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Abstract: Parton shower Monte Carlo event generators in which the shower evolves

from hard splittings to soft splittings generally use the leading color approximation, which

is the leading term in an expansion in powers of 1/N2
c , where Nc = 3 is the number of

colors. We introduce a more general approximation, the LC+ approximation, that includes

some of the color suppressed contributions. There is a cost: each generated event comes

with a weight. There is a benefit: at each splitting the leading soft×collinear singularity

and the leading collinear singularity are treated exactly with respect to color. In addition,

an LC+ shower can start from a state of the color density matrix in which the bra state

color and the ket state color do not match.
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1 Introduction

Partons carry momentum, flavor, spin, and color. All of these quantum numbers are

represented in parton shower Monte Carlo event generators like Pythia [1], Herwig [2],

and Sherpa [3]. Spin and color do not fit easily into the event generator format because

quantum interference between different spin and color states is important, even in the limit

of very soft or collinear parton splittings. In this paper, we address the issue of color.

In previous work [4], we have shown how the evolution equations for a parton shower

can be formulated in a way that fully includes spin and color. The resulting integrals

can, in principle, be evaluated by Monte Carlo integration. However, simple Monte Carlo

methods will not be practical when there are many splittings to be represented. In ref. [5],

we found that these same evolution equations simplify if we average over spins and take the

leading color limit, dropping all terms proportional to 1/N2
c , where Nc = 3 is the number

of colors. Then one gets evolution equations that can be realized as a Markov process with

positive probabilities. In ref. [6], we described a method for incorporating spin interference

that we believe is practical. We are currently working on code to realize all of this. In

order to keep the exposition in this paper as simple as possible, we average over spins and

concentrate on color only.

The problem of treating color interference is, in our experience, more difficult. One

method is to order gluon emissions according to emission angle, which takes into account

quite a lot of the physics of color coherence at the cost of approximating the full dependence

of the emissions on the emission angles [7]. With the approximations, this does give positive

splitting probabilities. The other main method is to simply drop terms that correspond to

interference in the color space on the grounds that these terms are suppressed by factors

1/N2
c . This is the standard leading color (LC) approximation.

In this paper, we describe a less restrictive approximation, which we call the LC+

approximation. There is a cost to using the LC+ approximation in place of the LC ap-

proximation: one then gets shower events with weights, which can be negative. However,

we argue that the deleterious effect of the weights on the numerical performance of the

algorithm can be controlled – for instance by switching back to the LC approximation

after some number of parton splittings. There are several advantages to the LC+ approx-

imation. First, the color changes in collinear emissions and in emissions that are both soft

and collinear are treated exactly. The only approximation is in wide angle soft emissions.

Second, LC+ evolution can be started from any partonic color state, including states in

which partons in the quantum amplitude have one color configuration while partons in
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the conjugate quantum amplitude have a different color configuration. The LC approxi-

mation cannot work with this kind of interference state. Third, the LC+ approximation

is quite flexible, so that it could be applied within any parton shower program based on

color dipoles, such as Pythia or Sherpa. For this reason, we believe that the method is

of quite general interest.

We find that to state the method precisely, we need a fairly elaborate formalism based

on linear operators on a certain vector space. We borrow this formalism from Refs. [4–6].

However, the essence of the LC+ approximation can be understood from a consideration

of standard Feynman-like diagrams that represent color flow. For this reason, we provide

a heuristic introduction to the approximation in sections 2, 3, and 4. We then turn to the

more detailed, operator based, analysis in sections 5, 6, and 7. In the LC+ approach, there

are different color states for the amplitude
∣∣{c}m〉 and the conjugate amplitude

〈
{c′}m

∣∣.
In section 8, we describe how to get back to diagonal configurations, {c′}m = {c}m at the

end of the shower. In section 9 we describe how one can include in perturbation theory the

effects that are neglected in the LC+ approximation. In section 10 we include the effects

of the color phase induced by exchanging virtual soft gluons. Finally, in section 11, we

conclude the main part of the exposition. We treat some more technical topics in three

appendices.

2 Statement of the problem

In this section, we seek to describe how color evolves in a parton shower, illustrating why it

is not simple to describe the color evolution exactly. First, let us note that, in a perturbative

treatment, a parton carries momentum, flavor, spin and color. We can imagine that the

momenta of partons at the end of the shower are quite precisely measured. Then the

momenta of intermediate partons in a shower are also well determined. Thus we do not

need to consider interference between states in which intermediate partons have different

momenta p and p′. Since the flavor of a mother parton in a splitting is determined by

the flavors of its daughters, we also do not need to consider interference between states

in which intermediate partons have different flavors f and f ′. However, this argument

does not hold for spin and color. For instance, in a splitting 1 → 2 + 3 for gluons with

colors a1, a2 and a3, the matrix element is proportional to fa1,a2,a3 and for fixed a2 and a3,

fa1,a2,a3 can be nonzero for more than one value of a1. Thus we need to allow for quantum

interference between different color states of the same parton. We also need to allow for

quantum interference between different spin states.

2.1 Evolution without color or spin

Let us consider what happens in a parton shower that evolves from hard splittings to

soft splittings.1 To get started, we ignore both spin and color. We define a “shower

time” variable t such that an initial hard parton scattering happens at t = 0 and then at

each interval dt a parton has some probability of splitting to become two partons. Harder

1We have in mind something like Pythia or Sherpa. The program Herwig, based on ordering in angles,

is rather different.
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splittings happen at smaller t values, successively softer splittings happen at larger t values.

For instance, exp(−t) can be proportional to the virtuality in a splitting or to the transverse

momentum of the daughters relative to the mother parton direction. As implemented in

a computer program, the partonic system always has a definite state. Ignoring spin and

color, the state of the system is described by the momenta and flavors,

{p, f}m = {pa, fa, pb, fb, p1, f1, . . . , pm, fm} . (2.1)

Here pa is the momentum of the incoming parton from hadron A, equal to a fraction ηa of

the hadron momentum, pb is the momentum of the incoming parton from hadron B, and

the pi are the momenta of m outgoing partons. The flavors of the partons are denoted by

discrete flavor variables f . In each shower time interval dt, there is a certain probability

that the system will switch to a new state. What actually happens in a given simulated

event is determined by generated pseudo-random numbers. This means that in an ensemble

of simulated events, there is an probability ρ({p, f}m, t) that the partonic system is in a

certain state at shower time t. This probability distribution then evolves with t. Let us

denote by
∣∣ρ(t)

)
the function ρ at time t considered as a vector in the space of functions of

m and {p, f}m. Then the evolution equation for the probabilities has the form of a linear

equation
d

dt

∣∣ρ(t)
)

= [HI(t)− V(t)]
∣∣ρ(t)

)
. (2.2)

Here HI(t) is a linear operator on the space of probability distributions. The operator

HI(t) corresponds to the splitting probabilities chosen for shower evolution. (There are

many possible choices.) Then V(t) is another linear operator that is constructed from HI(t)
so as to conserve probability in the shower evolution. The Sudakov factor that represents

the probability that there was no splitting between times t1 and t2 is exp(−
∫ t2
t1
dt V(t)).

We will return to this in later sections. For the moment, all that we need to know is that

the evolution of the probability function ρ is determined by parton splitting probabilities.

2.2 Ignoring spin

Now we need to consider spin and color. We have addressed the spin problem in ref. [6].

Combining the spin treatment of ref. [6] with the discussion of this paper is not difficult,

but adds a layer of complexity. In order to keep this paper as simple as possible, we ignore

spin by supposing that we sum over the spins of the daughter partons in a splitting and

average over the spins of the mother parton. Thus in this paper we address the color

problem but not the spin problem.

2.3 The color density operator

The natural language for describing an evolving probability distribution is statistical me-

chanics. Indeed, eq. (2.2) is a standard sort of equation for evolution in statistical me-

chanics. In this paper, we want to include quantum color, so we need quantum statistical

mechanics. Thus we need a density operator that depends on t and is an operator on the

space of color states of a possibly large number of partons. The density operator then has
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Figure 1. Illustration of an open string color basis state (left) and a closed string color basis state

(right). These diagrams represent the color matrices without the normalization factors N(S)−1/2.

the form

ρ({p, f}m, t) =
∑

{c}m,{c′}m

ρ({p, f, c′, c}m, t)
∣∣{c}m〉〈{c′}m∣∣ . (2.3)

Here
∣∣{c}m〉 and

∣∣{c′}m〉 are basis vectors for the quantum color space. The color configu-

ration {c}m of the quantum amplitude is, in general, different from the color configuration

{c′}m of the conjugate quantum amplitude. Thus the function ρ({p, f, c′, c}m, t) depends

on two sets of color indices. The density operator ρ({p, f}m, t) can be regarded as a vector

in the space of functions of {p, f}m with values in the space of operators on the quantum

color space. It obeys an evolution equation of the form (2.2). We simply have to reinterpret

what
∣∣ρ(t)

)
means. Of course, with color involved, the detailed structure of eq. (2.2) is

now more complicated. To understand the color structure, we need to first say something

about the color basis states.

Our analysis in this paper makes use of the standard color basis defined by two sorts

of vectors [4, 8]. First, there are open string vectors

Ψ(S){a} = N(S)−1/2[ta2ta3 · · · tan−1 ]a1,an . (2.4)

Here a1 is a quark color index, an is an antiquark color index, and the other ai are gluon

color indices. The ta are standard SU(3) color matrices in the fundamental representation.

Also, N(S) = NcC
n−2
F is a normalization factor such that

〈
Ψ
∣∣Ψ〉 = 1. Second, there are

closed string vectors

Ψ(S){a} = N(S)−1/2 Tr[ta1ta2 · · · tan ] . (2.5)

Here all of the ai are gluon color indices. Also, N(S) = CnF is a normalization factor such

that
〈
Ψ
∣∣Ψ〉 = 1− [−1/(N2

c − 1)]n−1. This normalization factor is close to 1, with a small

correction. The most general color basis vector, which we denote by
∣∣{c}m〉, is a product

of these two kinds of units. The open string and closed string basis vectors are illustrated

in figure 1.

The color basis states are normalized to
〈
{c}m

∣∣{c}m〉 = 1 or to
〈
{c}m

∣∣{c}m〉 ≈ 1 with

very small corrections. They are not, however, generally orthogonal. However, when {c}m
and {c′}m are different, one finds that

〈
{c′}m

∣∣{c}m〉 = O(1/N2
c ). That is, the basis vectors

are orthogonal in the Nc →∞ limit.
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Figure 2. Illustration of the color density operator. We depict
∣∣{c}m〉〈{c′}m∣∣ with a quark, an

antiquark, and two gluons. Here {c}m = {c′}m.

Figure 3. Illustration of the color density operator as in figure 2. In the case illustrated, we have

{c}m 6= {c′}m because we have switched the positions of gluons 1 and 2 in {c′}m.

Now let’s look at an example. In figure 2, we depict
∣∣{c}m〉〈{c′}m∣∣ for a color structure

that arises in the hard scattering process q̄(a)+q(b)→ g(1)+g(2). Both
∣∣{c}m〉 and

〈
{c′}m

∣∣
show the color state that corresponds to t-channel q̄ exchange. Thus we have a diagonal

contribution to the color density operator, with {c}m = {c′}m.

One can also have u-channel q̄ exchange, which amounts to exchanging gluons 1 and

2. In figure 3, we still have the t-channel diagram for {c}m, but now we illustrate the

contribution from the u-channel diagram for {c′}m. This gives an off-diagonal contribution

to the color density operator, with {c}m 6= {c′}m. Each of the two contributions to the

color density operator shown in the two figures can serve as the starting point for a parton

shower. Since their color structures are different, they should generate different showering.

2.4 Color structure of the parton splitting operator

Having seen the meaning of the color density operator, we can now consider what happens

in shower evolution when a gluon splits. In figure 4, we show the color structure when

mother gluon 1 splits into daughter gluon 1 and daughter gluon 3. Using the identity

ifa1a3c tc = ta1ta3 − ta3ta1 , we find that there is a term in which the new gluon 3 is inserted

below gluon 1 on the quark line minus a term in which the new gluon is inserted above
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Figure 4. Identity for the color dependence of gluon splitting.

Figure 5. Identity for the color dependence of the splitting of gluon 1 in both the bra state and

the ket state.

Figure 6. Identity for the color dependence of the splitting of gluon 1 in the ket state with the

participation of helper parton b in the bra state.

gluon 1 on the quark line.2

Applying this identity, we see in figure 5 that letting mother gluon 1 split in both the

ket state and the bra state in figure 2 gives contributions with four new
∣∣{c}m+1

〉〈
{c′}m+1

∣∣
terms. Even when we use only the simplest kind of splitting and even though we start

2In our diagrams, the three gluon vertex is ifa1a3c with (a1a3c) ordered clockwise around the vertex.
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Figure 7. Identity for the color dependence of the splitting of gluon 1 in the ket state with the

participation of helper parton 2 in the bra state.

with a color diagonal density operator, we generate off diagonal terms in the color density

operator.

There can also be quantum interference between emissions of a soft gluon from two

different partons. We illustrate this in figure 6. Mother parton 1 emits gluon 3 in the ket

state, while the antiquark with label b emits gluon 3 in the bra state. In a physical gauge,

the matrix elements for this are large as long as gluon 3 is soft. One can consider that a

color dipole consisting of partons 1 and b emits the gluon. In a dipole shower, one wants

to account for emission from each dipole (insofar as complications from color allow). In

a dipole antenna shower like Vincia [9], one keeps the dipoles together as a unit. In this

paper, we follow the method of a partitioned dipole shower like Pythia, which partitions

the radiation pattern into two terms. One term is singular when the soft gluon is collinear

with parton 1, the emitting parton, but is not singular when the soft gluon is collinear with

parton b, the helper parton. The other term is singular when the soft gluon is collinear

with parton b but is not singular when the soft gluon is collinear with parton 1. For our

present discussion, let us consider parton 1 to be the emitting parton. On the right hand

side of the figure, we have applied the color identity of figure 4 to expand this contribution

in our standard color basis. We see that we get two off diagonal contributions.

Parton 3 can also be emitted from parton 1 with parton 2 as the helper parton. This

case is illustrated in figure 7. When we expand in five-parton color basis states, there are

four contributions. One of them is color diagonal.

Let us summarize. Using a few simple examples, we have explored the color content

of the splitting operator HI(t) in eq. (2.2). There are two sorts of graph, direct graphs

like figure 5 and interference graphs like figures 6 and 7. The color structure of both kinds

of graphs is non-trivial. Even if we start from a color diagonal contribution to the color

density operator, each splitting creates off-diagonal contributions. With each new splitting,

the color state becomes more complicated.
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2.5 Color structure of the virtual splitting operator

What about the operator V(t) in eq. (2.2)? This operator maps a state of the color

density operator with m final state partons into another state with m final state partons.

Physically, it represents virtual Feynman graphs with hardness scale characteristic of the

current shower time t. We determine what V(t) should be by demanding that shower

evolution conserve probability. This means that(
1
∣∣[HI(t)− V(t)]

∣∣ρ(t)
)

= 0 , (2.6)

where multiplying by
(
1
∣∣ is a convenient way of writing the instruction to take the trace

of the color statistical operator and integrate over all of the parton variables.

Note that taking the trace of the color statistical operator means using

Tr[ρ({p, f}m, t)] =
∑

{c}m,{c′}m

ρ({p, f, c, c′}m, t)
〈
{c′}m

∣∣{c}m〉 . (2.7)

We get the inner product
〈
{c′}m

∣∣{c}m〉. It seems unfortunate that
〈
{c′}m

∣∣{c}m〉 does not

vanish when {c′}m 6= {c}m. However, this inner product is suppressed by powers of 1/N2
c

when {c′}m 6= {c}m.

