear equationT+a;sT�a;s = Ta+1;sTa�1;s + Ta;s+1Ta;s�1 ; (4)where the fun
tions Ta;s(u) are non-zero only on the visible part of the 2D latti
e drawn on Fig.1and Ya;s = Ta;s+1Ta;s�1Ta+1;sTa�1;s : (5)It was shown that the Y-system passes a few non-trivial tests, and in parti
ular it is 
ompletely
onsistent with the asymptoti
 Bethe ansatz (ABA) [4, 5, 6, 7℄, is 
ompatible with the 
rossing1In some 
ases the integration 
ontour 
ould en
ir
le singularities of the integrand situated away from the realaxe. In the large L asymptoti
s these singularities 
an be responsible for the L�us
her �-terms. See also dis
ussion inse
tion 7. 1



relation [3℄ and reprodu
es the �rst wrapping 
orre
tions at weak 
oupling for Konishi and othertwist two operators [8, 9, 10℄.In this paper, we will provide a derivation of the Y -system similar in spirit to that employedin the derivation of the TBA-type non-linear integral equations for the �nite volume spe
tra ofrelativisti
 2-dimensional models. It is based on the Matsubara tri
k relating the ground state ofa eu
lidean QFT on a 
ylinder to the free energy of the same theory in �nite temperature. If wetake instead of the 
ylinder a torus with a small 
ir
umferen
e L and a large 
ir
umferen
e R we
an represent the partition fun
tion in two di�erent 
hannels as a sum over energiy levels. In thelarge R limit, we 
an identify the free energy F(L) per unit length of a \mirror" QFT living in thespa
e se
tion along the in�nite dire
tion of the torus and having a temperature T = 1=L, with theground state energy E0(L) of the original QFT living on a spa
e 
ir
le of the radius LZ(L;R) =Xk e�L ~Ek(R) =Xj e�REj(L) !R!1 e�RF(L) = e�RE0(L) :In the relativisti
 QFT's the original theory and the mirror theory are essentially equivalent anddi�er only in the boundary 
onditions [11℄. An example of su
h a TBA 
al
ulation, useful for ourfurther purposes, for the SU(2) prin
iple 
hiral �eld (PCF), 
an be seen in the Appendix A of [12℄.In the supersting sigma model on AdS5 � S5 ba
kground in the light 
one gauge relevant to ourproblem, we have to deal with the non-relativisti
 original and mirror sigma models (see [13, 14℄).Parti
ularly important for our dis
ussion is the form of the energy and momentum of theelementary ex
itations for both the physi
al and mirror theories in in�nite volume. They are
onveniently parameterized in terms of the Zhukowsky variables,x(u) + 1x(u) = ug (6)whi
h admits two solutions, one of them outside the unit 
ir
le jx(u)j > 1 and another inside theunit 
ir
le, jx(u)j < 1. The energy �a(u) and momentum pa(u) of the physi
al bound states arethen given by [15℄ �a(u) = a+ 2igx[+a℄ � 2igx[�a℄ ; pa(u) = 1i log x[+a℄x[�a℄ (7)where x[�a℄ � x(u� ia=2) are evaluated in the physi
al kinemati
s where jx[�a℄j > 1.The mirror energy and momentum are obtained by the usual Wi
k rotation (E; p) ! (ip; iE).To stress this we denote the mirror energy by ip�a and the mirror momentum by i��a. The quantities��a and p�a are de�ned pre
isely as in (7) where x[a℄ are now evaluated in the mirror kinemati
s wherejx[a℄j > 1 but jx[�a℄j < 1, for a > 0.Let us now return to our general review of the TBA method. This method is based on theso 
alled string hypothesis: all the eigenstates of an integrable model in the in�nite volume arerepresented by bound states (the simplest ones are 
alled \strings") des
ribed by some density �A.In terms of these densities the asymptoti
 Bethe equations simply read��A(u) + �A(u) = i2� d��A(u)du �KBA(v; u) � �B(v) : (8)Here KBA(v; u) = 12�i ddu logSAB(u; v) is the kernel des
ribing the intera
tion between the boundstates A and B whi
h s
atter via an S-matrix SAB. i��A is the momentum of a magnon labeled byA. For the same reasons as mentioned above in the dis
ussion of the AdS=CFT dispersion relations2



we use this notation to emphasize that the momenta of these mirror parti
les are obtained fromthe energy of the physi
al parti
les �A(u) by the Wi
k rotation. Finally ��A is the density of holesasso
iated with the bound state A.To 
ompute the free energy we must minimize the fun
tionalF = XA Z 1�1 du�(Lip�A + hA) �A � ��A log�1 + ��A�A�+ ��A log�1 + �A��A��� (9)with respe
t to �A(u), ��A(u) and ex
lude Æ��A by the use of the 
onstraint imposed by the BAE's (8).The physi
al origin of ea
h term in the expression for the free energy is as follows: The �rst terma

ounts for the energy (times inverse \temperature"L); the term in the square bra
kets representthe entropy 
ontribution; we added a generi
 
hemi
al potential hA for ea
h kind of bound states.This 
hemi
al potential is needed if the theory 
ontains fermioni
 ex
itations, as is the 
ase for theAdS/CFT system, sin
e we want to 
ompute the Witten index rather than the thermal partitionfun
tion where the physi
al fermions are periodi
. This amounts to 
hoosing hA = i� = log(�1)for the fermioni
 states and hA = 0 for the bosoni
 states.The minimization of the free energy yields the TBA equationslogYA(u) = KAB(u; v) � log[1 + 1=YB(v)℄ + iLp�A(u) + hA (10)for the quantities YA = ��A�A . Finally, at this saddle point, the free energy 
an be simply written asF =XA Z du2�i d��Adu log (1 + 1=YA(u)) : (11)In this way one obtains the �nite volume ground state energy for a generi
 integrable �eld theory.The ex
ited physi
al states are re
overed by the usual pro
edure of analyti
 