It is possible to satisfy eq. (2.7) and, at the same time, match the color structure of

virtual Feynman graphs by letting V have the form

V = (h+ iφ)⊗ 1 + 1⊗ (h† − iφ) . (2.8)

This notation denotes that (h + iφ) is an operator on the ket part of the color density

operator and (h† − iφ) is an operator on the bra part. The operator φ is hermitian and

represents a color phase. We will consider φ in section 10. Until then, we simply set φ = 0.

The operator h is hermitian in the full color theory, but the LC+ approximation for it is

not. For that reason, we distinguish the roles of h and h† in our formulas. With φ = 0, we

have

V = h⊗ 1 + 1⊗ h† . (2.9)

We can state this a little more precisely. If ρ({p, f}m, t) is defined by eq. (2.3) and
∣∣ρ′) =

V
∣∣ρ), then

ρ′({p, f}m, t) =
∑

{c}m,{c′}m

ρ({p, f, c, c′}m, t)

×
[
h({p, f}m, t)

∣∣{c}m〉〈{c′}m∣∣+
∣∣{c}m〉〈{c′}m∣∣h†({p, f}m, t)] .

(2.10)

Each term in HI determines a contribution to h. To see how this works, consider the

splitting in figure 5. We define h so that the corresponding contribution to
∣∣ρ′) has the

color factor shown in figure 8. To verify probability conservation, eq. (2.6), just take the

color trace of figure 8 and compare it to the color trace of the left hand side of figure 5. In

each case we get the number represented by the color diagram in figure 9.

The color structure of V is more complicated in the case of interference diagrams.

Consider the splitting in figure 7, in which parton 1 in the ket state splits and we take the
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Figure 8. Color structure of the contribution to V(t) from the splitting in figure 5.

Figure 9. The color trace of figure 8 and of the left hand side of figure 5.

Figure 10. Color structure of the contribution to V(t) from the splitting in figure 7.

interference with the emission of the same gluon from helper parton 2 in the bra state. We

can consider this diagram to correspond to a contribution to V in which h† acts on the bra

state. We define this contribution to h† so that
∣∣ρ′) has the color factor shown in figure 10.

To verify probability conservation, just take the color trace of figure 10 and compare it to

the color trace of the left hand side of figure 7. Then the contribution to V in which h acts

on the ket state corresponds to the complex conjugate of the splitting in figure 7.

Note that the contribution to V(t) corresponding to a direct splitting term in HI is

trivial. Evidently from figure 8, this contribution to V(t) simply multiplies the color state

by CA. In contrast, the contribution to V(t) corresponding to an interference term in HI
is not trivial. When one expands the bra state in figure 10 in the color basis states, we

get several contributions.3 Thus, in general, V(t) is not diagonal in color. This makes an

exact accounting for color difficult because V(t) enters the generation of parton showers in

the form of the Sudakov factor, the time ordered exponential T exp
[
−
∫ t′
t dτ V(τ)

]
.

3For the case depicted, there are two contributions. In other cases, there are more.
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3 The leading color approximation

We have now seen something of the structure in color space of a leading order parton

shower (of the partitioned dipole variety). Of course, this is not the structure of any

existing computer program that models a parton shower with quantum color. There is no

such program. The evolution equations make good sense, but implementing more than a

couple of splitting steps as a computation is not feasible with current methods. There is,

however, a simple approximation that one can apply to get a practical implementation.

This is the leading color (LC) approximation.

The general idea of the leading color approximation is to neglect contributions to the

probability to get a given final partonic state that are suppressed by powers of 1/N2
c .

To proceed, one replaces gluons in the 8 representation of SU(3) by gluons in the 3 × 3̄

representation, using

taijt
a
i′j′ →

1

2
δij′ δi′j . (3.1)

One also notes that all contributions to the color density operator with {c}m 6= {c′}m
can simply be dropped. That is because

〈
{c′}m

∣∣{c}m〉 is suppressed by a power of 1/N2
c

compared to
〈
{c}m

∣∣{c}m〉 or
〈
{c′}m

∣∣{c′}m〉. During shower evolution, the ket states and

the bra states evolve separately, but at the end of the parton shower, when there are N

final state partons, one needs to use
〈
{c′}N

∣∣{c}N〉 to compute a probability. With a little

analysis (see section 5.11), one sees that once one has {c}m 6= {c′}m, one can never get

back to a leading 1/N2
c power by further parton splittings. The consequence of this is that

as splitting proceeds, one simply drops {c}m 6= {c′}m contributions. Thus on the right

hand side of figure 5, one keeps the first two terms and drops the second two terms. On

the right hand side of figure 7, one keeps the first term and drops the other three. On the

right hand side of figure 6, one drops both terms. That is, interference between emission

of a gluon from parton l and from a helper parton k that is not directly color connected

to l is neglected.

With the leading color approximation, the no-splitting operator V is simple. For

instance, on the right hand side of figure 5 we keep the first two terms. In each of these

terms, when we take the color trace we see that adding the emitted gluon 3 creates one

more color loop and thus one more factor of Nc. Thus we can take the color operator in

V to simply multiply the color state we started with by CA = Nc (including two graphs,

each with a factor 1/2 from eq. (3.1)).

For a splitting q → q + g, the color factor in V would be Nc/2 when we calculate this

way, but one normally uses CF instead by simply multiplying the splitting probability by

2CF/CA.

Strictly speaking, one would drop all g → q+ q̄ splittings in the leading color approxi-

mation, but one normally keeps the part of this splitting suppressed by 1/Nc, omitting the

parts suppressed by 1/N3
c .

The leading color approximation gives a simple shower algorithm. It is also intuitively

appealing. The ket states and the bra states in the color density operator always have the

same {c}m. In {c}m, we can think of each quark or antiquark as being connected by a color
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string to a neighboring gluon in a color basis state in figure 1. Each gluon is connected

to two other partons by a color string. Then emitting a new gluon means connecting it

to two of the previous strings. Interference between emitting a new gluon from parton l

and helper parton k can only occur if the two partons were color connected; then the new

gluon is connected to the string that previously joined partons l and k.

One can note two problems with the leading color approximation. First, it neglects

terms suppressed by powers of 1/N2
c . Second, it cannot start with color density operator

contributions
∣∣{c}m〉〈{c′}m∣∣ with {c}m 6= {c′}m.

4 Introduction to the LC+ approximation

We propose in this section an improved “LC+” approximation that goes beyond the lead-

ing color approximation by including some of the contributions to cross sections that are

suppressed by powers of 1/N2
c .

To go beyond the leading color approximation, one has to give up something.4 We

choose to give up having an algorithm that can be implemented without having weights

for events. In particular, the terms in the splitting probabilities in the LC+ approximation

have both plus and minus signs. One cannot generate events with negative probabilities,

so in order to include these terms one will have to generate certain splittings with positive

probabilities and negative weights. The weights are then carried with the event. Now,

having weighted events is not intrinsically a problem for convergence of Monte Carlo inte-

grations to a physical answer. However, there would be a problem that would not be easy

to avoid if a physical cross section to be calculated had the form σ0[1.00− 9.01/N2
c + · · · ].

Then calculating the result by Monte Carlo integration would not give an accurate answer

for Nc = 3. We believe that this does not happen. If it does happen for some observable

cross section, then the LC+ approximation may not work well. Of course, in this case, the

standard LC approximation is giving us the wrong answer and the LC+ result would at

least give an indication of problems.

We will state what the LC+ approximation is quite precisely using an operator notation

in section 6. However the main idea can be grasped quite easily using the examples that

we have already explored, so we do that in this section.

4.1 The parton splitting operator

First, the direct graph for the splitting of parton l by emitting a gluon labeled m + 1

contains (in a physical gauge) the collinear singularity that occurs when the parton mo-

menta after the splitting obey p̂m+1 ∝ p̂l and also the double singularity that occurs when

p̂m+1 → 0 with p̂m+1 ∝ p̂l. We want the coefficients of the logarithms that arise from these

singularities to be exactly right with respect to color. Thus we keep the color structure of

these splittings exactly. This means that in the right hand side of figure 5 we keep all four

terms. We can start with {c′}m 6= {c}m as in figure 11. Again, there are four terms and

we keep them all.

4More precisely, the authors do not know how to go beyond the leading color approximation while giving

up nothing.

– 11 –



Figure 11. Identity for the color dependence of the splitting of gluon 1 in both the bra state and

the ket state in the case {c′}m 6= {c}m. In the LC+ approximation, one keeps all four terms.

Now consider splittings in which radiation of a gluon m + 1 from parton l interferes

with radiation of gluon m+ 1 from helper parton k. Recall that we are using a partitioned

dipole shower, in which the splitting functions distinguish the roles of the emitting parton

and the helper parton. The emitting parton l can be the parton that radiates gluon m+1 in

the ket state. Then the helper parton k radiates gluon m+1 in the bra state. Alternatively,

the emitting parton can be the one that radiates gluon m+ 1 in the bra state, so that the

helper parton radiates gluon m + 1 in the ket state. In our examples in this section, we

take the emitting parton l to be the parton that radiates gluon m+ 1 in the ket state, with

the helper parton k being the parton that radiates gluon m + 1 in the bra state. There

are, of course, equivalent examples in which the picture is reversed.

Our first example was shown in figure 6. Here the helper parton (k = b) is not

color connected to the emitting parton (l = 1) in the bra state. In this case, the LC+

approximation is to drop the contribution entirely. A second example was shown in figure 7.

Here the helper parton (k = 2) is color connected to the emitting parton (l = 1) in the

bra state. In this case, the LC+ approximation is to keep the contributions in which the

emitted gluon attaches between l and k in the bra state. That is, we keep the first and

third terms on the right hand side of figure 7. A third example is shown in figure 12. In

this case, {c′}m 6= {c}m. The helper parton (k = 2) is color connected to the emitting

parton (l = 1) in the bra state, so the LC+ approximation is to keep the contributions in

which the emitted gluon attaches between l and k in the bra state. The two contributions

that are retained in the LC+ approximation are shown on the right hand side of figure 12.

4.2 The virtual splitting operator

To find the structure of the virtual splitting operator V(t) in the LC+ approximation

we use the definition (2.9). For a direct splitting diagram, we consider the real emission
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Figure 12. LC+ approximation for the splitting of gluon 1 in the ket state with the participation

of helper parton 2 in the bra state in a case with {c′}m 6= {c}m.

Figure 13. Color structure of the contribution to V(t) from the splitting in figure 11.

Figure 14. LC+ approximation for the splitting of gluon 1 in the ket state with the participation

of helper parton 2 in the bra state in a case with {c′}m 6= {c}m. This is the sum of the two terms

on the right hand side of figure 12.

diagram to correspond to the sum of virtual diagrams in which h acts on the ket state and

in which h† acts on the bra state. For an interference diagram with the helper parton in

the bra state, we consider the real emission diagram to correspond to a virtual diagram

in which h† acts on the bra state. An interference diagram with the helper parton in the

ket state corresponds to a virtual diagram in which h acts on the ket state. Then we

impose probability conservation, eq. (2.6), to relate V(t) to the definitions of the LC+

approximation for HI(t) outlined above.

For a direct splitting diagram as in figure 11, this gives the contribution to V(t) illus-

trated in figure 13. To see this, we simply note that the color trace of the left hand side of

figure 11 is the same as the color trace of figure 13.

For the interference diagram in figure 12, we first note that the two terms that are

retained in the LC+ approximation sum to the contribution shown in figure 14. This gives
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Figure 15. Color structure of the contribution to V(t) from the splitting in figure 14.

Figure 16. LC+ approximation for the splitting of parton “a” in the ket state with the participation

of helper parton 2 in the bra state in a case with {c′}m 6= {c}m.

the contribution to V(t) illustrated in figure 15 since the color trace of the right hand side

of figure 14 is the same as the color trace of figure 15.

We now note something remarkable. The color basis states are eigenstates of the

operator h that defines V(t). For a direct splitting of a gluon, as in figure 13, the eigenvalue

is CA/2. Similarly, for a direct splitting of a quark or antiquark, the eigenvalue is CF/2.

For an interference diagram in which a gluon splits to two gluons with interference from

gluon emission some other parton, as in figure 15, a simple calculation shows that the

eigenvalue is CA/4. Similarly, for an interference diagram in which a quark or antiquark

splits, emitting a gluon with interference from gluon emission some other parton, the LC+

approximation is shown in figure 16. Then the corresponding contribution to V(t) has

eigenvalue CF/2.

5 Operator based analysis with full color

In the preceding sections, we have sketched the main idea of the LC+ approximation. Now

we need to make the idea precise. To do that, we first set up a formalism to describe

the evolution of generic parton shower that includes quantum color exactly. To keep the

presentation simple, we average over spins. More precisely, we sum over the spins of partons

after each splitting and average over the spins of the partons that enter each splitting. Then

spin is not visible in the evolution equations at all. The formalism is taken from Refs. [4–

6]. However, here we keep the shower quite generic by not specifying exactly the splitting

functions, the definition of the shower time t that is used to order successive splittings, or
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the momentum mapping for each splitting that allows all partons to be on-shell while at

the same time exactly conserving momentum.

5.1 Parton labels

At each stage of the shower, there are two initial state partons with labels “a” and “b”

together with m final state partons with labels 1, . . . ,m. The parton momenta and flavors

are then specified by a list {p, f}m as in eq. (2.1).5 At each step of the parton shower,

any one of the partons can split. This includes an initial state parton, which splits in

“backwards evolution” to another initial state parton plus a final state parton. In either

case, let l be the label of the parton that splits. At a splitting, the parton l remains and

one more parton, with label m+ 1 is created. After the splitting, the momenta and flavors

are {p̂, f̂}m+1. Whenever a final state gluon is created, we assign the label m + 1 to the

gluon. In the case of a final state g → g + g splitting, one daughter gluon has label l and

the other has label m + 1. We use the interchange symmetry of the process to rearrange

the splitting function so that there is a singularity when gluon m+ 1 becomes soft but no

singularity when gluon l becomes soft.

In the case of gluon emission, there are interference graphs. A gluon m + 1 emitted

from parton l in the ket state can be emitted by partner parton k in the bra state. Similarly

a gluon m+ 1 emitted from parton l in the bra state can be emitted by partner parton k

in the ket state. The interference diagrams are important when gluon m+ 1 is soft.

5.2 The evolution equation

The development of a parton shower can be described by giving an evolution equation for

the operator ρ({p, f}m, t) defined by eq. (2.3) as the density operator on the color space

of the evolving partonic system. (It would be an operator on the spin space also except

that we average over spins in this paper.) The density operator is a function of the parton

momenta and flavors. This function can be regarded as a vector
∣∣ρ(t)

)
in the space of

functions of {p, f}m with values in the space of operators on the quantum color space. We

take the vector
∣∣ρ(t)

)
to obey a linear evolution equation of the form (2.2).

In eq. (2.2), HI(t) is the splitting operator. Specifying shower evolution means speci-

fying what HI(t) is. To do that, we use basis states
∣∣{p, f, c′, c}m) that specify a definite

momentum, flavor, and color configuration for the partons. The normalizations are such

that ρ({p, f, c′, c}m, t) in eq. (2.3) is

ρ({p, f, c′, c}m, t) =
(
{p, f, c′, c}m

∣∣ρ(t)
)
. (5.1)

Making use of these basis vectors, we can define HI(t) by specifying the matrix elements

of HI(t) between a partonic state after a splitting and the state before the splitting,(
{p̂, f̂ , ĉ′, ĉ}m+1

∣∣HI(t)∣∣{p, f, c′, c}m). We begin this task in the next few subsections by

discussing some of the ingredients in this matrix element.

5For the flavors for the initial state partons, it is useful to let f denote the flavor leaving the hard

interaction, which is the opposite of the flavor of the physical parton entering the hard interaction.
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5.3 Splitting functions

To describe emission of a soft gluon m + 1 from parton l with interference from emission

from helper parton k, we use the dipole splitting function

w dipole
lk = 4παs

−(p̂m+1 · p̂l p̂k − p̂m+1 · p̂k p̂l)2

(p̂m+1 · p̂k p̂m+1 · p̂l)2
. (5.2)

In this expression, partons l and k can have nonzero masses. The expression for wlk may

be more familiar in the massless limit, p̂2l → 0 and p̂2k → 0, where it becomes

w dipole
lk → 4παs

2p̂k · p̂l
p̂m+1 · p̂k p̂m+1 · p̂l

. (5.3)

Eq. (5.2) includes all four diagrams for emission from either parton l or parton k in both

the bra and ket states, calculated in the limit p̂m+1 = λPm+1 with λ→ 0. If we calculate

the four contributions separately using the eikonal approximation in a physical gauge, then

wdipole
lk = weikonal

ll + weikonal
kk − 2weikonal

lk . (5.4)

The first two terms represent the direct graphs while the last term represents the two

interference graphs.6

The splitting function w eikonal
ll in eq. (5.4) is singular in the limit in which parton l is

massless and parton m+ 1 is collinear with parton l: p̂m+1 → [(1− z)/z] p̂l. In this limit,

w eikonal
ll → 8παs

2p̂m+1 · p̂l
2z

1− z
. (5.5)

There is a factor of the virtuality of the splitting, 2p̂m+1 · p̂l in the denominator and there is

a function of the momentum fraction z that is singular in the soft gluon limit z → 1. The

behavior of this function away from the collinear limit depends on the conventions used to

define the shower. For instance, it depends on the definition of z.

The splitting of parton l into a parton of the same flavor plus a gluon both in the ket

state and in the bra state is described by a function wll. Suppose that parton l is a quark.

Then in the limit in which parton l is massless and parton m+ 1 is collinear with parton

l we have

wll →
8παs

2p̂m+1 · p̂l
1 + z2

1− z
. (5.6)

Away from this limit, the exact result depends on the conventions used to define the

shower.7 Note that w eikonal
ll matches wll in the limit of a collinear splitting that is also soft,

(1− z)→ 0.

For other sorts of splittings, there are splitting functions wll that are proportional to

the DGLAP splitting kernels in the limit of massless, collinear splittings.

6The function weikonal
lk , which equals weikonal

kl , is denoted by W lk/(2Alk) and given in eq. (4.4) of ref. [5].

The function weikonal
ll is denoted by W

eikonal
ll and given in eq. (2.10) of ref. [5]. These functions include only

the leading λ−2 contribution in the limit λ→ 0. One could, in principle, add contributions proportional to

λ−1 and higher powers of λ.
7For a g → g + g splitting, the DGLAP splitting kernel appears in wll, as in eq. (5.6), once one

symmetrizes in z ↔ 1− z. Before symmetrization, the result depends on the conventions used to define the

shower.
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5.4 Shower time

Parton showers are based on evolution of the system as a shower time variable t increases.

The idea is to start at the hard interaction and move to a first splitting that is less hard,

then move to softer splittings as t increases. For initial state splittings, this means moving

backward in physical time.

As a measure of softness, one can use the virtuality of the splitting, the virtuality

divided by the energy of the mother parton, or the square of the part of the momentum

of one of the daughters that is transverse to the direction of the mother. The shower

program Herwig orders splittings according to the angle between the daughters times the

energy of the mother, with wide angle splittings first. This ordering has its advantages, but

the generic shower scheme outlined here would need some modification to fit with angular

ordering.

5.5 Momentum mapping

At each splitting, one starts with m final state partons with momenta {p}m and ends with

m+ 1 final state partons with momenta {p̂}m+1. One might like to define p̂j = pj for j 6= l

and j 6= m+ 1 and to take p̂l + p̂m+1 = pl (or p̂l − p̂m+1 = pl for an initial state splitting).

However, this would not allow all three of p̂l, p̂m+1, and pl to be on-shell. Accordingly,

one needs to take some momentum from the partons other than l in order to supply the

needed momentum in the splitting and keep exact momentum conservation. Thus we need a

momentum mapping in which the {p}m plus three splitting variables determine the {p̂}m+1.

The three splitting variables can be, for instance, the virtuality (p̂l ± p̂m+1)
2 −m2(fl), a

momentum fraction z and an azimuthal angle of the daughters about the direction of the

mother. Equivalently, the {p̂}m+1 determine three splitting variables and the {p}m. The

needed momentum mapping can be specified by giving a function
(
{p̂, f̂}m+1

∣∣Pl∣∣{p, f}m)
that consists of an integration over the three chosen splitting variables and a product

of delta functions that determine the {p̂}m+1 from the splitting variables and the {p}m.

There are many ways to do this, but for our purposes, all we need to know is that defining

a shower evolution entails the specification of
(
{p̂, f̂}m+1

∣∣Pl∣∣{p, f}m).
For our generic shower, we take the mapping operator Pl to depend on the label l of

the parton that splits. One can also let the mapping operator depend on the index k of

the helping parton involved in interference diagrams. This is a common choice because it

allows all of the momentum transfer to come from changing the momentum of parton k.

That is, one can take p̂l + p̂m+1 − pl = pk − p̂k. However, this scheme is a bit awkward for

cases in which there is no helper parton k, such as g → q + q̄. Accordingly, we keep the

generic shower equations simple by letting Pl depend only on the index l.
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5.6 Splitting operator

Now we are ready to specify the matrix elements of HI(t):(
{p̂, f̂ , ĉ′, ĉ}m+1

∣∣HI(t)∣∣{p, f, c′, c}m)
=
∑
l,k

δ(t− T ({p̂, f̂}m+1)) (m+ 1)
(
{p̂, f̂}m+1

∣∣Pl∣∣{p, f}m)
× nc(a)nc(b) ηaηb

nc(â)nc(b̂) η̂aη̂b

fâ/A(η̂a, µ
2
F )fb̂/B(η̂b, µ

2
F )

fa/A(ηa, µ2F )fb/B(ηb, µ
2
F )

× 1

2

[
θ(k = l) θ(f̂m+1 6= g)wll({p̂, f̂}m+1)

+ θ(k = l) θ(f̂m+1 = g) [wll({p̂, f̂}m+1)− weikonal
ll ({p̂, f̂}m+1)]

− θ(k 6= l) θ(f̂m+1 = g)A′lk({p̂}m+1)w
dipole
lk ({p̂, f̂}m+1)

]
×
[(
{ĉ′, ĉ}m+1

∣∣t†l (fl → f̂l + f̂m+1)⊗ tk(fk → f̂k + f̂m+1)
∣∣{c′, c}m)

+
(
{ĉ′, ĉ}m+1

∣∣t†k(fk → f̂k + f̂m+1)⊗ tl(fl → f̂l + f̂m+1)
∣∣{c′, c}m)] .

(5.7)

In the first line on the right hand side of eq. (5.7), we have a sum over indices l and k

of partons. The parton with label l is the one that splits. There is another label k so that

we can include graphs that represent quantum interference between emission of a gluon

from parton l and from another parton k. We call parton k the helper parton. For the

quantum interference terms, we have k 6= l. There are also graphs that do not represent

quantum interference. For these, k = l.

The first line on the right hand side of eq. (5.7) also includes a delta function that

specifies the definition of the shower time t, then the function that defines the momentum

mapping.

In the second line, we have a ratio of parton distribution functions. For a final state

splitting, this ratio is 1. For an initial state splitting, this ratio replaces the parton distri-

bution functions at the previous momentum fraction ηa or ηb by the parton distribution

function at the new momentum fraction after the splitting.

In the following lines of eq. (5.7) there are three terms, corresponding to three types

of splittings.

First, there are splittings in which parton m + 1 is not a gluon. For example, a final

state g → q + q̄ splitting is in this class. For these cases, there is a splitting function

wll({p̂, f̂}m+1) that is singular for a collinear massless splitting, but does not have a soft

parton singularity.

In the second term in eq. (5.7), there are splittings in which parton l emits a gluon. The

splitting function here, wll−weikonal
ll , is singular for a collinear splitting, but the singularity

when the emitted gluon is soft has been removed by the subtraction.

The most interesting term in eq. (5.7) is the third, in which a soft gluon m+1 is emitted

from a dipole consisting of partons l and k. The splitting function wdipole
lk is calculated using
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the eikonal approximation according to eq. (5.2). It is singular when the gluon is soft and

also contains singularities when the direction of the gluon momentum is collinear to either

the direction of p̂l (if p̂2l = 0) or the direction of p̂k (if p̂2k = 0). It is symmetric under

interchange of p̂l and p̂k.

We have manipulated the third term in order to separate the roles of partons k and l.

Let A′lk be a function of the momenta {p̂}m+1 and A′kl be the same function with the roles

of p̂k and p̂l reversed. Furthermore, let A′lk + A′kl = 1. Then, by interchanging the names

of the dummy indices l and k, we have

1

2

∑
l

∑
k 6=l

wdipole
lk =

1

2

∑
l

∑
k 6=l

[A′lk +A′kl]w
dipole
lk

=
∑
l

∑
k 6=l

A′lkw
dipole
lk .

(5.8)

This gives the factor A′lk that multiplies wdipole
lk in eq. (5.7). If we were to take A′lk = 1/2,

this manipulation would do nothing, but instead we choose A′lk so that A′lk = 1 when

p̂m+1 is parallel to p̂l and A′lk = 0 when p̂m+1 is parallel to p̂k. Then A′lkw
dipole
lk is singular

when the gluon is soft or collinear with parton l but not when it is collinear with parton

k. Our preferred choice for A′lk is given in eq. (7.12) of ref. [6]. One can also use the

Catani-Seymour dipole partitioning function [10] for this purpose.

Finally in eq. (5.7) there is a color factor, which is the main focus of this paper. There

are two terms in the color factor, which are related by interchanging the indices l and k. If

k = l, the two terms are identical. In the first term, there is an operator t†l (fl → f̂l+ f̂m+1)

that acts on color ket states
∣∣{c}m〉. This operator attaches the proper color matrix for the

splitting to the color index for parton l. Similarly, we apply the operator tk(fk → f̂k+f̂m+1)

to the bra color state
〈
{c′}m

∣∣. The resulting color bras and kets can be expanded in color

basis states:

t†l (fl → f̂l + f̂m+1)
∣∣{c}m〉〈{c′}m∣∣tk(fk → f̂k + f̂m+1)

=
∑

{ĉ′,ĉ}m+1

C({ĉ′, ĉ}m+1, {c′, c}m)
∣∣{ĉ}m+1

〉〈
{ĉ′}m+1

∣∣ . (5.9)

Then the matrix element that we want is the corresponding expansion coefficient:(
{ĉ′, ĉ}m+1

∣∣t†l (fl → f̂l + f̂m+1)⊗ tk(fk →f̂k + f̂m+1)
∣∣{c′, c}m)

= C({ĉ′, ĉ}m+1, {c′, c}m) .
(5.10)

5.7 The virtual splitting operator

The virtual splitting operator V(t) in Eq. (2.2) represents the effect of virtual graphs on

shower evolution. It reflects the leading infrared and collinear singularities in the virtual

graphs. Consequently, V(t) leaves the number of partons unchanged and does not change

their momenta or flavors. It does, however, multiply by a matrix in color space.8 This is

because the exchange of a soft virtual gluon changes parton colors.

8Thus this paper differs from Ref. [11], in which Sudakov exponentials are simply numerical factors.
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The matrix representing V(t) has two terms. First, there can be a correction to the

ket color state with no change to the bra colors. Then, there can be a correction to the bra

color state with no change to the ket colors. Thus the color structure of V(t) is the color

structure of one loop virtual corrections. We write

V(t)
∣∣{p, f, c′, c}m) =

∑
{ĉ}m

HL({p, f}m; {ĉ}m, {c}m; t)
∣∣{p, f, c′, ĉ}m)

+
∑
{ĉ′}m

HR({p, f}m; {ĉ′}m, {c′}m; t)
∣∣{p, f, ĉ′, c}m) .

(5.11)

The color matrices HL and HR are the matrices that represent operators h + iφ and

[h+ iφ]† = h†− iφ that act on the ket color vectors and the bra color vectors, respectively:

[h({p, f}m, t) + iφ({p, f}m, t)]
∣∣{c}m〉 =

∑
{ĉ}m

HL({p, f}m; {ĉ}m, {c}m; t)
∣∣{ĉ}m〉 ,

〈
{c′}m

∣∣[h†({p, f}m, t)− iφ({p, f}m, t)] =
∑
{ĉ′}m

HR({p, f}m; {ĉ′}m, {c′}m; t)
〈
{ĉ′}m

∣∣ .
(5.12)

Here φ = φ†. In the simplest formulation, φ = 0. We consider φ 6= 0 in section 10. In

the full color treatment, we will have h† = h. However in the LC+ approximation we will

define hLC+ with [hLC+]† 6= hLC+.

It is useful to solve the shower evolution equation (2.2) in the form∣∣ρ(t)
)

= U(t, t0)
∣∣ρ(t0)

)
, (5.13)

where

U(t, t0) = N (t, t0) +

∫ t

t0

dτ U(t, τ)HI(τ)N (τ, t0) . (5.14)

Here N (t2, t1) is the no-splitting operator,

N (t2, t1) = T exp

[
−
∫ t2

t1

dτ V(τ)

]
, (5.15)

that provides the Sudakov factor that is usually interpreted as the probability to not have a

splitting between time t1 and time t2. In N (t2, t1), the virtual splitting operators V(τ) are

time ordered. Iterating eq. (5.14) gives
∣∣ρ(t)

)
as a power series in HI , with HI evaluated

at times ti and factors of N (ti+1, ti) in between. We interpret eq. (5.14) as saying that

possibly the system gets from t0 to t without splitting. If not, it goes from t0 to τ without

splitting, then splits according toHI(τ), then evolves further according to the full evolution

operator U(t, τ).

Given the structure (5.11) and (5.12) of V(τ), the operator N (ti+1, ti) has the form of

a matrix in labels of the color basis elements,

N (t2, t1)
∣∣{p, f, c′, c}m)
=

∑
{ĉ′,ĉ}m

N({p, f}m; {ĉ′, ĉ}m, {c′, c}m; t2, t1)
∣∣{p, f, ĉ′, ĉ}m) . (5.16)
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Here the matrix elements are obtained from the operators h that define V(t),

T exp

[
−
∫ t2

t1

dτ h({p, f}m, τ)

]∣∣{c}m〉〈{c′}m∣∣T exp

[
−
∫ t2

t1

dτ h†({p, f}m, τ)

]
=

∑
{ĉ′,ĉ}m

N({p, f}m; {ĉ′, ĉ}m, {c′, c}m; t2, t1)
∣∣{ĉ}m〉〈{ĉ′}m∣∣ . (5.17)

Thus the Sudakov factor breaks into two factors, one for the ket state and one for the

bra state. That is, there is Sudakov factor for each color ordered quantum amplitude.

That is remarkably simple. However, the structure of the Sudakov factor for each quantum

amplitude is remarkably complicated since it is an operator that mixes color basis states.

5.8 Probability conservation

We relate V(t) to HI(t) using the requirement that showering not change the probability

of the hard scattering event that initiates the shower. Probability conservation requires

eq. (2.6), (
1
∣∣HI(t)∣∣{p, f, c′, c}m) =

(
1
∣∣V(t)

∣∣{p, f, c′, c}m) . (5.18)

Here
(
1
∣∣ stands for the measurement of inclusive probability,(

1
∣∣{p, f, c′, c}m) =

〈
{c′}m

∣∣{c}m〉 . (5.19)

The inner product
〈
{c′}m

∣∣{c}m〉 corresponds to taking the trace of the color density oper-

ator
∣∣{c}m〉〈{c′}m∣∣.
For a general statistical state

∣∣ρ), we measure the inclusive probability that the par-

tons are in any configuration by using the completeness sum for the statistical states∣∣{p, f, c′, c}m) (as defined in ref. [4])

1 =
∑
m

1

m!