ontinuation [16, 17,18, 19℄ and will be also dis
ussed in this paper.In what follows, we will apply the TBA method to the \mirror" superstring sigma model andderive this AdS/CFT Y-system 
onje
tured in [1℄. The a
tual TBA equations arising as an in-termediate step towards the Y-system, may be very useful for the numeri
al 
al
ulations of theenergies of low-lying states.2 The starting point: Beisert-Stauda
her equationsThe basis of our derivation of TBA for AdS/CFT are the Beisert-Stauda
her (BS) ABA equationsof [4, 5, 7℄ in their mirror form [20, 14℄. We write them in our 
ompa
t notations, introdu
ing threetypes of Baxter fun
tionsR(�)l (u) � KlYj=1 x(u)� x�l;jqx�l;j ; B(�)l (u) � KlYj=1 1x(u) � x�l;jqx�l;j ; Ql(u) = KlYj=1(u�ul;j) = (�g)KlRl(u)Bl(u):(12)The index l takes the values l = 1L; 2L; 3L or l = 1R; 2R; 3R parametrizing the rapidities of theleft and right SU(2j2) wings of the model, 
orrespondingly. R(�) and B(�) with no subs
riptl 
orrespond to the roots x4;j of the middle node and Rl; Bl without super
ript (+) or (�) arede�ned as in (12) with x�j repla
ed by xj. In these notations the left wings ABA's read:1 = Q+2LB(�)Q�2LB(+) �����u1L;k ; �1 = Q��2L Q+1LQ+3LQ++2L Q�1LQ�3L ����u2L;k ; 1 = Q+2LR(�)Q�2LR(+) �����u3L;k (13)3



with a similar set of equations for the right wing repla
ing L ! R. The Bethe equation for themiddle node for the full AdS/CFT ABA of [5℄ �x the positions of the u4;j roots from2�1= 24eR ��1 �Q��4Q++4 B+1LR+3LB�1LR�3L B+1RR+3RB�1RR�3R� B+(+)B�(�)!2 S2 35 K4Yj=1 x+4;jx�4;j  x+4;kx�4;k!K1R�K3R+K1L�K3L2 �������u=u4;k (14)for the sl(2) favored grading. The dressing fa
tor is S(u) = Qj �(x(u); x4;j) where � is the BESdressing kernel [7℄ (see [21℄ for a ni
e integral representation of the dressing kernel).3 Bound states and TBA equations for the mirror \free energy"To write the TBA for the full AdS/CFT, we have to �nd the BAE's for the densities of all 
omplexesof Bethe roots in the in�nite volume R = 1. The string hypothesis implies the full des
riptionof the in�nite volume solutions. They are easy to 
lassify: there is only one type of momentum
arrying 
omplexes, strings in the middle nodes, similar to standard SU(2) strings [15℄; the restare the same 
omplexes as found by Takahashi in the Hubbard model [22, 23℄ (see also [24℄).As the result, we �nd that in the large R limit of BAE's the roots regroup into the followingbound states:u4 = u+ ij ; j = �n� 12 ; : : : ; n� 12 : middle node bound states : nuL;R2 = u+ ij ; j = �n� 22 ; : : : ; n� 22 : L;R string bound states : �nuL;R3 = u+ ij ; j = �n� 12 ; : : : ; n� 12uL;R2 = u+ ij ; j = �n� 22 ; : : : ; n� 22 : L;R trapezia : �nuL;R1 = u+ ij ; j = �n� 32 ; : : : ; n� 32uL;R1 = u : L;R single fermion : �uL;R3 = u : L;R single fermion : �where by u we denote the real 
enter of a 
omplex. Thus the index A in formulae (8-11) takes thevalues A = f �n; �; �; �n; ng (15)or, in the notation used in [1℄ for the points on the T-hookA = f(1;�n); (2;�2); (1;�1); (n;�1); (n; 0)g : (16)2This equation is identi
al to the eq.(6.6) from [14℄. The fa
tors of x+=x� outside of the square bra
kets 
anbe easily re
onstru
ted from the unimodularity of the r.h.s. of (14). We thank the referee for pointing us out thismisprint whi
h fortunately does not a�e
t any of our results in the previous version of the preprint.4



Multiplying the Bethe equations along ea
h 
omplex we obtain the fused equations (8) for thedensities (of parti
les and holes, �A(u) and ��A(u)) of the 
enters of 
omplexes (10). It is useful tointrodu
e the following notation for YA:nY �n ;Y � ;Y � ;Y �n ;Y �no = (Y �n ; Y � ; 1Y � ; 1Y �n ; 1Y �n) (17)In parti
ular noti
e that the Y fun
tions Ya;s arrange ni
ely into a T-shaped form as depi
ted inFig.1. As shown below, these fun
tions are pre
isely those appearing in the Y -system (1).The only 
omplexes whi
h 
arry energy and momentum are those made out of middle noderoots u4;j , ��A = ÆA; n��n ; p�A = ÆA; np�n (18)where ��n and p�n are explained after (7). The fused kernels KAB are given by
KAB = AnB m + + m mn +Kn�1;m�1 �Kn�1 +Kn�1 0 0+ �Km�1 0 0 +Km�1 �B(01)1m+ �Km�1 0 0 +Km�1 �R(01)1mn 0 �Kn�1 +Kn�1 +Kn�1;m�1 �R(01)nm �B(01)n�2;mn 0 B(10)n1 �R(10)n1 �R(10)nm � B(10)n;m�2 �2Snm � B(11)nm +R(11)nm (19)

where the blo
k entrees of this in�nite matrix are de�ned asKn � 12�i ddv log u� v + in=2u� v � in=2 ; Knm � m�12Xj=�m�12 n�12Xk=�n�12 K2j+2k+2 (20)Snm(u; v) � 12�i ddv log �(x�n(u); x�m(v)) (21)B(ab)nm (u; v) � n�12Xj=�n�12 m�12Xk=�m�12 12�i ddv log b(u+ ia=2 + ij; v � ib=2 + ik)b(u� ia=2 + ij; v + ib=2 + ik) (22)R(ab)nm (u; v) � n�12Xj=�n�12 m�12Xk=�m�12 12�i ddv log r(u+ ia=2 + ij; v � ib=2 + ik)r(u� ia=2 + ij; v + ib=2 + ik) (23)where r(u; v) = x(u)� x(v)px(v) ; b(u; v) = 1=x(u) � x(v)px(v) : (24)In the table above we only wrote the intera
tion between the 
omplexes of the left SU(2j2) wing,between those 
omplexes and the middle node bound states, as well as between the middle nodebound states themselves. The right wing intera
tion is of 
ourse absolutely identi
al and the
5