∫
d{p, f}m

∑
{c,c′}m

∣∣{p, f, c′, c}m)({p, f, c′, c}m∣∣ , (5.20)

where, to be precise,

∫
d{p, f}m =

∑
fa

∫ 1

0
dηa

∑
fb

∫ 1

0
dηb

m∏
i=1

∑
fi

∫
d4pi
(2π)4

2πδ(p2i −m2(fi))


× (2π)4δ

(
pa + pb −

m∑
i=1

pi

)
.

(5.21)

Thus the inclusive probability that the partons described by
∣∣ρ) are in any configuration

is (
1
∣∣ρ) =

∑
m

1

m!

∫
d{p, f}m

∑
{c,c′}m

〈
{c′}m

∣∣{c}m〉({p, f, c′, c}m∣∣ρ) . (5.22)
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5.9 The inclusive splitting probability

Using eq. (5.22), the inclusive probability for a splitting starting from
∣∣{p, f, c′, c}m) is(

1
∣∣HI(t)∣∣{p, f, c′, c}m) =

1

(m+ 1)!

∫
d{p̂, f̂}m+1

∑
{ĉ,ĉ′}m+1

〈
{ĉ′}m+1

∣∣{ĉ}m+1

〉
×
(
{p̂, f̂ , ĉ′, ĉ}m+1

∣∣HI(t)∣∣{p, f, c′, c}m) .

(5.23)

We are particularly interested in the color structure of this. We note by examining eq. (5.7)

that on the right hand side of this equation the following generic color factors will occur:∑
{ĉ,ĉ′}m+1

〈
{ĉ′}m+1

∣∣{ĉ}m+1

〉(
{ĉ′, ĉ}m+1

∣∣t†A ⊗ tB∣∣{c′, c}m) .

If we take the color trace of eq. (5.9) and compare it to the trace of eq. (5.10) we have∑
{ĉ,ĉ′}m+1

〈
{ĉ′}m+1

∣∣{ĉ}m+1

〉(
{ĉ′, ĉ}m+1

∣∣t†A ⊗ tB∣∣{c′, c}m) =
〈
{c′}m

∣∣tBt†A∣∣{c}m〉 . (5.24)

If we use eq. (5.7) in eq. (5.23) and use the identity (5.24), we find(
1
∣∣HI(t)∣∣{p, f, c′, c}m)

=
∑
l,k

1

m!

∫
d{p̂, f̂}m+1δ(t− T ({p̂, f̂}m+1))

(
{p̂, f̂}m+1

∣∣Pl∣∣{p, f}m)
× nc(a)nc(b) ηaηb

nc(â)nc(b̂) η̂aη̂b

fâ/A(η̂a, µ
2
F )fb̂/B(η̂b, µ

2
F )

fa/A(ηa, µ2F )fb/B(ηb, µ
2
F )

× 1

2

[
θ(k = l) θ(f̂m+1 6= g)wll({p̂, f̂}m+1)

+ θ(k = l) θ(f̂m+1 = g) [wll({p̂, f̂}m+1)− weikonal
ll ({p̂, f̂}m+1)]

− θ(k 6= l) θ(f̂m+1 = g)A′lk({p̂}m+1)w
dipole
lk ({p̂, f̂}m+1)

]
×
〈
{c′}m

∣∣tk(fk → fk + g) t†l (fl → fl + g)

+ tl(fl → fl + g) t†k(fk → fk + g)
∣∣{c}m〉 .

(5.25)

5.10 Structure of the virtual splitting operator

Given the structure of V(t) in eq. (5.11) and the definition (5.19) of
(
1
∣∣, the right hand

side of eq. (5.18) is(
1
∣∣V(t)

∣∣{p, f, c′, c}m) =
∑
{ĉ}m

HL({p, f}m; {ĉ}m, {c}m; t)
〈
{c′}m

∣∣{ĉ}m〉
+
∑
{ĉ′}m

HR({p, f}m; {ĉ′}m, {c′}m; t)
〈
{ĉ′}m

∣∣{c}m〉 .
(5.26)

Using the definition (5.12) of the color operator h, this can be written(
1
∣∣V(t)

∣∣{p, f, c′, c}m) =
〈
{c′}m

∣∣h({p, f}m, t) + h†{p, f}m, t)
∣∣{c}m〉 . (5.27)
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Here the operator on the right hand side is (h+ iφ) + (h†− iφ) = h+h†. Thus this relation

determines h+ h† but not φ. We have assumed that φ = 0. In section 10, we will explore

the color phase φ.

We demand probability conservation, eq. (5.18). Comparing eq. (5.27) to eq. (5.25),

we see that probability conservation holds if

h({p, f}m, t) =
∑
l,k

1

m!

∫
d{p̂, f̂}m+1δ(t− T ({p̂, f̂}m+1))

(
{p̂, f̂}m+1

∣∣Pl∣∣{p, f}m)
× nc(a)nc(b) ηaηb

nc(â)nc(b̂) η̂aη̂b

fâ/A(η̂a, µ
2
F )fb̂/B(η̂b, µ

2
F )

fa/A(ηa, µ2F )fb/B(ηb, µ
2
F )

× 1

2

[
θ(k = l) θ(f̂m+1 6= g)wll({p̂, f̂}m+1)

+ θ(k = l) θ(f̂m+1 = g) [wll({p̂, f̂}m+1)− weikonal
ll ({p̂, f̂}m+1)]

− θ(k 6= l) θ(f̂m+1 = g)A′lk({p̂}m+1)w
dipole
lk ({p̂, f̂}m+1)

]
× tl(fl → f̂l + f̂m+1)t

†
k(fk → f̂k + f̂m+1) .

(5.28)

Thus we define V(t) according to eqs. (5.11) and (5.12) with h({p, f}m, t) given by eq. (5.28).

In the color factor, we have a factor tlt
†
k. Then h† is given by the same expression with

a factor tkt
†
l . In fact, h = h† because tkt

†
l = tlt

†
k. For k = l, this is obvious. For k 6= l, we

are dealing with a gluon with color index a exchanged between the lines k and l. We note

that tkt
†
l inserts SU(3) generator matrices T a in the appropriate representations on lines l

and k, then sums over a. The generator matrices are self adjoint and they commute with

each other because they act on different parton lines, so that tkt
†
l = tlt

†
k.

This result might perhaps be regarded as elegant, but it poses difficulties for practical

implementation in a parton shower Monte Carlo program. The difficulty comes from the

fact that the operator tl(fl → fl+g) t†k(fk → fk+g) is represented by a non-diagonal matrix

in the standard color basis. In the full h({p, f}m, t) we have a sum of such operators with

momentum dependent coefficients. For the Sudakov factor (5.17), we need the exponential

of an integral over t of this matrix. Thus the Sudakov factors are complicated and it is not

easy to see what to do with them.

5.11 Color suppression index

To help with our analysis, we define a quantity P that we can call the color suppression

power and a related but more useful quantity I that we can call the color suppression

index. Both P and I are related to the number of powers of 1/Nc associated with the

current color state at any stage in shower evolution.

To define P and I, we must first deal with certain exceptional sources of factors 1/Nc.

We call pE the number of powers of 1/Nc coming from these exceptional sources of color

suppression. For all of this paper except section 10, the sole source of non-zero pE is

g → q+ q̄ splittings. In a g → q+ q̄ splitting, there are two ways to connect the new q and

q̄ to the previous color state. The original gluon color was defined by inserting taij along a
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color 3 line. Now with the g → q + q̄ splitting we have a color matrix taijt
a
i′j′ in the color

amplitude. We can use the Fierz identity,

taijt
a
i′j′ =

1

2
δij′δi′j −

1

2Nc
δijδi′j′ , (5.29)

to write the result expanded in color basis states. At each g → q + q̄ splitting, shower

evolution picks either the first, leading color, term or else the second, color suppressed,

term. If the second term is chosen, further evolution uses the second color state, δijδi′j′ ,

and incorporates the factor −1/(2Nc) into the weight factor for the event. We let pE
represent the number of times during the shower evolution that we pick up a 1/Nc factor

by using the second term in the Fierz identity.

Now we can define the color suppression power. Suppose that after enough splitting

steps to obtain m final state partons, we reach a color density operator
∣∣{c}m〉〈{c′}m∣∣.

Then we can define P (m) as the number of powers of 1/Nc in the color overlap function〈
{c′}m

∣∣{c}m〉 plus the sum of the explicit powers, pE, of 1/Nc that multiply the color

amplitudes
∣∣{c}m〉 and

〈
{c′}m

∣∣:(
1

Nc

)pE 〈
{c′}m

∣∣{c}m〉 =
cP (m)

N
P (m)
c

{
1 +O

(
1

Nc

)}
, (5.30)

where cP (m) is non-zero and independent of Nc. The color suppression power is of obvious

interest, but is less useful than we would like because cancellation among terms in the

expansion of
〈
{c′}m

∣∣{c}m〉 can lead to P being larger than it is for individual terms in the

expansion.

We can improve on the definition by defining a color suppression index I according to(
1

Nc

)pE 〈
{c′}m

∣∣{c}m〉U(Nc)
=
cI(m)

N
I(m)
c

{
1 +O

(
1

Nc

)}
, (5.31)

where cI(m) is non-zero and independent of Nc. The change here is that we calculate the

color overlap function by using the color group U(Nc) instead of SU(Nc). To calculate〈
{c′}m

∣∣{c}m〉U(Nc)
, one uses the Fierz identity once for each gluon line, omitting the 1/Nc

term.

A simple example (with pE = 0) may be helpful. Suppose the hard process at the

start of the shower is q + q̄ → q + q̄ + g by means of a Z boson exchange. One possible

qq̄qq̄g configuration is
∣∣{c}〉 represented by taijδkl/

√
N2

cCF. Another possible configuration

is
〈
{c′}

∣∣ represented by δjit
a
lk/
√
N2

cCF. The overlap of these is

〈
{c′}m

∣∣{c}m〉 =
1

N2
cCF

taijδji t
a
lkδkl = 0 . (5.32)

Thus P (m) =∞. Using the U(Nc) approximation, with taijt
a
lk → δikδlj , the overlap is

〈
{c′}m

∣∣{c}m〉U(Nc)
=

1

N2
c − 1

. (5.33)
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Thus I(m) = 2.9

The color suppression index has two properties that make it quite useful. First, as the

number m of final state partons in the shower increases, we always have

P (m) ≥ I(m) . (5.34)

That is, if we use I(m) to estimate the amount of color suppression, we can never overes-

timate. Second, at each stage of the shower, the color suppression index either stays the

same or else it increases:

I(m+ 1) ≥ I(m) . (5.35)

Thus we can think of I as measuring color disorder, like entropy: it can never decrease as

the shower evolves. Both of eqs. (5.34) and (5.35) can be proved in a fairly straightforward

way. We omit the proofs.

There is a useful concept that helps us track the way that I(m) changes as we add

gluons. This concept is outlined in appendix A, but we can give some flavor of it here

in a few sentences. We assign a two valued parameter to each gluon according to how

its color 3 and 3̄ lines are connected in the SU(Nc) approximation: each gluon can be in

a “healthy” or “frail” configuration. If a new gluon is added in a healthy configuration,

then I(m+ 1) = I(m), while if the new gluon is in a frail configuration, then I(m+ 1) =

I(m) + 2. That is, the SU(Nc) color connections of the new gluon determine whether or

not I increases. Furthermore, when I(m + 1) = I(m), previous gluons that were healthy

remain healthy and previous gluons that were frail may remain frail or may become healthy.

When I(m+1) = I(m)+2, previous gluons that were frail remain frail and previous gluons

that were healthy may remain healthy or may become frail. Keeping track of the health

status of gluons is simple and enables one to easily track changes in the color suppression

index, as we will see in appendices B and C.

6 The LC+ approximation

With the generic structure of a (spin averaged) leading order shower set up, it is pretty

simple to define the LC+ approximation. In the definition (5.7) of HI(t), in the terms that

represent quantum interference between emitting a gluon from parton l and emitting the

same gluon from helper parton k we replace

t†k(fk → fk + g)
∣∣{c}m〉→ C(l,m+ 1)t†k(fk → fk + g)

∣∣{c}m〉 ,〈
{c′}m

∣∣tk(fk → fk + g)→
〈
{c′}m

∣∣tk(fk → fk + g)C†(l,m+ 1) .
(6.1)

Here C(l,m+1) acting on a state
∣∣{ĉ}m+1

〉
gives 1 if partons l and m+1 are color connected

in {ĉ}m+1 and 0 otherwise. Thus in the LC+ approximation we keep only the color states

9The trace of
∣∣{c}m〉〈{c′}m∣∣ in this example vanishes, but this does not mean that this color state

should be dropped in evolution with full color. With one more gluon emission, one can get a color state

with nonzero
〈
{c′}m

∣∣{c}m〉.
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in which partons l and m+ 1 after the splitting are color connected. We generalize this to

include the possibility that k = l by replacing

t†k(fk → f̂k + f̂m+1)
∣∣{c}m〉→ C(l,m+ 1)t†k(fk → f̂k + f̂m+1)

∣∣{c}m〉 ,〈
{c′}m

∣∣tk(fk → f̂k + f̂m+1)→
〈
{c′}m

∣∣tk(fk → f̂k + f̂m+1)C
†(l,m+ 1) ,

(6.2)

with a generalized definition of C(l,m+ 1). For k = l, whenever parton m+ 1 is a gluon,

partons m+ 1 and l after the splitting are always color connected, so we want C(l,m+ 1)

to return the color state unchanged. Also, for k = l whenever f̂l = g, partons m+ 1 and l

after the splitting are also color connected, so we want C(l,m+1) to return the color state

unchanged.10 In the case k = l with f̂l = q and f̂m+1 = q̄, or vice versa, the two daughter

partons may not be color connected. We simply define C(l,m+ 1) to give one in this case.

Thus we define

C(i, j)
∣∣{ĉ}m+1

〉
=


∣∣{ĉ}m+1

〉
partons i and j carry color {3, 3̄} or {3̄,3}∣∣{ĉ}m+1

〉
i and j color connected in {ĉ}m+1

0 otherwise

. (6.3)

The operator C(i, j) is a projection operator but it is not an orthogonal projection operator

because the basis states are not orthogonal. Thus C(i, j) 6= C(i, j)†.

Thus the LC+ approximation for HI is only slightly modified from the full HI in

eq. (5.7):(
{p̂, f̂ , ĉ′, ĉ}m+1

∣∣HLC+
I (t)

∣∣{p, f, c′, c}m)
=
∑
l,k

δ(t− T ({p̂, f̂}m+1)) (m+ 1)
(
{p̂, f̂}m+1

∣∣Pl∣∣{p, f}m)
× nc(a)nc(b) ηaηb

nc(â)nc(b̂) η̂aη̂b

fâ/A(η̂a, µ
2
F )fb̂/B(η̂b, µ

2
F )

fa/A(ηa, µ2F )fb/B(ηb, µ
2
F )

× 1

2

[
θ(k = l) θ(f̂m+1 6= g)wll({p̂, f̂}m+1)

+ θ(k = l) θ(f̂m+1 = g) [wll({p̂, f̂}m+1)− weikonal
ll ({p̂, f̂}m+1)]

+ θ(k 6= l) θ(f̂m+1 = g)A′lk({p̂}m+1)w
dipole
lk ({p̂, f̂}m+1)

]
×Mc({ĉ′, ĉ}m+1, {c′, c}m, l, k, {f̂}m+1) .

(6.4)

Here Mc is the color matrix defined by

Mc({ĉ′, ĉ}m+1, {c′, c}m, l, k, {f̂}m+1)

= [θ(k = l)− θ(k 6= l)]

×
{(
{ĉ′, ĉ}m+1

∣∣t†l (fl → f̂l + f̂m+1)⊗ tk(fk → f̂k + f̂m+1)C
†(l,m+ 1)

∣∣{c′, c}m)
+
(
{ĉ′, ĉ}m+1

∣∣C(l,m+ 1)t†k(fk → f̂k + f̂m+1)⊗ tl(fl → f̂l + f̂m+1)
∣∣{c′, c}m)}.

(6.5)

10This case can occur for an initial state splitting with fl = f̂m+1 = q with q being a quark or antiquark

flavor.
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The effect of the projection operator C†(l,m + 1) was illustrated in figure 7. With full

color, the interference graph shown gives four contributions
∣∣{ĉ}m+1

〉〈
{ĉ′}m+1

∣∣, but the

projection operator C†(l,m + 1) removes the second and fourth contributions, in which

gluon m+ 1 = 3 is not color connected to parton l = 1 in the bra state. Only the first and

third contributions remain. Similarly in figure 6 there are two contributions with full color

but both are eliminated in the LC+ approximation.

There are two terms in eq. (6.4) with k = l, one with f̂m+1 6= g and one with f̂m+1 = g.

The corresponding splitting functions have collinear singularities but not soft singularities.

In both these terms, the projection operator C(l,m + 1) acts as the unit operator, so no

approximation is made in these terms.

In the k 6= l term, f̂m+1 = g and the effective splitting function A′lkw
dipole
lk is singular

when the gluon is soft, collinear with parton l, or both soft and collinear.11 In the limit

that the gluon is collinear with parton l or both collinear and soft, the LC+ approximation

becomes exact, even though these terms contain the operator C(l,m+1). To see this, note

that A′lkw
dipole
lk is independent of p̂k in the limit p̂m+1 → λp̂l. Thus all of the terms with

different indices k have the same coefficient A′lkw
dipole
lk . Because of that, we can use the

color identity
∑

l tl = 0 to write∑
k 6=l

{
t†l (fl → fl + g)⊗ tk(fk → fk + g)C†(l,m+ 1)

+ C(l,m+ 1) t†k(fk → fk + g)⊗ tl(fl → fl + g)
}

= −
{
t†l (fl → fl + g)⊗ tl(fl → fk + g)C†(l,m+ 1)

+ C(l,m+ 1) t†l (fl → fl + g)⊗ tl(fl → fl + g)
}
.

(6.6)

However, after a gluon emission from line l, parton m + 1 is always color connected to

parton m+ 1 in the new color state. Thus∑
k 6=l

{
t†l (fl → fl + g)⊗ tk(fk → fk + g)C†(l,m+ 1)

+ C(l,m+ 1) t†k(fk → fk + g)⊗ tl(fl → fl + g)
}

= −2 t†l (fl → fl + g)⊗ tl(fl → fl + g) .

(6.7)

That is, the operator C has no effect in the collinear or soft×collinear limit. We conclude

that the LC+ approximation becomes exact in the collinear or soft×collinear limit. It is

only an approximation when an emitted gluon is soft but not collinear to the emitting

parton.

We can state this in a different way. Suppose that the integration over the momentum

of gluon m + 1 is limited not by the Sudakov factor but by imposing cuts θl,m+1 > θmin

11In a reference frame in which p̂l and p̂k are fixed, “soft” means |~̂pm+1| → 0 with θm+1,l fixed, while

“collinear” means θm+1,l → 0 with |~̂pm+1| fixed and “both soft and collinear” means |~̂pm+1| → 0 and

θm+1,l → 0 independently. In terms of dot products, “soft” means p̂m+1 · p̂l → 0 and p̂m+1 · p̂k → 0 with

with p̂m+1 · p̂l/p̂m+1 · p̂k fixed, while “collinear” means p̂m+1 · p̂l → 0 with p̂m+1 · p̂k fixed and “both soft

and collinear” means p̂m+1 · p̂l → 0 and p̂m+1 · p̂k → 0 with also p̂m+1 · p̂l/p̂m+1 · p̂k → 0.
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and |~̂pm+1| > zmin |~̂pl|/(1− zmin). Then the integration over p̂m+1 will produce logarithms

α log θmin log zmin + β log θmin + γ log zmin. The coefficients α, β, γ depend on the color

states {c}m+1, {c′}m+1 after the splitting. For fixed ({c}m+1, {c′}m+1), the double log

coefficient α will match between the full theory and the LC+ approximation. The single

log coefficient β will also match between the full theory and the LC+ approximation. The

single log coefficient γ will miss contributions corresponding to subleading color states when

calculated in the LC+ approximation.

For the virtual splitting operator, we use the the definition specified in eqs. (5.11)

and (5.12) to write VLC+(t) in terms of an operator hLC+({p, f}m, t) on the space of color

vectors, as in eq. (5.27). With full color, h({p, f}m, t) was given by eq. (5.28). Now with

the color operator C(l,m + 1), eq. (5.7) for HI is replaced by eqs. (6.4) and (6.5). Thus

we get the LC+ approximation for h({p, f}m, t),

hLC+({p, f}m, t) =
∑
l,k

1

m!

∫
d{p̂, f̂}m+1

× δ(t− T ({p̂, f̂}m+1))
(
{p̂, f̂}m+1

∣∣Pl∣∣{p, f}m)
× nc(a)nc(b) ηaηb

nc(â)nc(b̂) η̂aη̂b

fâ/A(η̂a, µ
2
F )fb̂/B(η̂b, µ

2
F )

fa/A(ηa, µ2F )fb/B(ηb, µ
2
F )

× 1

2

[
θ(k = l) θ(f̂m+1 6= g)wll({p̂, f̂}m+1)

+ θ(k = l) θ(f̂m+1 = g) [wll({p̂, f̂}m+1)− weikonal
ll ({p̂, f̂}m+1)]

− θ(k 6= l) θ(f̂m+1 = g)A′lk({p̂}m+1)w
dipole
lk ({p̂, f̂}m+1)

]
× tl(fl → f̂l + f̂m+1)C(l,m+ 1) t†k(fk → f̂k + f̂m+1) .

(6.8)

Now the operator hLC+ contains operators that act on the color space. However, the

color basis vectors are eigenfunctions of these operators. In the case k = l, for which

C(l,m+1) acts as the unit operator, the operator tl(fl → f̂l+ f̂m+1) t
†
l (fl → f̂l+ f̂m+1) has

eigenvalue TR, CF, or CA depending on the flavors of fl and f̂m+1 and f̂l. (The CA case is

illustrated in figure 13.) For the case k 6= l, the operator tl(fl → fl+g)C(l,m+1) t†k(fk →
fk + g) is a little more complicated. Because of the projection operator C(l,m + 1), this

operator gives zero unless the helper parton k is color connected to the emitting parton l

in the state
∣∣{c}m〉 on which hLC+ acts. When l and k are color connected, one gets an

eigenvalue CA/2 or CF depending on the flavor of parton l. (The CA/2 case is illustrated

for h† in figure 15.) Thus

hLC+({p, f}m, t)
∣∣{c}m〉 = λLC+({p, f, c}m, t)

∣∣{c}m〉 (6.9)
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where the eigenvalue λLC+ is

λLC+({p, f, c}m, t)

=
∑
l,k

1

m!

∫
d{p̂, f̂}m+1

× δ(t− T ({p̂, f̂}m+1))
(
{p̂, f̂}m+1

∣∣Pl∣∣{p, f}m)
× nc(a)nc(b) ηaηb

nc(â)nc(b̂) η̂aη̂b

fâ/A(η̂a, µ
2
F )fb̂/B(η̂b, µ

2
F )

fa/A(ηa, µ2F )fb/B(ηb, µ
2
F )

× 1

2

[
θ(k = l) θ(f̂m+1 6= g)wll({p̂, f̂}m+1)

+ θ(k = l) θ(f̂m+1 = g) [wll({p̂, f̂}m+1)− weikonal
ll ({p̂, f̂}m+1)]

+ θ(k 6= l) θ(f̂m+1 = g)A′lk({p̂}m+1)w
dipole
lk ({p̂, f̂}m+1)

]
× χ(k, l, {c}m)N(k, l, {f̂}m+1) .

(6.10)

The color eigenvalue specified in the last line is zero unless partons k and l are color

connected in {c}m or k = l:

χ(k, l, {c}m) =


1 k = l

1 k and l color connected in {c}m
0 otherwise

. (6.11)

When l and k are color connected, the eigenvalue depends on whether k = l and on the

flavors in the splitting:

N(k, l, {f̂}m+1) =



TR k = l, f̂l 6= g, f̂m+1 6= g

CF k = l, f̂l = g, f̂m+1 6= g

CF k = l, f̂l 6= g, f̂m+1 = g

CA k = l, f̂l = g, f̂m+1 = g

CF k 6= l, f̂l 6= g, f̂m+1 = g

CA/2 k 6= l, f̂l = g, f̂m+1 = g

. (6.12)

Since the color basis vectors are eigenvectors of hLC+, the Sudakov factors for the color

ordered amplitudes, eq. (5.17), are simply numerical factors:

T exp

[
−
∫ t2

t1

dτ hLC+({p, f}m, τ)

]∣∣{c}m〉
= exp

[
−
∫ t2

t1

dτ λLC+({p, f, c}m, τ)

] ∣∣{c}m〉 .

(6.13)

This is just the same as in the leading color approximation. In fact, with a suitable

adjustment of what numerical factors one uses in the leading color approximation, the

LC+ Sudakov factors are exactly the square root of the Sudakov factor for the leading

color approximation.
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7 Weights

Let us now look at a splitting step in the evolution equation (5.14) in some detail, using

the LC+ approximation. With a starting state
∣∣{p, f, c′, c}m) at time t0, we have (using

eq. (5.20) in the LC+ version of eq. (5.14))

ULC+(t′, t0)
∣∣{p, f, c′, c}m)
= N LC+(t′, t0)

∣∣{p, f, c′, c}m)
+

∫ t′

t0

dt
1

(m+ 1)!

∫
d{p̂, f̂}m+1

∑
l,k

∑
{ĉ,ĉ′}m+1

ULC+(t′, t)
∣∣{p̂, f̂ , ĉ′, ĉ}m+1

)
×
(
{p̂, f̂ , ĉ′, ĉ}m+1

∣∣HLC+
l,k (t)N LC+(t, t0)

∣∣{p, f, c′, c}m) .

(7.1)

Here we have explicitly displayed the sum over parton indices in HI :

HLC+
I (t) =

∑
l,k

HLC+
l,k (t) . (7.2)

The l and k dependent splitting operator is, from eq. (6.4),(
{p̂, f̂ , ĉ′, ĉ}m+1

∣∣HLC+
l,k (t)

∣∣{p, f, c′, c}m)
= δ(t− T ({p̂, f̂}m+1)) (m+ 1)

(
{p̂, f̂}m+1

∣∣Pl∣∣{p, f}m)
× nc(a)nc(b) ηaηb

nc(â)nc(b̂) η̂aη̂b

fâ/A(η̂a, µ
2
F )fb̂/B(η̂b, µ

2
F )

fa/A(ηa, µ2F )fb/B(ηb, µ
2
F )

× 1

2

[
θ(k = l) θ(f̂m+1 6= g)wll({p̂, f̂}m+1)

+ θ(k = l) θ(f̂m+1 = g) [wll({p̂, f̂}m+1)− weikonal
ll ({p̂, f̂}m+1)]

+ θ(k 6= l) θ(f̂m+1 = g)A′lk({p̂}m+1)w
dipole
lk ({p̂, f̂}m+1)

]
×Mc({ĉ′, ĉ}m+1, {c′, c}m, l, k, {f̂}m+1, {f}m) .

(7.3)

Here Mc is the color matrix defined in eq. (6.5).

Now consider the no-splitting operator N LC+(t, t0). The color basis states are eigen-

states of this operator,

N LC+(t, t0)
∣∣{p, f, c′, c}m)

= exp

[
−
∫ t

t0

dτ
(
λLC+({p, f, c}m, τ) + λLC+({p, f, c′}m, τ)

)]
×
∣∣{p, f, c′, c}m) .

(7.4)

Using eq. (6.10), the integrand in the exponent can be written as an integral over momenta,
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a sum over flavors, and a sum over parton labels l and k:

λLC+({p, f, c}m, τ) + λLC+({p, f, c′}m, τ)

=
1

m!

∫
d{p̂, f̂}m+1

∑
l,k

× δ(τ − T ({p̂, f̂}m+1))
(
{p̂, f̂}m+1

∣∣Pl∣∣{p, f}m)
× λ({p, f, c}m, l, k, {p̂, f̂}m+1) .

(7.5)

where

λ({p, f, c}m,l, k, {p̂, f̂}m+1)

=
nc(a)nc(b) ηaηb

nc(â)nc(b̂) η̂aη̂b

fâ/A(η̂a, µ
2
F )fb̂/B(η̂b, µ

2
F )

fa/A(ηa, µ2F )fb/B(ηb, µ
2
F )

× 1

2

[
θ(k = l)θ(f̂m+1 6= g)wll({p̂, f̂}m+1)

+ θ(k = l)θ(f̂m+1 = g) [wll({p̂, f̂}m+1)− weikonal
ll ({p̂, f̂}m+1)]

+ θ(f̂m+1 = g)θ(k 6= l)A′lk({p̂}m+1)w
dipole
lk ({p̂, f̂}m+1)

]
× [χ(k, l, {c}m) + χ(k, l, {c′}m)]N(k, l, {f̂}m+1) .

(7.6)

Here, χ(k, l, {c}m) was defined in eq. (6.11) and N(k, l, {f̂}m+1) was defined in eq. (6.12).

We see that the function λ({p, f, c}m, l, k, {p̂, f̂}m+1) that appears in the Sudakov

exponent is almost the same as the integrand in the matrix element of HLC+
l,k (t). In fact(

{p̂, f̂ , ĉ′, ĉ}m+1

∣∣HLC+
l,k (t)

∣∣{p, f, c′, c}m)
= δ(t− T ({p̂, f̂}m+1)) (m+ 1)

(
{p̂, f̂}m+1

∣∣Pl∣∣{p, f}m)
× λ({p, f, c}m, l, k, {p̂, f̂}m+1)C({ĉ′, ĉ}m+1, {c′, c}m, l, k, {f̂}m+1) ,

(7.7)

where

C({ĉ′, ĉ}m+1,{c′, c}m, l, k, {f̂}m+1)

=
Mc({ĉ′, ĉ}m+1, {c′, c}m, l, k, {f̂}m+1)

[χ(k, l, {c}m) + χ(k, l, {c′}m)]N(k, l, {f̂}m+1)
.

(7.8)

Note that Mc({ĉ′, ĉ}m+1, {c′, c}m, l, k, {f̂}m+1), eq. (6.5), in the numerator of C is nonzero

only if one or both of χ(k, l, {c}m) and χ(k, l, {c′}m) are nonzero, so that we are never

dividing by zero in a nonzero contribution to the sum over l, k.

When we insert eq. (7.7) into eq. (7.1), we see that one can generate a splitting in

standard Monte Carlo style by choosing the new momenta and flavors together with l and

k with a probability proportional to λ({p, f, c}m, l, k, {p̂, f̂}m+1). This leaves a sum over

the choices of colors,∑
{ĉ,ĉ′}m+1

∣∣{p̂, f̂ , ĉ′, ĉ}m+1

)
C({ĉ′, ĉ}m+1, {c′, c}m, l, k, {f̂}m+1) .
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For each choice of {ĉ′, ĉ}m+1, there is a color factor C and a statistical state vector∣∣{p̂, f̂ , ĉ′, ĉ}m+1

)
that is the input to the next splitting. In a computer program, one could

imagine implementing the sum by summing the results returned by a splitting function

that is called recursively. However, this is not really practical. Instead, one can perform

the color sum Monte Carlo Style. One chooses {ĉ′, ĉ}m+1 with a probability ρc, normalized

to ∑
{ĉ′,ĉ}m+1

ρc({ĉ′, ĉ}m+1, {c′, c}m, l, k, {f̂}m+1) = 1 . (7.9)

Then one assigns a weight factor to the splitting equal to

wc({ĉ′, ĉ}m+1, {c′, c}m, l, k, {f̂}m+1) =
C({ĉ′, ĉ}m+1, {c′, c}m, l, k, {f̂}m+1)

ρc({ĉ′, ĉ}m+1, {c′, c}m, l, k, {f̂}m+1)
. (7.10)

Averaged over many trials, this reproduces the desired sums.