omplexes of di�erent wings do not intera
t. Equations (10) in the notation of (17) then readlog Y � = +Km�1 � log 1 + 1=Y �m1 + Y �m +R(01)1m � log(1 + Y m) + log(�1) (25)log Y � = �Km�1 � log 1 + 1=Y �m1 + Y �m � B(01)1m � log(1 + Y m)� log(�1) (26)log Y �n = �Kn�1;m�1 � log(1 + Y �m)�Kn�1 � log 1 + Y �1 + 1=Y � (27)+ �R(01)nm + B(01)n�2;m� � log(1 + Y m)log Y �n = Kn�1;m�1 � log(1 + 1=Y �m) +Kn�1 � log 1 + Y �1 + 1=Y � (28)log Y n = L log x[�n℄x[+n℄ + �2Snm �R(11)nm + B(11)nm � � log(1 + Y m) (29)� B(10)n1 � log(1 + 1=Y +) +R(10)n1 � log(1 + Y +) + �R(10)nm + B(10)n;m�2� � log(1 + Y m)� B(10)n1 � log(1 + 1=Y �) +R(10)n1 � log(1 + Y �) + �R(10)nm + B(10)n;m�2� � log(1 + Y �m)All 
onvolutions are to be understood in the usual sense with the se
ond variable being integratedover so that K � f = R dvK(u; v)f(v). Summation over the repeated index m is assumed (m =2; : : : ;1 for the 
onvolutions involving pyramids �m and strings �m and m = 1; : : : ;1 for the
onvolutions with the middle node bound states m). There are still some ambiguities involved inthese integral equations 
on
erning the 
hoi
e of the integration 
ontours. We will dis
uss this, stillnot 
ompletely elu
idated, point when we will 
onsider equations for the ex
ited states where someof the ambiguities will be lifted.4 Derivation of the AdS/CFT Y-systemWe will now derive, from the TBA equations, the Y-system (1) and (4) for the AdS/CFT spe
trum
onje
tured in [1℄. We shall do it separately for ea
h type of ex
itations.The key idea in the derivation is to use the dis
rete Lapla
e operator a
ting on the free variableu and free index n in the TBA equations. We noti
e that�Kn(u) � Kn(u+ i=2� i0) +Kn(u� i=2 + i0) �Kn+1(u)�Kn�1(u) = Æn;1Æ(u)As a simple 
onsequen
e of this identity we �nd�Knm(v � u) = �R(11)nm (v; u) = Æn;m+1Æ(v � u) + Æn;m�1Æ(v � u)�R(01)nm (v; u) = �R(10)nm (v; u) = Æn;mÆ(v � u) (30)whereas the Lapla
ian kills all other kernels, �Snm = 0, et
. For example, the fa
t that the dressingfa
tor is killed by the Lapla
ian follows from its harmoni
 form�nm(u; v) = e�(u+in=2;v+in=2)+�(u�in=2;v�in=2)��(u�in=2;v+in=2)��(u+in=2;v�in=2) (31)6



without any singularities in the physi
al kinemati
s (this fa
t was already used in [1℄ when 
on-stru
ting the large L solutions of the Y -system). By virtue of these identities we 
an easily 
omputethe 
ombinations log Y +nY �nY n+1Y n�1 , log Y +nY �nY n+1Y n�1 and log Y +nY �nY n+1Y n�1 , where f� � f(u� i=2 � i0),using respe
tively (28), (27) and (29). We �ndlog Y +nY �nY n+1Y n�1 = log(1 + 1=Y n+1)(1 + 1=Y n�1) ; n > 2 (32)and log Y +2Y �2Y 3 = log (1 + Y +)(1 + 1=Y 3)1 + 1=Y + (33)for the string bound states. The equations for Y1;n at n � �2; as well as their derivation, aresimilar. For the pyramid 
omplexes we obtainlog Y +nY �nY n+1Y n�1 = log 1 + Y n(1 + Y n+1)(1 + Y n�1) ; n > 2 (34)andlog Y +2Y �2Y 3 = log (1 + Y )(1 + Y 2)Y +(1 + Y 3)(1 + Y +) � log Y +Y + +Xn (R(01)n1 � B(01)n1 ) � log(1 + Y n) :The �rst term in the r.h.s. of this equation reprodu
es again the 
orre
t stru
ture of the Y-system(1). In fa
t, we will see below that the last two terms 
an
el ea
h other and hen
e this equationperfe
tly �ts the Y-system (1). Finally, for the middle node bound states, we kill again the kernelswhen applying the dis
rete Lapla
e operator and obtainlog Y +nY �nY n+1Y n�1 = log (1 + Y n)(1 + Y �n)(1 + Y n+1)(1 + Y n�1) ; n > 1 (35)and log Y +1Y �1Y 2 = log 1 + Y +1 + Y 2 : (36)We are left with the equations for the two fermioni
 nodes Y1;1 = Y + and Y2;2 = Y + (for Y1;�1and Y2;�2 it will be similar). We 
onsider �rst the node Y1;1. Combining equations (25) foru ! u � i=2 � i0 with equations (27) and (28) for real u and n = 2 we obtain (again using thefusion properties of several kernels),log Y ++Y �+Y 2Y 2 = log (1 + 1=Y 2)(1 + Y 1)1 + Y 2 (37)perfe
tly reprodu
ing the the equation for Y1;1 from the Y -system (1). Finally, to �nd the equationfor the last fermion node Y2;2 we simply add up equations (26) and (25) to getlog Y +Y + =Xm �R(01)1m � B(01)1m � � log(1 + Y m) (38)This shows indeed that the two last terms in (35) 
an
el. The equation for Y22 = Y + is not apart of Y -system (1) sin
e in the standard form it would 
ontain the ratio 1+Y231+1=Y32 = 00 . It is thus7