The shower starts with a color weight factor of C0({c′, c}N0) from the calculated color

density matrix for producing an initial color configuration of N0 final state partons at the

start of the shower. At each splitting, we multiply by the weight factor wc from eq. (7.10).

The shower evolves with successive splittings until it reaches some cutoff hardness value.

At that point, let us say that we measure the expectation value of some color operator Oc.

Then this expectation value is

Tr
(
Oc

∣∣{c}N〉〈{c′}N ∣∣) =
〈
{c′}N

∣∣Oc

∣∣{c}N〉 . (7.11)

We simply multiply the weight by this factor. In particular, making no measurement of

color corresponds to multiplying by just the color overlap function
〈
{c′}N

∣∣{c}N〉. Thus if

the final color is not measured, the complete generated event comes with a weight

wtot =
〈
{c′}N

∣∣{c}N〉(N−1∏
m=I

C({ĉ′, ĉ}m+1, {c′, c}m, lm, km, {f̂}m+1)

ρc({ĉ′, ĉ}m+1, {c′, c}m, lm, km, {f̂}m+1)

)
C0({c′, c}N0) .

(7.12)

In eq. (7.12), the color overlap function
〈
{c′}N

∣∣{c}N〉 is of crucial importance. If

{c′}N = {c}N , this factor is 1 or very close to 1. If {c′}N 6= {c}N , this factor is proportional

to 1/N
[P (N)−pE]
c , where pE is the explicit power of 1/Nc in the weight as defined in section

5.11 and P (N) is at least as big as the color suppression index I(N) from eq. (5.31).

Recall that the color suppression index either stays the same or else increases at each

parton splitting.

One can use the behavior of the color overlap function to supply a hint about how

to choose the probabilities ρc. For numerical efficiency, one wants the dispersion of the

weights not to be large. Consequently, it is sensible to make ρc small for any choice of

color configuration {ĉ′, ĉ}m+1 that increases the color suppression index. For instance, for

the splitting shown in figure 7, the LC+ approximation retains the first and third terms

on the right hand side; one would pick the color configuration shown in the first term with

probability close to 1/2 and one would pick the color configurations shown in the third

term with probability proportional to 1/N2
c . We explore this idea further in appendix B

using information from appendix A about how the color suppression index grows.
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It is also possible to choose ρc = 0 for any color choice {ĉ′, ĉ}m+1 that makes I(m+ 1)

greater than some predetermined limit Imax on the color suppression index. This is an

approximation beyond the LC+ approximation. We simply throw away configurations

that have too many powers of 1/N2
c . We explore this idea further in appendix C

8 The end of the shower

At some point, the perturbative shower should end because the hardness scale encoded

in the shower time t is not hard enough for a perturbative treatment to be reliable. At

this point, one has a definite color density operator
∣∣{c}N〉〈{c′}N ∣∣ and one should multiply

the color weight factor by the expectation value
〈
{c′}N

∣∣Oc

∣∣{c}N〉 of whatever operator

corresponds to the measurement to be made on the final state, according to eq. (7.11).

In the simplest case, the operator in question is simply the unit operator and one

multiplies by
〈
{c′}N

∣∣{c}N〉. However, one may want to apply a hadronization model to

the final state. Commonly, the hadronization model starts from the assumption that color

strings join the outgoing partons. A string configuration is labeled by a color label {cf}N
of the same form as the labels for our color basis states. Then the string state should be

chosen with a probability proportional to the expectation value
〈
{c′}N

∣∣O({cf}N )
∣∣{c}N〉 of

the operator O({cf}N ) that measures whether the quantum system is in color string state

{cf}N .

What is this operator? The leading color guess is that it is
∣∣{cf}N〉〈{cf}N ∣∣. However,

this guess can be correct only in the leading color approximation because our color basis

states are not exactly orthogonal to one another (and also the closed string states are not

exactly normalized). Thus we need another set of basis states
∣∣{c}N ,⊥〉 that equal our

color basis states to leading order in 1/Nc but are exactly orthonormal,

〈
{c′}N ,⊥

∣∣{c}N ,⊥〉 =

{
1 {c′}N = {c}N
0 {c′}N 6= {c}N

. (8.1)

The new states should be related to our basis states by a matrix equation∣∣{c}N〉 =
∑
{ĉ}N

A({ĉ}N , {c}N )
∣∣{ĉ}N ,⊥〉 , (8.2)

where A is a unit matrix up to 1/N2
c corrections. Eq. (8.1) implies that∑

{ĉ}N

A†({c′}N , {ĉ}N ) A({ĉ}N , {c}N ) = G({ĉ′}N , {ĉ}N ) , (8.3)

where

G({ĉ′}N , {ĉ}N ) =
〈
{ĉ′}N

∣∣{ĉ}N〉 . (8.4)

There is a minimal solution to the equation A†A = G above. We let A be a real symmetric

matrix equal to

A =
√
G . (8.5)
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To find A exactly, one can diagonalize G and replace each eigenvalue λ by
√
λ. Alterna-

tively, the expansion

A = 1 +
1

2
(G− 1)− 1

8
(G− 1)2 + · · · (8.6)

allows one to write A as a power series in 1/N2
c .

We conclude that it is sensible to define

O({cf}N ) =
∣∣{cf}N ,⊥〉〈{cf}N ,⊥∣∣ . (8.7)

Then we choose the color string configuration {cf}N for hadronization with the color weight

factor
〈
{c′}N

∣∣{cf}N ,⊥〉〈{cf}N ,⊥∣∣{c}N〉. One needs to sum over the choices for color string

configuration {cf}N . As in previous steps in the shower development, one can perform the

sum Monte Carlo style, choosing configuration {cf}N with a probability ρ({cf}N ) and

multiplying by a weight factor

wc({cf}N , {c′, c}N ) =

〈
{c′}N

∣∣{cf}N ,⊥〉〈{cf}N ,⊥∣∣{c}N〉
ρ({cf}N )

. (8.8)

Note that the numerator of wc involves matrix elements of A. It is presumably sufficient

to calculate wc to leading order in 1/N2
c . One possible string configuration is always

{cf}N = {c}N , for which
〈
{cf}N ,⊥

∣∣{c}N〉 ≈ 1. Another is {cf}N = {c′}N . These are the

leading possibilities if
〈
{c′}N

∣∣{c}N〉 ∝ 1/Np
c with p = 0 or 2. For p = 4, there can be other

important configurations such that both
〈
{cf}N ,⊥

∣∣{c}N〉 ∝ 1/N2
c and

〈
{c′}N

∣∣{cf}N ,⊥〉 ∝
1/N2

c .

One does not necessarily need to follow the LC+ shower all the way to a (1 GeV)2

virtuality scale. One could use the LC+ shower for a few splitting steps, down to, say, a

(100 GeV)2 scale. Then one could assign a classical color string configuration {cf}N to the

partonic state as outlined above. After that, one could use a leading color shower to get

from the (100 GeV)2 virtuality scale to the (1 GeV)2 scale. This would be appropriate if

the measurement to be made on the final state is only minimally sensitive to what happens

at the softer scales.

9 Full color perturbatively

The shower evolution equation with full color has the form∣∣ρ(t)
)

= U(t, t0)
∣∣ρ(t0)

)
, (9.1)

where U(t, t0) obeys the evolution equation eq. (2.2),

d

dt
U(t, t0) = [HI(t)− V(t)]U(t, t0) . (9.2)

We have approximated U(t, t0) by ULC+(t, t0) where

d

dt
ULC+(t, t0) = [HLC+

I (t)− VLC+(t)]ULC+(t, t0) . (9.3)
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This differential equation can be solved iteratively in the form eq. (5.14)

ULC+(t, t0) = N LC+(t, t0) +

∫ t

t0

dτ ULC+(t, τ)HLC+
I (τ)N LC+(τ, t0) . (9.4)

Here N LC+(t2, t1) is the no-splitting operator,

N LC+(t2, t1) = exp

[
−
∫ t2

t1

dτ VLC+(τ)

]
. (9.5)

It is well to recall here the essential point: the operator VLC+(τ) is diagonal in the standard

color basis that we use, so that it is practical to calculate its exponential.

Now, what if we want shower evolution with full color? Then we need

d

dt
U(t, t0) = [HLC+

I (t)− VLC+(t) + ∆HI(t)−∆V(t)]U(t, t0) , (9.6)

where

∆HI(t) = HI(t)−HLC+
I (t) ,

∆V(t) = V(t)− VLC+(t) .
(9.7)

This evolution equation is equivalent to

U(t, t0) = ULC+(t, t0) +

∫ t

t0

dτ U(t, τ) [∆HI(τ)−∆V(τ)]ULC+(τ, t0) , (9.8)

which can be solved iteratively:

U(tf , t0) = ULC+(tf , t0)

+

∫ tf

t0

dτ ULC+(t, τ1)
[
∆HI(τ1)−∆V(τ1)

]
ULC+(τ1, t0)

+

∫ tf

t0

dτ2

∫ τ2

t0

dτ1 ULC+(tf , τ2)
[
∆HI(τ2)−∆V(τ2)

]
ULC+(τ2, τ1)

×
[
∆HI(τ1)−∆V(τ1)

]
ULC+(τ1, t0)

+ · · · .

(9.9)

One can have any (small) maximum number of insertions of
[
∆HI(τ) − ∆V(τ)

]
. For

instance, to start with one might test whether one such insertion makes a significant dif-

ference. To make one insertion of
[
∆HI(τ1)−∆V(τ1)

]
, one would generate τ1 at random.

Then one would run an LC+ shower from the starting scale t0 up to scale τ1. After that,

application of ∆HI(τ1) produces a weight and a new shower state, which is the starting

point for an LC+ shower from τ1 to the final shower time tf . Similarly, application of

∆V(τ1) produces a weight and a new shower state, which is the starting point for a second

LC+ shower from τ1 to tf . The resulting values for the measurement function from the

two second stage showers would then be summed.

It is interesting to note the counting of logarithms in eq. (9.9). Suppose that the

parton shower is used to calculate an observable O in which there is a large logarithm L, so

– 35 –



that 〈O〉 has the form
∑

n c(n, 2n)αns L
2n +

∑
n c(n, 2n− 1)αns L

2n−1 + · · · . Suppose further

that a shower with full color, generated by U(tf , t0), correctly calculates all coefficients

c(n, 2n) and c(n, 2n−1). Then the first term in eq. (9.9) correctly generates the coefficients

c(n, 2n) since the LC+ approximation is exact with respect to color for the soft×collinear

singularities. In the second term in eq. (9.9), the one insertion of
[
∆HI(τ2) − ∆V(τ2)

]
generates a factor αsL by correcting the color content of a wide angle soft splitting. This

factor multiplies factors αn−1s L2n−2. Thus the second term makes contributions to the

coefficients c(n, 2n− 1). The third and higher terms in eq. (9.9) contribute to coefficients

c(n, j) with j ≤ 2n − 2 only. Thus to get the coefficients c(n, 2n − 1), one needs only the

first two terms in eq. (9.9).

In general, by using one or two terms beyond the LC+ approximation in eq. (9.9), one

can see whether the splitting operators beyond the LC+ approximation have an impor-

tant influence on whatever observable is being investigated using the parton shower. One

may expect that for many observables, the operators ∆HI(t) or ∆V(t) are not important.

Including some factors of [∆HI(τ)−∆V(τ)] can test this hypothesis.

10 Soft gluon exchange phase

Up until now, we have presented the evolution equations for a parton shower in which the

virtual splitting operator V is determined by the real splitting operator HI together with

an assumption about the structure of V.

However, the structure assigned to V(t) leaves out an important physical effect: the

wave function of two partons emerging from a hard interaction can accumulate an SU(3)

phase factor U ≈ 1 + iφ(t)dt by exchanging a soft gluon.12 Here φ is an operator on the

quantum color state. In an inclusive cross section, this phase cancels between the virtual

graphs for the bra state and for the ket state. That is, the phase cancels in a completely

inclusive measurement because

Tr
[
U
∣∣{c}m〉〈{c′}m∣∣U †] =

〈
{c′}m

∣∣U †U ∣∣{c}m〉 =
〈
{c′}m

∣∣1∣∣{c}m〉 . (10.1)

However, the color matrix φ(t) changes the color state, which influences the further evolu-

tion of the shower, so that the effects of the color phase do not cancel from all observables

measured at the end of the shower. These effects can be important [12–16].

Recall the structure of eqs. (5.11) and (5.12) for V(t), which we can summarize in a

shorthand notation as

V(t)→ [h({p, f}m, t) + iφ({p, f}m, t)]⊗ 1 + 1⊗ [h†({p, f}m, t)− iφ({p, f}m, t)] . (10.2)

The probability conservation equation determines h through13(
1
∣∣HI(t)∣∣{p, f, c′, c}m) =

〈
{c′}m

∣∣h({p, f}m, t) + h†({p, f}m, t)
∣∣{c}m〉 . (10.3)

12The phase is sometimes called the Coulomb gluon phase by analogy with the Coulomb phase in non-

relativistic quantum scattering. However, in a relativistic calculation in Coulomb gauge, only part of

the phase comes from the Coulomb force between colored partons; the rest comes from the exchange of

physically polarized gluons.
13Recall that h = h† with full color but that in the LC+ approximation we defined hLC+ with [hLC+]† 6=

hLC+.
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This gave us h from HI(t), as in section 5.10. That is, we could find h without looking

at any details of virtual graphs by simply knowing that the singularities of real emission

graphs have to cancel with corresponding singularities of virtual exchange graphs.

Previously, we made the assumption that φ = 0. However, when a soft gluon is

exchanged between partons l and k, the graph has a part proportional to i times a hermitian

matrix φ in the color space. This color phase is not zero. A simple calculation using the

eikonal approximation, similar to other calculations in the literature (for example, ref. [12]),

gives

φ({p, f}m, t) = − 2π
∑
l,k

θ(k 6= l)
θkl
vkl

αs(µ
kl
R (t))

4π
Tk · Tl . (10.4)

In order to make the connection to parton showers clear, we present our calculation of this

result in appendix D. In eq. (10.4), we sum over partons l and over partons k with k 6= l.

Thus each pair of partons appears twice in the sum. Not all combinations contribute:

θkl =


1 k and l are final state partons

1 k and l are initial state partons

0 otherwise

. (10.5)

The phase depends on the relative velocities of partons k and l:

vkl =

√
1− m(fk)2m(fl)2

(pk · pl)2
. (10.6)

Note that if either parton is massless, vkl = 1. There is a factor αs evaluated at a scale

µR that depends on the shower time and potentially depends on the momenta of partons

k and l, depending the physical meaning of the shower time used in the parton shower

(see appendix D). Finally, there is a color operator Tk ·Tl. The operator Tk inserts a color

matrix T b on line k: if Ψ is the vector representing the color state {c}m before the virtual

exchange as in eq. (2.4) or eq. (2.5), then the effect of the Tk is to map

Ψa1···ak···an → T bak,a
′
k
Ψa1···a′k···an . (10.7)

Here b is the color index of the exchanged gluon. Similarly, Tl inserts a color matrix T b

on line l. Finally, we sum over the color index b, as indicated by the dot in Tk · Tl. The

operator Tk · Tl maps
∣∣{c}m〉 into a linear combination of color basis states

∣∣{ĉ}m〉.
Let us denote the part of V(t) that comes from φ(t) by Vφ(t). Imagine calculating the

expectation value of some observable O by using a parton shower in which we calculate

perturbatively in powers of Vφ(t). We note immediately that contributions proportional

to an odd number of factors of Vφ(t) do not contribute to 〈O〉 because 〈O〉 is real and

these contributions have an odd number of powers of i. However with an even number of

powers of Vφ(t) we have a factor ±(iπ)2n = ±(−1)nπ2n and have a generally nonvanishing

contribution. How big these contributions are depends on how sensitive the observable is

to the color flow of the event. This is a question that deserves further study that is beyond

– 37 –



the scope of the present paper. However, one can note immediately that the development

of a parton shower depends crucially on the color structure of the shower state because

this color structure determines the preferred emission direction for relatively soft gluons.

Thus a sudden change in color structure caused by inserting two occurrences of Vφ(t) at

some early shower time t can have a substantial influence on the flow of momentum at the

end of the shower. For instance, a gap in the rapidity of emitted partons could be created

or could be filled in.

Can we say more about the color structure of the phase operator φ? We find that the

color operator Tk · Tl applied to
∣∣{c}m〉 gives

Tk · Tl
∣∣{c}m〉 =

CA

2

{
λ(l, k, {c}m)χ(k, l, {c}m)

∣∣{c}m〉
+

1

N2
c

ζ(l, k, {c}m)
∣∣{c}m〉+

1

Nc
TR
kl

∣∣{c}m〉} .

(10.8)

The first term does not change the color state and does not change the color suppression

index. In the first term, χ(k, l, {c}m) is one if l and k are color connected, zero otherwise,

as in eq. (6.11). The eigenvalue λ is

λ(l, k, {c}m) =

−2
k, l carry colors {8,8} connected to a two

parton closed string

−1 otherwise
. (10.9)

The second term is a color suppressed contribution, with a factor 1/N2
c and a factor

ζ(l, k, {c}m) =


1 k, l carry colors {3, 3̄} or {3̄,3}
−1 k, l carry colors {3,3} or {3̄, 3̄}
0 otherwise

. (10.10)

The corresponding contribution to the gluon exchange phase cancels exactly between the

phase φ({p, f}m, t)
∣∣{c}m〉 of the amplitude and the phase −

〈
{c′}m

∣∣φ({p, f}m, t) of the

conjugate amplitude. The remaining term, TR
kl , changes the state

∣∣{c}m〉 to a linear com-

bination of other color basis states.14

The contribution to Vφ from the first term in Tk · Tl in eq. (10.8) can be included in

the LC+ approximation VLC+ for V. Then the remaining part of Vφ becomes part of ∆V
and can be treated perturbatively as in eq. (9.8).

The color phase operator φ depends on the parton masses. There are two places

where the mass dependence might be important for the analysis of TeV scale processes at

the LHC. First, in the later stages of showering, one can produce gluons with transverse

momenta not too far above the b-quark mass. Sometimes such a gluon can split to b + b̄.

Then the b and b̄ are non-relativistic, so the mass dependence matters. Second, the hard

14We count the 1/Nc factor that multiplies TR
kl as increasing the color suppression power pE by 1 in

eqs. (5.30) and (5.31). With this definition, the term (1/Nc)T
R
kl either increases the color suppression

index, eq. (5.31), of the color state {c, c′}m or leaves it unchanged.
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process under investigation can produce top quarks or perhaps squarks, gluinos, and other

very massive particles. In these cases, the particle masses matter.

Even though particle masses can matter, it is of interest to understand what happens

when all parton masses can be neglected, so that vlk → 1. There can still be dependence

on the parton labels k, l if the relation between the shower time and the renormalization

scale in αs depends on the parton kinematics. Let us suppose that we neglect any such

dependence. Then

φ({p, f}m, t) = − 2π
αs

4π

∑
l,k

θ(k 6= l) θkl Tk · Tl . (10.11)

Since the whole shower is invariant under color rotations, we have used color basis states

that are overall color singlets. Applied to color singlet states, we have∑
k

Tk · Tl = 0 (10.12)

for any l. From this, we derive

φ({p, f}m, t) = φ0({p, f}m, t) + φab({p, f}m, t) . (10.13)

where

φ0({p, f}m, t) = 2π
αs

4π

[
m∑
i=1

Ti · Ti − Ta · Ta − Tb · Tb

]
,

φab({p, f}m, t) = − 2π
αs

4π
4Ta · Tb .

(10.14)

In the first term in φ0, we sum over final state partons while in the next two terms we sum

over the initial state partons. In either case, we have a color operator Ti · Ti, which is just

the Casimir operator, with eigenvalue CA or CF depending on whether parton i is a quark

or a gluon. Thus

φ0({p, f}m, t)
∣∣{c}m〉 = 2π

αs

4π

[
CA (NF

g −N I
g) + CF (NF

q −N I
q)
]∣∣{c}m〉 , (10.15)

where NF
g is the number of gluons in the final state of {p, f}m while N I

g is the number

of gluons in the initial state and NF
q is the number of quarks and antiquarks in the final

state while N I
q is the number of quarks and antiquarks in the initial state. When we apply

−φ0 to the bra state
〈
{c′}m

∣∣, we get exactly the opposite phase. Thus the term φ0 in

the color phase contributes nothing to the development of the shower and can be simply

dropped. This leaves the single contribution φab, representing an effective double strength

color exchange between the initial state partons. Notice that with the approximation used

here there is no color phase for e+e− annihilation or for deeply inelastic scattering.

Using eq. (10.8) for the color operator Ta ·Tb, we obtain a leading color term that leaves

the color state unchanged plus a term that changes the color state. The leading color term

provides a phase that occurs if partons a and b are color connected in the state {c}m. There

is an exactly opposite phase that occurs if partons a and b are color connected in the state

– 39 –



{c′}m. Thus there is no net phase if partons a and b are color connected both in state {c}m
and in state {c′}m and there is no net phase if partons a and b are not color connected

in state {c}m or in state {c′}m. If partons a and b are color connected in one of {c}m or

{c′}m but not the other, then there is a net phase that appears in every evolution interval

until the color connection situation changes. These phase factors will tend to reduce the

contribution of this sort of state to whatever observable is to be measured.

There are also contributions to Ta ·Tb that change the color configuration. These terms

have the potential to change the energy flow in the final state by changing the color flow.

11 Conclusions

In general, a parton shower Monte Carlo event generator should generate contributions to

the density operator in color space in which the color in the ket vector
∣∣{c}m〉 and the

color in the bra vector
〈
{c′}m

∣∣ are different. Standard parton shower generators based on

evolution from hard splittings to soft splittings work in the leading color (LC) approxima-

tion, which is the leading order in an expansion in powers of 1/N2
c . In the leading color

approximation, only states with {c′}m = {c}m occur.

In this paper, we have introduced the LC+ approximation, a generalization of the

leading color approximation. Going beyond the leading color approximation inevitably

involves sums over color choices. These sums can performed with Monte Carlo summation:

selecting a choice at random according to a prescribed probability function. At the end of

the shower each event comes with a weight.

The LC+ approximation has several nice features:

• For each splitting, the leading soft×collinear singularity and the leading collinear

singularity are treated exactly with respect to color. There is an approximation with

respect to color, but it occurs only in wide angle soft splittings.

• Evolution can start with any state
∣∣{c′, c}m). Thus if one starts with a hard scattering

process, one can fully use the color subamplitudes that multiply color states
∣∣{c}m〉

for the hard scattering, including in the calculation interference between ket states∣∣{c}m〉 and bra states
〈
{c′}m

∣∣ with different color configurations.

• The Sudakov factors are numbers. That is to say, the standard color basis states∣∣{c′, c}m) are eigenstates of the Sudakov operator. One does not have to exponentiate

non-diagonal matrices in the color space.

• In fact, not only are the Sudakov factors numbers, but also there is a separate Sudakov

factor for the ket state
∣∣{c}m〉 and for the bra state

〈
{c′}m

∣∣. This feature may prove

useful for matrix element matching when the color structure of the amplitudes is

treated exactly.

• With a simple extension of the formalism, one can include in the LC+ approximation

the phase induced by exchange of soft gluons.
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• The LC+ approximation is still approximate: remainder terms in the generators of

shower evolution are left over. However, the remainder terms can be included in a

perturbative calculation up to some order.

• The LC+ approximation can provide an efficient tool to sum large logarithms with

full color at leading and next-to-leading log level for a certain class of observables if

one uses the first perturbative correction as described in section 9.

The inclusion of weights in the shower generation has the potential to produce numeri-

cal problems. If the dispersion in the weights is large, then the number of events needed to

calculate the expectation value of some observable with reasonable accuracy will be large.

The total weight for an event is the product an initial weight, a final weight, and weights

for individual splittings. By multiplying a large number of individual weights, one has the

potential to produce large weights. For instance, (1+1/N2
c )N can be large if N is large. For

this reason, it seems likely that there is a practical maximum to the number of splittings

that can be generated using the LC+ approximation.

Fortunately, it is possible to turn the LC+ approximation off before it goes too far.

In fact, we have found two ways to do that. First, one can simply run the LC+ algorithm

for some number Nmax of splittings and then return to the LC approximation. For that,

one must replace mixed states
∣∣{c′, c}m) by diagonal states

∣∣{c̃, c̃}m). We have presented

a plausible model for doing that. Second, one can continue using the LC+ approximation,

but not allow the generation of states with more than a certain amount of color suppression

as measured by what we have called the color suppression index.

We are thus encouraged that the LC+ approximation can prove useful. The authors

do not have at immediate hand a dipole based Monte Carlo event generator suitable for

implementing the approximation.15 However, the LC+ approximation is quite general and

could, we think, be implemented in an existing generator.

Finally, one can ask if one really needs to go beyond the LC approximation. The

answer is that we do not know if one needs to go beyond the LC approximation. The LC

approximation is the first term in an expansion in powers of 1/N2
c . We do not know if

the contributions of order 1/N2
c or beyond are important. One could imagine that these

contributions are not important for some observables but are important for others. If

that is the case, we do not know which observables are sensitive to 1/N2
c effects.16 An

implementation of the LC+ approximation would give us the means to investigate these

questions.
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A How the color suppression index grows

In this appendix, we investigate how the color suppression index I(m) grows.

Imagine calculating
〈
{c′}m

∣∣{c}m〉U(Nc)
. Look at any one of the gluons in the state,

say gluon l. Its color factor was
∑

a t
a
i′it

a
j′j . With the U(Nc) approximation, this becomes

(1/2) δi′j δj′i. Counting the rest of the graph, the indices can be connected in two possible

ways ∑
δi′j δj′i × δi′j δj′i (A.1)

or ∑
δi′j δj′i × δi′i δj′j . (A.2)

In the first case, let us call gluon l a healthy gluon. In the second case, let us call gluon l

a frail gluon.17 With a healthy gluon, we get a factor N2
c for the sum in eq. (A.1). With a

frail gluon, we get a factor N1
c for the sum in eq. (A.2).

Let us look at this in more detail.

Consider eq. (A.1) for the healthy gluon. If the healthy gluon were not there, we would

have a factor
∑
δi′i δii′ = Nc. Now insert the healthy gluon and divide by CF ∝ Nc to

normalize the states with one more gluon according to eqs. (2.4) and (2.5). The new overlap

then has a factor N2
c /Nc = Nc. That is, the color suppression index has not changed.

Now consider eq. (A.2) for the frail gluon. If the frail gluon were not there, we would

have a factor
∑
δii δjj = N2

c . Now insert the frail gluon and divide by CF ∝ Nc to normalize

the states with one more gluon. The new overlap then has a factor Nc/Nc = 1. That is,

the color suppression index has increased by 2.

We can now look at what happens when a frail gluon splits and what happens when a

healthy gluon splits.

Suppose first that gluon l is a frail gluon and splits, creating another gluon m + 1.

Within the LC+ approximation, there are two configurations for the two gluons. The first is

the parallel configuration,
∑

a,b[t
atb]i′i [tbta]j′j . With this configuration, an easy calculation

shows that both gluons in the new state are healthy gluons. Furthermore, I(m+1) = I(m).

The two gluons can also be in the crossed configuration,
∑

a,b[t
atb]i′i [tatb]j′j . With this

configuration, an easy calculation shows that both gluons in the new state are also healthy

gluons and again I(m + 1) = I(m). Thus splitting turns frail gluons into healthy gluons

and leaves the color suppression index unchanged.

Suppose next that gluon l is a healthy gluon and splits. Within the LC+ approxi-

mation, there are again two configurations for the two gluons. The first is the parallel

configuration,
∑

a,b[t
atb]i′i [tbta]j′j . With this configuration, an easy calculation shows that

both gluons in the new state are healthy gluons and the color suppression index is un-

changed: I(m + 1) = I(m). The two gluons can also be in the crossed configuration,

17We call the gluon frail because if we keep the full gluon color matrices we get
∑
tai′it

a
j′j × δi′i δj′j = 0.
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∑
a,b[t

atb]i′i [tatb]j′j . With this configuration, we find that both gluons in the new state are

now frail gluons and the color suppression index of the state increases: I(m+1) = I(m)+2.

When gluon l splits, creating another gluon m+ 1, there will normally be other gluons

already present and the splitting of gluon l can change the health status of some of these

other gluons. Let us examine this in a general way, not just for insertions of the new gluon

m + 1 in the ways allowed by the LC+ approximation. Using the U(Nc) treatment of all

gluons as carrying the 3 × 3̄ representation of U(Nc), a color graph consists simply of a

set of quark loops. As detailed in eqs. (A.1) and (A.2), when a new gluon m+ 1 is added,

the color suppression index grows by 2 when the new gluon joins two of the previous quark

loops, so that the new gluon is a frail gluon. The color suppression index remains the same

when both ends of the new gluon line connect to the same quark loop, so that the new

gluon is a healthy gluon.

Consider, then, another gluon with label s. Suppose that gluon s is healthy, so that

its 3 and 3̄ lines form part of two separate loops. When a new gluon m + 1 joins these

two loops, I(m+ 1) = I(m) + 2 and gluon s becomes frail. In all other instances, gluon s

remains healthy. Next, suppose that gluon s is frail, so that its 3 and 3̄ lines form part of

just one loop. When a new gluon m+ 1 connects this loop to itself, two loops are created

from one, so I(m+ 1) = I(m). It is possible that the 3 line of gluon s is part of one of the

new loops and the 3̄ line is part of the other. Then gluon s is now healthy. In other ways of

connecting gluon m+1, gluon s remains frail. We conclude that splittings that increase the

color suppression index may change healthy gluons to frail gluons but never change frail

gluons to healthy gluons, while splittings that leave the color suppression index unchanged

may change frail gluons to healthy gluons, but never healthy gluons to frail gluons.

We will use these observations in appendices B and C.

B Choice of probabilities

As outlined in section 7, a practical shower evolution computer algorithm implementing

the LC+ approximation can use the same method as with a leading color shower to chose

the index l of the parton that splits and the index k of the helper parton as well as the

momenta and flavors of the daughter partons in the splitting. It remains to chose the color

configuration {ĉ′, ĉ}m+1 of the daughter partons. Here, standard methods do not suffice

because the functions that play the role of quantum probabilities in the leading color

case are now not always positive. One can, however, still use the Monte Carlo method

for implementing the sums over colors, choosing the new color configurations at random.