natural that one 
an not render this equation lo
al if we only use the �nite Y fun
tions, see also[25℄. However, in terms of the T-fun
tions appearing in 5 we believe, and partially 
he
ked, thatHirota equation 4 is well de�ned on the full T-shaped fat-hook of �gure 1.All these equations pre
isely reprodu
e the Y -system (1) under the identi�
ationnY �n ; Y � ; Y � ; Y �n ; Y �no = fY1;�n; Y2;�2; Y1;�1; Yn;�1; Yn;0g (39)mentioned in the previous se
tion!5 Integral equations for ex
ited statesIn this se
tion we will 
onsider the non-linear integral TBA-type equations for ex
ited states. Forsimpli
ity we shall 
onsider only the states in the SL(2) se
tor, 
orresponding to operators of theform tr (DSZJ) + permutations. Noti
e that sin
e none of the wings are ex
ited the Y -fun
tionswill have the symmetry Ya;s = Ya;�s whi
h also means that Y + = Y � � Y ; : : : . To 
onsidersu
h ex
ited states we employ the standard analyti
 
ontinuation tri
k [16, 17, 19℄ where we pi
kextra singularities in the 
onvolutions with Y 1 at the points where Y 1(u4;j) = �1. This pro
edure
ontains some ambiguities and the result should be 
onsidered as a 
onje
ture. In this way, the freeenergy (11) be
omes (2) while the non-linear integral equations of se
tion (3) are modi�ed by theterms in the square bra
ketslog Y = +Km�1 � log 1 + 1=Y m1 + Y m +R(01)1m � log(1 + Y m) + "log R(+)R(�)#+ log(�1) (40)log Y = �Km�1 � log 1 + 1=Y m1 + Y m � B(01)1m � log(1 + Y m)� "log B(+)B(�)#� log(�1) (41)log Y n = �Kn�1;m�1 � log(1 + Y m)�Kn�1 � log 1 + Y1 + 1=Y + �R(01)nm + B(01)n�2;m� � log(1 + Y m)+ 264 n�12Xk=�n�12 log R(+)(u+ ik)R(�)(u+ ik) + n�32Xk=�n�32 log B(+)(u+ ik)B(�)(u+ ik)375 (42)log Y n = Kn�1;m�1 � log(1 + 1=Y m) +Kn�1 � log 1 + Y1 + 1=Y (43)log Y n = L log x[�n℄x[+n℄ + �2Snm �R(11)nm + B(11)nm � � log(1 + Y m) + 264 n�12Xk=�n�12 i�(u+ ik)375 (44)+ 2�R(10)n1 � log(1 + Y )� B(10)n1 � log(1 + 1=Y ) + �R(10)nm + B(10)n;m�2� � log(1 + Y m)�where �(u) = 1i log S2B(+)+R(�)�B(�)�R(+)+! : (45)and B and R and S 
ontaining the positions of rapidities of the ex
ited states are de�ned in se
tion2. These rapidities are 
onstrained by the exa
t Bethe equationsY 1(u4;j) = �1 ; j = 1; : : : ;M : (46)8



In the 
onvolutions involving the fermioni
 Y -fun
tions Y and Y we integrate over v 2 [�2g; 2g℄ 3.We found that pres
ription to be 
onsistent with the asymptoti
al large L solution of the Y-systemderived in [1℄. In fa
t as one 
an see from these integral equations we 
an think of the two fun
tionsY and 1=Y as two bran
hes of the same fun
tion. In this language the 
onvolutions 
an bere
asted into some ni
e B-
y
le 
ontour integrals in the x(u) Riemann sheet. This is reminis
ent ofthe inversion symmetry in the BS equations whi
h allows one to redu
e the seven Bethe equationsto a smaller set of �ve equations [5℄.An important 
he
k of these equations is the limit where L!1. The solution of the Y-systemin this limit was 
onstru
ted expli
itly in [1℄. We 
he
ked numeri
ally that for large L our integralequations are 
onsistent with the large volume solution.6 Physi
al and mirror 
hoi
es of bran
hesThe above system of TBA equations should be valid for any value of the spe
tral parameter uand it should be possible to analyti
ally 
ontinue it to any point of the Riemann surfa
e of themulti-valued Y -fun
tions. But the 
hoi
e of bran
hes to formulate the TBA equations 
an be veryimportant for its good de�nition and in parti
ular for the future numeri
al appli
ations. In thisse
tion we will �x a parti
ular 
hoi
e of bran
hes in the kernels involved in the integral equations.This 
hoi
e will be quite unique, with the following ni
e properties for the Y -fun
tions and theintegration kernels:� They have only a minimal number of 
uts, in general only a pair of 
uts, whi
h means thatthey obey an ordinary fusion pro
edure where all the intermediate 
onstituents of a boundstate but the �rst and the last 
an
el.� They are real fun
tions of the spe
tral parameter u on the real axis. It �ts well their physi
almeaning in TBA as of the ratios of densities of physi
al parti
les and holes.These properties will stem of 
ourse from the similar properties of integration kernels and freeterms (with no 
onvolutions) in the TBA equations (40)-(44).There are two natural possibilities to de�ne x(u) 
ompatible with (6). We de�ne two fun
tionsxph(u) = 12 �ug +rug � 2rug + 2� ; xmir(u) = 12  ug + is4� u2g2! : (47)They both solve (6). It is easy to 
he
k that with this 
hoi
e of bran
hes (7) reprodu
es the physi
aland mirror dispersion relations, 
orrespondingly [14℄. They 
oin
ide above the real axes and havethe following properties under 
omplex 
onjugationxph = xph ; xmir = 1=xmir : (48)Basi
ally both representations (47) des
ribe the same fun
tion, with the same Riemann surfa
e butextended from the upper half plane to the plane with the 
ut (�2g; 2g) for xph, and to the planewith the in�nite 
ut (�1;�2g) [ (2g;1) for the fun
tion xmir. One 
an say that they are twose
tions of the same Riemann surfa
e.3Another possibility, 
onsistent with the in�nite length solution of [1℄, is to 
hoose v 2℄�1;�2g℄[[2g;1[. We willexamine that possibility in detail in the next se
tion. We thank G. Arutyunov and S. Frolov for the 
orresponden
eon this issue. 9
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C BFigure 2: Stru
ture of the 
uts and 
onjugation paths on the mirror and physi
al sheets.We 
an plot them in Mathemati
a by running e.g.z=a+b I;xmr=1/2(z+I Sqrt[4-z^2℄);xph=1/2(z+Sqrt[z-2℄Sqrt[z+2℄);Plot3D[{Im[xph℄,Im[xmr℄+0.1},{a,-3,3},{b,-1,1},PlotStyle->{Red,Yellow}℄Noti
e that in the mirror ABA [14℄ (13) and (14) whi
h we started from, the 
hoi
e xmir isemployed [20, 14℄. However, for the physi
al ABA of Beisert and Stauda
her [5℄ we only use thephysi
al 
hoi
e xph. Thus to have a link with the ABA in the physi
al 
hannel one should use thesame de�nition (12) with xj � xph(uj) ; x�j � xph(uj � i=2) ; (49)in various free terms (with no 
onvolutions) in the TBA equations.On the other hand, sin
e all the kernels in the TBA equations are 
oming from the mirrortheory, both arguments should be in mirror kinemati
s. Hen
e we spe
ify in de�nitions (24) for theintegration kernels the following bran
hes4r(u; v) = xmir(u)� xmir(v)pxmir(v) ; b(u; v) = 1=xmir(u)� xmir(v)pxmir(v) : (50)With this 
hoi
e of bran
hes, it is easy to 
he
k that the kernels R(ab)nm ; B(ab)nm entering our TBAintegral equations (40)-(44) are all real! In the next se
tion we show that the kernel involvingthe dressing fa
tor, 2Snm, is real as a 
onsequen
e of 
rossing, up to a simple square root fa
torwhi
h we identify there. Moreover, together with R11nm �B11nm appearing in (44), it has very simpleanalyti
 properties. Namely, it has only four bran
h points for ea
h of two variables, 
on�rmingthe ni
e fusion property announ
ed above. We will also present a simple integral representation forthis 
ombination.6.1 Reality and 
rossingOne of the important 
onsequenses of the 
rossing for the SU(2) � SU(2) prin
ipal 
hiral model
onsidered in [12℄ was the reality of the fun
tion Y0 
orresponding to the single middle node in the�nite size TBA equations. Here we show that exa
tly the same fenomenon is taking pla
e in thepresent AdS/CFT TBA equations.Similarly to the Beisert-Eden-Stauda
her physi
al dressing fa
tor, the mirror S-matrix oughtto be a pure phase. Let us here explain why this follows indeed in a simple way from the 
rossing4the same bran
hes are used in [30, 31℄ 10



relation for the dressing fa
tor. The same argument 
an be easily adapted to prove that the leadinglarge volume Y -fun
tions found in [1℄ are indeed real.We present s
hemati
ally the mirror and physi
al sheets on the �gures 2. They are naturallydevided by 
uts into three regions denoted by m1;m2;m3 and p1; p2; p3, 
orrespondingly. Sin
exph(u) 
oin
ides with xmr(u) in the upper half-plane the regions p1 andm1 are equivalent, p1 = m1.Let us 
onsider two points uA and vA above the upper 
ut, i.e in the region p1 = m1. Conjugationin the mirror sheet sends these points to uB � ~uA and vB � ~vA (belonging to the physi
al sheet)while 
onjugation in the physi
al sheet maps them to uC � �uA and vC � �vA (belonging to themirror sheet).Noti
e that 
rossing 
ondition relates the dressing fa
tor with argument uB with the dressingfa
tor at the point uC . More pre
isely, we have [3℄�(uB ; vB)�(uC ; vB) = y�y+ x� � y�x+ � y� 1=x� � y+1=x+ � y+ ; x = xph(uB) ; y = xph(vB) (51)Noti
e also that we 
an now analyti
ally 
ontinue both sides of this equality with respe
t to the vBroot, in parti
ular we 
an generate the 
rossing relation where vB is repla
ed by vC . Using againthe (analyti
ally 
ontinued) 
rossing relation to transform vB into vC we get�(uC ; vC) = x�y+x+y��(uB ; vB) ; x = xph(uB) ; y = xph(vB) (52)Taking the 
omplex 
onjugate of this expression and using the fa
t that the dressing fa
tor is apure phase on the physi
al sheet we get [14℄(�(�uA; �vA))� = x+y�x�y+ 1�(uA; vA) ; x = xmir(uA) ; y = xmir(vA) (53)Noti
e that we repla
ed xph(uA) and xph(vA) by their mirror 
ounterparts be
ause A is in the regionp1 = m1. Furthermore, in the left hand side, we expli
itly wrote uC = �uA and vC = �vA to re
ognizethe expli
it de�nition of the 
onjugated fun
tion on the mirror sheet. It is now 
lear that up to asimple fa
tor of qx+y�x�y+ the dressing fa
tor in the mirror theory is indeed a pure phase fun
tion.More pre
isely the 
ombination qx�y+x+y��(u; v) is a pure phase in the real axis of the mirror sheet.The same kind of arguments 
an be used to prove the reality of the large L Y-fun
tions of [1℄.6.2 Integral representationWe will show that the dressing phase on the mirror sheet admits some 
on
ise integral repre-sentation. Based on that representation we 
an expli
itly see that it has very simple analyti
alproperties. In parti
ular, up to a simple multiplier, namely the simple square root fa
tor identi�edin the previous se
tion, we 
an 
learly see that this dressing phase is indeed a pure phase fun
tion.6.2.1 A new representation of the dressing kernel in (mir,mir) kinemati
sWe will start form the DHM integral representation [21℄ for �(xph(u� i=2); xph(v � i=2)),� � exp �i�++ + i��� � i�+� � i��+� (54)11



where ��� = �(u� i=2; v � i=2),�(u; v) = 1i Ijz1j=1 dz12� Ijz2j=1 dz22� 1z1 � xph(u) 1z2 � xph(v) log �(iw1 � iw2 + 1)�(iw2 � iw1 + 1) (55)and w1;2 = g(z1;2+1=z1;2). This representation is valid for the physi
al kinemati
s and in parti
ularfor u; v in the region p1. Sin
e p1 = m1 we 
an start with the same expression with xph(u) andxph(v) repla
ed by xmir(u) and xmir(v) for u and v in the region m1, above the upper 
ut.For the kernel S(u; v) � 12�i�v log �(u; v) appearing in our TBA equations we haveS(u; v) = �Z 2g�2g Z 2g�2g �R(10)(u;w1 � i0)� B(10)(u;w1 + i0)� G(w1 � w2)���R(01)(w2 � i0; v) � B(01)(w2 + i0; v)� dw1dw2 (56)where G(u) � �u2�i log �(1� iu)�(1 + iu) = 1Xa=1�K2a � 1a��+ 
� : (57)Let us brie
y re
all how to derive this representation for the dressing kernel from the integralrepresentation (55). First the pole terms 1=(z1 � x(u)) and 1=(z2 �x(v)) are written as derivativesof log's whi
h will give rise to the B's and R's in this expression (in this se
tion we often omit thelower indi
es of B's and R's in whi
h 
ase they are equal to : : :11). The extra derivative to makea kernel out of the phase 
an also be transported to the log of gamma fun
tion by integration byparts and this generates the fun
tion G. The integration 
ontour around the unit 
ir
le in the z1;2variable is mapped to an integral from 2g to �2g slightly above the real axis and then ba
k from�2g to 2g slightly below the real axis for the variable w1;2. When w1 is above the real axis wehave z1 = xph(w1) = xmir(w1) but when we are below we have z1 = xph(w1) = 1=xmir(w1). Thisexplains why we get that 
ombination of R's and B's in the last formula.Now that we have transformed the original 
ontour integrals into usual integrals in the real axiswe 
an further repla
e the integration limits in this expression by �1 be
ause for jw1j > 2g wehave R(10)(u;w1� i0)�B(10)(u;w1+ i0) = 0 and similarly for w2. Hen
e we arrive at the followingintegral representation for the dressing kernel in the mirror kinemati
sS(u; v) = �Z 1�1 Z 1�1 �R(10)(u;w1 � i0)� B(10)(u;w1 + i0)�G(w1 � w2)���R(01)(w2 � i0; v) � B(01)(w2 + i0; v)� dw1dw2 : (58)Re
all that this expression is derived for u and v in the region m1. The reason for whi
h we 
annotuse this integral representation everywhere on the mirror sheet is the presen
e of poles of R underthe integral at u = �w1 � i=2 � i0. To get rid of them we use the relations5 R(10) = K1 � B(10) ,5It is often useful to 
hange from R's to B's be
ause the latter are mu
h more regular than the former. Inparti
ular, sin
e Im xmir(u); Im xmir(v) > 0 we 
an never have 1=xmir(u) = xmir(v) and thus B will be pole free whenboth variables are taken in the mirror sheet. Similarly, in the physi
al sheet, jxph(u)j; jxph(v)j > 1 and again B isregular. Only when u and v are in di�erent kinemati
s we should worry about regularity of the B fun
tions.
12



R(01) = K1 � B(01) and then evaluate the integrals with K1 by poles using6Z K1(u� w1)G(w1 � w2)B(01) (w2 + i0; v) dw1dw2 = �B(01) (u+ i=2; v) � i2P(1)(v) ;Z B(10) (u;w1 + i0) G(w1 � w2)K1(w2 � v)dw1dw2 = �B(10) (u; v + i=2) ;where P(a)(v) = � 12��v log xmir(v + ia=2)xmir(v � ia=2) : (59)In this way, we get the following representation valid everywhere in m1;m2;m3 for both variablesS(u; v) = �B(11)(u; v) � i2P(1)(v) + Z 1�1 Z 1�1 h�B(10) (u;w1 + i0)� B(10) (u;w1 � i0)� ��G(w1 � w2)�B(01) (w2 + i0; v) � B(01) (w2 � i0; v)�i dw1dw2 : (60)We see that the integrals 
an be 
ombined to a 
ontour integral around the 
uts (�1;�2g)[(2g;1)!This implies that we 
an write the result in a fashion similar to (55). Introdu
ing�̂(u; v) � 1i Zjz1j>1 dz12� Zjz2j>1 dz22� " 1(z1 � xmir(u)) � 1(z1 � xmir(u))#��" 1(z2 � xmir(v)) � 1(z2 � xmir(v))# log �(iu1 � iu2 + 1)�(iu2 � iu1 + 1) (61)with the integration going along the part of the real axes over (�1;�1) [ (1;1). Then for thephysi
al dressing fa
tor, analyti
ally 
ontinued to the mirror in both variables we get the followingrepresentation�m;m(u; v) = 1� 1=(x�y+)1� 1=(x+y�) �̂(u; v) ; �̂ � exp �i�̂++ + i�̂�� � i�̂+� � i�̂�+� ; (62)where x = xmir(u); y = xmir(v) and �̂�� = �̂(u� i=2; v� i=2). We see that the se
ond fa
tor �̂ hasthe same properties under the fusion pro
edure on the mirror sheet as the physi
al dressing phase� had on the physi
al sheet { one simply repla
es shifts by �i=2 by �in=2 for u and by �im=2 forv in �̂. Note that �̂ is a real fun
tion and thus �̂ is a pure phase. Thus �̂(u; v) is nothing but thedressing phase of the mirror theory!Finally let us present yet another interesting representation of the dressing phase in the mirrorkinemati
s. It is easy to see that R(10)(u;w) and R(01)(w; v), as fun
tions of w, are regular belowthe real axis. Moreover B(10)(u;w) and B(01)(w; v) are regular on the whole 
omplex plane ex
eptfor the Zhukoswky 
uts, see previous footnote. That implies that the terms with BB and RRin (58) vanish be
ause for those terms we 
an deform the integration 
ontour to +i1 and �i1,
orrespondingly. For the remaining terms the integration with G 
an be done expli
itly to yield2Snm(u; v) �R(11)nm (u; v) + B(11)nm (u; v) = �Kn;m(u� v)� iP(m)(v) (63)�2Xa=1 Z hB(10)n1 (u;w + ia=2)B(01)1m (w � ia=2; v) + B(10)n1 (u;w � ia=2)B(01)1m (w + ia=2; v)i dw6in these formulae, w is the variable being integrated over in the last 
onvolution13



where we wrote the result already after fusion, i.e. for the dressing fa
tor between magnon boundstates n and m. Quite remarkably this 
ombination of kernels, whi
h is pre
isely the one appear-ing in the TBA equations 
ontains no 
uts apart from those at Im (u) = �n=2 in the u planeand Im (v) = �m=2 for the v variable, pre
isely as expe
ted. This property was also noti
edindependently in [32℄.6.2.2 A new representation of the dressing kernel in the (mir,ph) kinemati
sIn this se
tion we analyse the dressing kernel when �(u; v) when the �rst variable u takes values inthe mirror sheet while the se
ond variable v lives in the physi
al sheet. This is pre
isely the 
asefor the free terms (without 
onvolutions) in the TBA equations. For example, in (43) the term �
ontains S(u) = Qj �(u; u4;j) where u4;j are the Bethe roots of the physi
al theory while u is inthe mirror kinemati
s. The derivation of a ni
e integral re presentation for this dressing fa
tor goesalong the same lines as in the previous se
tion. We �ndlog S(u) = � hB(10)(u;w + i0) �R(10)(u;w � i0)i � G � "log B(+)(u+ i0)B(�)(u+ i0) � log R(+)(u� i0)R(�)(u� i0)# (64)where R and B are de�ned like in (12) with x(u) = xmir(u) and x�j = xph(uj � i=1). As in theprevious se
tion this relation is derived in the region m1 = p1 and the next step is to transform thisexpression in su
h a way that it allows for a trivial analyti
al 
ontinuation to the full mirror sheetfor the u variable. A
tually the r.h.s. is not singular in m1;m2 (but not in m3), and thus should
oin
ide with analyti
al 
ontinuation of the dressing fa
tor. Next we re
all thatB(+)(uj � i=2) = 0 ; R(�)(uj + i=2) = 0 (65)while logB(�) and logR(+) are regular in m1;m2;m3. Assuming u to be real we 
an again dropBB and RR terms and 
onvert R to B as in the previous se
tion to obtainlog S(u) = B(10)(u;w + i0) � G � log R(+)(u� i0)R(�)(u� i0) (66)� B(10)(u;w � i0) � G � log B(+)(u+ i0)B(�)(u+ i0) +K1 � G � log B(+)(u+ i0)B(�)(u+ i0)The last term 
an be 
omputed expli
itly, K1 � G � log B(+)(u+i0)B(�)(u+i0) = � log B(+)(u+i=2)B(�)(u+i=2) �Pj 12 log x+jx�j ,and in this way we obtain the following integral representation valid in the full mirror sheet m1,m2 and m3log S = log B(�)+B(+)+ +Xj 12 log x+jx�j (67)+  B(10)(u;w + i0) � G � log R(+)(u� i0)R(�)(u� i0) + B(10)(u;w � i0) � G � log B(�)(u+ i0)B(+)(u+ i0)!
14



Fusion is again trivial and yieldsm�12Xk=�m�12 log S(u+ ik) = m�12Xk=�m�12 log B(�)(u+ i=2 + ik)B(+)(u+ i=2 + ik) +Xj 12 log x[+m℄jx[�m℄j (68)+  B(10)m1 (u;w + i0) � G � log R(+)(~u� i0)R(�)(~u� i0) + B(10)m1 (u;w � i0) � G � log B(�)(~u+ i0)B(+)(~u+ i0)! :Using the same arguments as in the previous se
tion we 
ould expli
itly eliminate G and one of the
onvolutions in this representation at the expense of introdu
ing an extra in�nite sum over a. Inthis way we 
ould derive an alternative integral representation very similar to that in (63).In the next se
tion, the reality property is dis
ussed in further detail and in parti
ular we explainwhy the Y -fun
tions whi
h solve our integral equations are indeed real.6.3 Reality and Analyti
ity properties of Y 'sWe 
an easily 
he
k using the expli
it large L solution for the Y -fun
tions presented in [1℄ togetherwith the expli
it representation of the dressing kernel derived in the previous se
tion that all Y -fun
tions are real when u is in the real axis7. To understand that this property a
tually holds forthe Y -fun
tions even at �nite L we should study the reality of several kernels in the TBA equationsand also the reality of the free term (without 
onvolutions). If both are real then the exa
t �niteL solution for Y -fun
tions will be also real. The reality property is of a parti
ular interest for thefuture numeri
al appli
ations of our equations whi
h 
an be now done by iterations starting fromthe known large L solution.The most 
ompli
ated equation to analyze is the one for the middle node, eq.(44), whi
h 
ontainsthe dressing fa
tor in the (fused) kernel and in the free term. We will fo
us now only on thisequation sin
e the reality of all other equations 
an be 
he
ked trivially. Let us expli
it in (44) onlythe \dangerous" terms:log Y n = 2Snm � log(1 + Y m) + n�12Xk=�n�12 i�(u+ ik) + 2R(10)n2 � log(1 + Y 2) + : : :where the : : : stand for the rest of the terms, whi
h are expli
itly real. The reason why we alsokept the last term as dangerous (i.e. potentially not real) will be
ome 
lear below.Inside the kernel Snm the only non-real 
ontribution 
omes from the square root of � i2P(m) in(63) and the dangerous terms 
oming from the fusion of � are those in the �rst line of (68) so that7For the Y -fun
tions Y11 and Y22 asso
iated to the fermioni
 roots this property is true for juj < 2g.
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we 
an re-write the dangerous terms in the r.h.s of (44) as8log Y n = �iP(m) � log(1 + Y m) +Xj log x+jx�j (69)+ log "B(�)(u+ in2 )B(�)(u� in2 )#2 Q(u� in+12 )Q(u� in�12 )Q(u+ in+12 )Q(u+ in�12 ) + 2R(10)n2 � log(1 + Y 2) + : : :Now we noti
e that the �rst line is nothing but the total 
orre
ted momentum (
ompare with theexpression (2) for the 
orre
ted energy) whi
h should vanish due to the string theory level mat
hing
onstraint!9 Thus, the only danger stems from both terms in the se
ond line: in fa
t, the are notreal (even though the kernel R(10)n2 is real) but their 
ombination will be shown to be real.The reason for the se
ond term to be not real is that the fun
tion Y 2 
ontains pole divergen
ieson the real axis lo
ated pre
isely at the positions of the Bethe roots uj . This 
an be seen from thefree terms (
ontaining no 
onvolutions) in the TBA equation (42). We see that i� n = 2 then wedo get singularities in the real axis 
oming from the zeros of R(�)(u+ i=2) = 0 whi
h are pre
iselythe Bethe roots uj . The zeros of this fun
tion indu
e, via this integral equation, the poles in Y 2 .10Analyzing all other TBA equations in a similar way we 
an easily see that no other free terms giverise to poles in the real axis for any other Y -fun
tion.Now let us explain why the se
ond line in (69) is expli
itly real. The 
onvolution in the presen
eof these poles should be understood as 2R(10)n2 � log(1 + Y 2(u � i0)) whi
h we 
an re-write as aprin
ipal value integral (whi
h will be of 
ourse expli
itly real) plus half of ea
h residue of thesingularities at the Bethe roots, i.e.112R(10)n2 � log(1 + Y 2(u� i0)) = 2R(10)n2 �p:v: log(1 + Y 2) + log R(�)(u+ in2 )B(+)(u+ in2 )R(�)(u� in2 )B(+)(u� in2 )The last term in this expression is not real. However it 
an be easily seen that it 
ombines withthe �rst term in the se
ond line of (69) to give a real 
ontribution!This 
on
ludes our 
he
k of reality of all the kernels and free terms in all TBA equations. Thereality means that the Y -fun
tions solving these equations will be real, at least on some stret
h ofthe real u-axis.7 Dis
ussion and 
on
lusionsThe integral equations we present are suitable for the numeri
al study. In the large L limit we 
androp all 
onvolutions 
ontaining the bla
k nodes Y n and re
over in this way the large L solutions of8To simplify the �rst line in (68) we use the identityn�12Xk=�n�12 log �B(�)(u+ i=2 + ik)B(+)(u+ i=2 + ik)�2B(+)(u+ i=2 + ik)R(�)(u� i=2 + ik)B(�)(u� i=2 + ik)R(+)(u+ i=2 + ik) = log "B(�)(u+ in2 )B(�)(u� in2 )#2 Q(u� in+12 )Q(u� in�12 )Q(u+ in+12 )Q(u+ in�12 )9the gauge theory analogue of level mat
hing is the 
i
li
ity of the tra
e in the de�nition of lo
al gauge invariantoperators10For n > 2 we also have poles for the 
orresponding Y -fun
tions but they will lie away from the real axis.11Noti
e that the residues at these singularities depend only on the prefa
tor of the log sin
e when integrating byparts we get a log derivative whi
h has always unit residue.16



[1℄ (we also 
he
ked this statement numeri
ally). However, 
ompared with the Y -system equationin fun
tional form these equations are of easy numeri
al implementation and the iteration from thelarge L solution to the �nite L 
ase is now a

essible. This numeri
al approa
h is 
urrently underinvestigation.In 
on
lusion, we derived in this paper the system of non-linear integral equations of the TBAtype des
ribing, in prin
iple, the spe
trum of the states/operators in the full planar AdS/CFTsystem, in
luding the low lying ones, su
h as Konishi operator. Not only these equations 
on�rmour Y-system 
onje
tured in [1℄ but they also give a pra
ti
al way to the numeri
al 
al
ulationof the anomalous dimensions as fun
tions of the 
oupling �. An alternative, usually numeri
allyquite eÆ
ient, would be the derivation of the Destri-DeVega type equations along the guidelinespresented in [12℄ for the SU(2) prin
ipal 
hiral �eld. In any 
ase, a better understanding of theanalyti
al stru
ture of these equations is needed for the eÆ
ient numeri
s.A point whi
h we do not 
ompletely understand in detail 
on
erns the role of the so 
alled �-term 
ontributions in the TBA equations. In parti
ular we might need to pi
k extra 
ontributionsin (2) 
oming from further singularities whi
h might arise in the Yn;0 fun
tions. In the large L limitsu
h extra terms 
ould probably be identi�ed with the L�us
her's � term 
ontributions. The role ofthese extra 
ontributions, if they are present at all, needs to be further elu
idated.One more un
lear point 
on
erns the underlying PSU(2; 2j4) symmetry of the problem. In ourapproa
h the starting point is the string theory in the light 
one gauge where this symmetry isbroken to SU(2j2)2. It would be extremely interesting to understand how the full super
onformalsymmetry emerges in the TBA equations.Interesting questions yet to be 
onsidered 
on
ern the derivation of a full set of �nite sizeBethe equations for any type of ex
itations of the theory, again along the lines of [12℄ as wellas the generalization of these TBA equations to another integrable example of the AdS/CFT
orresponden
e, the ABJM duality [26℄ (see [27, 28, 29℄ and referen
es therein for the integrabilityrelated works on this theory).The set of TBA equations derived here should give us a

ess to the full spe
trum of AdS/CFTfor any 
oupling. Hopefully it will help to understand deep physi
al reasons of the integrability ofN = 4 SYM theory. Knowing the exa
t results always helps understanding physi
s.Note AddedAfter the work on this proje
t was already �nished the paper [30℄ appeared where essentially thesimilar equations for the va
uum have been derived ex
ept the 
orner, fermioni
 nodes Y2;�2. The
orresponding equation 5.71 proposed in [30℄ appears to be in
orre
t. We derive here the 
orre
tequation and also propose the TBA equations for the ex
ited states.12Note Added for preprint arXiv:0902.4458v3When we were preparing a paper with the results of the new se
tion 6, the se
ond version ofthe paper arXiv:0904.4575 [32℄ appeared where a part of our new results, 
on
erning the fusionproperties for the mirror dressing fa
tor, was established. We de
ided to update our old paperwith these new results. We also stated more expli
itly our preferable 
hose of the 
ontours andbran
hes in the integral equations. It is 
onsistent with [20, 14℄ and agrees with that of [30, 31℄.We also show that for that 
hoi
e the Y -fun
tions for ex
ited states have parti
ulary ni
e analyti
properties and are real.12 In the preprint arXiv:0902.3930v2 of [30℄, whi
h appeared after our preprint arXiv:0902.4458v1 of the 
urrentpaper, the eq. 5.16 (equation 5.71 in arXiv:0902.3930v1), asso
iated with Y2;2, was indeed re
ognized to be in
orre
t.17
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