The program should chose color configurations {ĉ′, ĉ}m+1 at each splitting according to a

probability function ρc({ĉ′, ĉ}m+1, {c′, c}m, l, k, {f̂}m+1). This function is a probability, so

it must be non-negative and normalized to∑
{ĉ′,ĉ}m+1

ρc({ĉ′, ĉ}m+1, {c′, c}m, l, k, {f̂}m+1) = 1 . (B.1)

Then, following eq. (7.10), at each splitting we multiply the accumulated weight for the

shower history by a weight factor wc for the splitting given by wc = C/ρc, where C is the

color factor given in eq. (7.8).
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There is an initial weight factor C0({c′, c}N0) from the calculated color density operator

for producing an initial color configuration for N0 final state partons at the start of the

shower.

At the end of the shower with N final state partons, there is an final weight factor

corresponding to the observable to be measured. If the observable is not sensitive to color,

then the part of this final weight factor that is associated with color is the color overlap

function
〈
{c′}N

∣∣{c}N〉.
Thus the complete generated event comes with a weight as given in eq. (7.12),

wtot =
〈
{c′}N

∣∣{c}N〉(N−1∏
m=I

C({ĉ′, ĉ}m+1, {c′, c}m, lm, km, {f̂}m+1)

ρc({ĉ′, ĉ}m+1, {c′, c}m, lm, km, {f̂}m+1)

)
C0({c′, c}N0) ,

where the color factor C is given in eq. (7.8). The expectation value of the observable

calculated after many shower events is independent of the probability function ρc used

in the calculation. However, the dispersion of results from the many shower events does

depend on the choice of ρc. In order to have a low dispersion of values and thus an efficient

calculation, one wants the net weights wtot not to vary too much. In particular, the weights

wtot should never be too large.

In order to keep wtot from being large, it seems that the factors ρc in the denominator

of eq. (7.12) should be large, but there is a constraint from the normalization condition

eq. (B.1): the probability budget should not be spent on configurations where it is not

really needed. For that reason, one would set ρc = 0 for color configurations {ĉ′, ĉ}m+1 for

which C = 0.

One can also make ρc small for color configurations that will, in the end, make〈
{c′}N

∣∣{c}N〉 small. Now,
〈
{c′}N

∣∣{c}N〉 ∝ (1/Nc)
P (m)−pE , where pE is the power in the

weight defined in section 5.11 and P (m) is the color suppression power defined by this

relation. Recall that P (m) ≥ I(m), where I(m) is the color suppression index defined in

eq. (5.31). The color suppression index either stays the same or grows at each splitting

step, so it is sensible to make ρc small for any choice of color configuration {ĉ′, ĉ}m+1 that

makes I grow.

We consider a g → g + g splitting for the case that k 6= l and that parton k is also a

gluon. Look at Mc, the numerator of C({ĉ′, ĉ}m+1, {c′, c}m, lm, km, {f̂}m+1), as defined in

eq. (6.5):

Mc({ĉ′, ĉ}m+1, {c′, c}m, l, k, {f̂}m+1)

= −
(
{ĉ′, ĉ}m+1

∣∣t†l (g → g + g)⊗ tk(g → g + g)C†(l,m+ 1)
∣∣{c′, c}m)

−
(
{ĉ′, ĉ}m+1

∣∣C(l,m+ 1)t†k(g → g + g)⊗ tl(g → g + g)
∣∣{c′, c}m) .

(B.2)

Recall that C(l,m+1) selects color states in which partons l and m+1 are color connected.

The operators t†l and t†k here insert the new gluon into the color states according to

t†l (g → g + g) =
√
CF (a†+(l)− a†−(l)) . (B.3)
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Here a†+(l) inserts gluon m+ 1 just to the right of gluon l on its color string in
∣∣{c}m〉 and

a†−(l) inserts gluon m + 1 just to the left.18 This notation is explained in more detail in

sections 7.2 and 7.3 of ref. [4]. The factor
√
CF comes from the normalization of the color

states, eqs. (2.4) and (2.5). Thus

Mc({ĉ′, ĉ}m+1, {c′, c}m, l, k, {f̂}m+1)

= −CF

(
{ĉ′, ĉ}m+1

∣∣(a†+(l)− a†−(l))⊗ (a+(k)− a−(k))C†(l,m+ 1)
∣∣{c′, c}m)

− CF

(
{ĉ′, ĉ}m+1

∣∣C(l,m+ 1) (a†+(k)− a†−(k))⊗ (a+(l)− a−(l))
∣∣{c′, c}m) .

(B.4)

It will be useful to define

χ+(k, l, {c}m) =

{
1 if k lies just to the right of l on a string in {c}m
0 otherwise

,

χ−(k, l, {c}m) =

{
1 if k lies just to the left of l on a string in {c}m
0 otherwise

.

(B.5)

Then 〈
{c′}m

∣∣a±(k)C†(l,m+ 1) =
〈
{c′}m

∣∣a∓(l)χ∓(k, l, {c′}m) ,

C(l,m+ 1) a†±(k)
∣∣{c}m〉 = χ∓(k, l, {c}m) a†∓(l)

∣∣{c}m〉 .
(B.6)

Using this notation, we have

Mc({ĉ′, ĉ}m+1, {c′, c}m, l, k, {f̂}m+1)

=
(
{ĉ′, ĉ}m+1

∣∣a†+(l)⊗ a+(l)
∣∣{c′, c}m)CF

[
χ+(k, l, {c}m) + χ+(k, l, {c′}m)

]
+
(
{ĉ′, ĉ}m+1

∣∣a†−(l)⊗ a−(l)
∣∣{c′, c}m)CF

[
χ−(k, l, {c}m) + χ−(k, l, {c′}m)

]
−
(
{ĉ′, ĉ}m+1

∣∣a†+(l)⊗ a−(l)
∣∣{c′, c}m)CF

[
χ+(k, l, {c}m) + χ−(k, l, {c′}m)

]
−
(
{ĉ′, ĉ}m+1

∣∣a†−(l)⊗ a+(l)
∣∣{c′, c}m)CF

[
χ−(k, l, {c}m) + χ+(k, l, {c′}m)

]
.

(B.7)

What does eq. (B.7) tell us? There are functions χ±(k, l, {c}m) and χ±(k, l, {c}m) that

describe the color structure of the initial state. One of the functions χ±(k, l, {c}m) equals 1

if parton k is connected to parton l in the state
∣∣{c}m〉. One of the functions χ±(k, l, {c′}m)

equals 1 if parton k is connected to parton l in the state
〈
{c′}m

∣∣. Potentially, parton k

is color connected to parton l in both the bra and the ket state. If parton k is not color

connected to parton l in either the bra and the ket state, then Mc = 0. Then there is a

color factor CF. Finally, there is a factor that describes the color structure of the state

after the splitting. For instance,
(
{ĉ′, ĉ}m+1

∣∣a†+(l) ⊗ a+(l)
∣∣{c′, c}m) is 1 if gluon m + 1 is

inserted to the right of gluon l in the ket state and in the bra state and this factor is zero

otherwise. There are four possible ways to insert the new gluon, corresponding to the four

18Here “left” and “right” refer to the listing of gluon attachments in eqs. (2.4) and (2.5). The adjoint

operators a±(l) act analogously on the states
〈
{c′}m

∣∣. In drawing a picture to represent the bra color state〈
{c′}m

∣∣, one normally reverses the direction of the arrow on the color 3 line. However, this does not change

the definition of “left” and “right.”

– 45 –



terms in eq. (B.7). The first two terms correspond to parallel configurations while the last

two terms correspond to crossed configurations. The fact that the crossed configurations

come with minus signs tells us that we cannot use the coefficients in eq. (B.7) as Monte

Carlo probabilities for the respective insertions.

We recommend defining the probabilities ρc according to the status of gluon l in the

color configuration {c′, c}m. If gluon l is a healthy gluon, then the color suppression index

remains unchanged if we chose one of the parallel configurations for the insertion of the

new gluon, but if we chose one of the crossed configurations, then the color suppression

index increases by 2. Thus we can chose parallel configurations with a probability close to

1 times an overall normalization factor and we can choose crossed configurations with a

probability proportional to 1/N2
c times the overall normalization factor. We define

ρc({ĉ′, ĉ}m+1, {c′, c}m, l, k, {f̂}m+1)

=
(
{ĉ′, ĉ}m+1

∣∣a†+(l)⊗ a+(l)
∣∣{c′, c}m) 2CF

CAλρ

[
χ+(k, l, {c}m) + χ+(k, l, {c′}m)

]
+
(
{ĉ′, ĉ}m+1

∣∣a†−(l)⊗ a−(l)
∣∣{c′, c}m) 2CF

CAλρ

[
χ−(k, l, {c}m) + χ−(k, l, {c′}m)

]
+
(
{ĉ′, ĉ}m+1

∣∣a†+(l)⊗ a−(l)
∣∣{c′, c}m) 1

λρN2
c

[
χ+(k, l, {c}m) + χ−(k, l, {c′}m)

]
+
(
{ĉ′, ĉ}m+1

∣∣a†−(l)⊗ a+(l)
∣∣{c′, c}m) 1

λρN2
c

[
χ−(k, l, {c}m) + χ+(k, l, {c′}m)

]
,

(B.8)

where the normalizing factor λρ is

λρ =
[
χ(k, l, {c}m) + χ(k, l, {c′}m)

]
. (B.9)

Here χ(k, l, {c}m), defined in eq. (6.11), is

χ(k, l, {c}m) = χ+(k, l, {c}m) + χ−(k, l, {c}m) . (B.10)

This is the counting factor that appears in the denominator of C in eq. (7.8).

If gluon l is a frail gluon, then the color suppression index remains unchanged for

both parallel and crossed insertions of the new gluons. Therefore, we allow all of the color

choices with equal probabilities:

ρc({ĉ′, ĉ}m+1, {c′, c}m, l, k, {f̂}m+1)

=
(
{ĉ′, ĉ}m+1

∣∣a†+(l)⊗ a+(l)
∣∣{c′, c}m) 1

λ′ρ

[
χ+(k, l, {c}m) + χ+(k, l, {c′}m)

]
+
(
{ĉ′, ĉ}m+1

∣∣a†−(l)⊗ a−(l)
∣∣{c′, c}m) 1

λ′ρ

[
χ−(k, l, {c}m) + χ−(k, l, {c′}m)

]
+
(
{ĉ′, ĉ}m+1

∣∣a†+(l)⊗ a−(l)
∣∣{c′, c}m) 1

λ′ρ

[
χ+(k, l, {c}m) + χ−(k, l, {c′}m)

]
+
(
{ĉ′, ĉ}m+1

∣∣a†−(l)⊗ a+(l)
∣∣{c′, c}m) 1

λ′ρ

[
χ−(k, l, {c}m) + χ+(k, l, {c′}m)

]
.

(B.11)

Here the normalizing factor λ′ρ is

λ′ρ = 2
[
χ(k, l, {c}m) + χ(k, l, {c′}m)

]
. (B.12)
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C Avoiding too high color suppression

The LC+ approximation has the good feature that it can generate a shower starting from

the color density operator terms
∣∣{c}m〉〈{c′}m∣∣ with {c′}m 6= {c}m. Such a state inevitably

leads to {c′}N 6= {c}N at the end of the shower and thus to a weight factor
〈
{c′}N

∣∣{c}N〉
proportional to 1/N2

c to some power. However, the LC+ approximation can generate color

states with overlaps proportional to 1/N2
c to a very large power. Suppose that we are

content to limit the accuracy of shower evolution (within the LC+ approximation) to 1/Nc

to a certain power Imax. For instance, one might set Imax = 4. Then we can expand

weight factors
〈
{c′}m

∣∣{c}m〉 as a power series in 1/Nc and not calculate contributions with

too many powers of 1/Nc. Furthermore, one can track the color suppression index I(m) of

generated states. One can arrange not to generate any splitting that makes I(m+1) > Imax.

Let us see how to avoid generating states with I(m+ 1) > Imax. Suppose that we have

a color state with I(m) = Imax. There may well be some frail gluons in the state. Within

the LC+ approximation, these gluons can split. As we have seen in section A, the splitting

of the frail gluons leaves I(m) = Imax and turns the frail gluons into healthy gluons.

There will likely also be some healthy gluons in the state. As we have seen, when

a healthy gluon splits in the parallel configuration, the color suppression index is left at

I(m + 1) = Imax. However, when a healthy gluon splits in the crossed configuration, the

color suppression index increases to I(m+ 1) = Imax + 2. This is beyond the limit that we

want to maintain. Thus, when I(m) = Imax, the splitting of a healthy gluon in the crossed

configuration should not be allowed.

This analysis suggests that one should modify the probability function ρc for a healthy

gluon splitting when I(m) = Imax by dropping the last two terms in eq. (B.8), so that one

now uses

ρ̃c({ĉ′, ĉ}m+1, {c′, c}m, l, k, {f̂}m+1)

=
(
{ĉ′, ĉ}m+1

∣∣a†+(l)⊗ a+(l)
∣∣{c′, c}m) 1

λ̃ρ

[
χ+(k, l, {c}m) + χ+(k, l, {c′}m)

]
+
(
{ĉ′, ĉ}m+1

∣∣a†−(l)⊗ a−(l)
∣∣{c′, c}m) 1

λ̃ρ

[
χ−(k, l, {c}m) + χ−(k, l, {c′}m)

]
.

(C.1)

The corresponding normalizing factor λ̃ρ is

λ̃ρ = χ(k, l, {c}m) + χ(k, l, {c′}m) . (C.2)

This leads to a weight factor wc = 2CF/CA = 1− 1/N2
c . Since this procedure in any case

drops color suppressed contributions once I(m) has reached Imax, it makes sense to simply

change the weight factor to wc = 1.

If one were to set the probability ρc to generate a splitting of a healthy gluon in the

crossed configuration to ρc = ε � 1, then one would very rarely generate an event with

I(N) > Imax with a very large weight. We set ε = 0 so that no such events are actually

generated. One should note, however, that then there is no control over contributions

to the calculated observable at order greater than 1/N Imax
c . Thus, for instance, one can

calculate the color overlap
〈
{c′}N

∣∣{c}N〉 at the end of the shower as a power series in 1/Nc

and drop terms of order greater than 1/N Imax−pE
c . (See eq. (5.31) for pE.)
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D Calculation of gluon exchange phase

To define the phase from soft gluon exchange, we consider a gluon with momentum q =

(E, ~q) exchanged between possibly massive final state partons l and k. Using the eikonal

approximation, and supplying an ultraviolet cutoff m1 and an infrared cutoff m2, the

amplitude for this process is

G = i
4παs

(2π)4
Tl · Tk

∫
d~q

∫
dE

θ(m2 < |~q| < m1) p̂l · p̂k
(p̂l · q + iε)(p̂k · q − iε)(q2 + iε)

. (D.1)

Here p̂l and p̂k are the momenta of partons l and k as they enter the final state. We let

p̂l = Elvl and p̂k = Ekvk where

vl = (1, ~vl) ,

vk = (1, ~vk) .
(D.2)

Thus ~vl and ~vk are the 3-velocities of the particles in the reference frame that we are using.

If either of particles has a non-zero mass, then the absolute value of the corresponding

velocity is less than 1. Thus our integral is

G =
iαs vl · vk

(2π)3
2Tl · Tk

∫
d~q

∫
dE

θ(m2 < |~q| < m1)

(E − ~vl · ~q + iε)(E − ~vk · ~q − iε)(E2 − ~q 2 + iε)
. (D.3)

Now we can perform the E integration to give

G =
αs vl · vk

(2π)2
2Tl · Tk

∫
d~q

2|~q|
θ(m2 < |~q| < m1)

× 1

(~vk − ~vl) · ~q + iε

(
1

|~q|+ ~vl · ~q
+

1

|~q| − ~vk · ~q

)
.

(D.4)

We are interested in the imaginary part of G, which comes from replacing 1/[(~vk−~vl)·~q+iε]

by −iπ δ((~vk − ~vl) · ~q):

i ImG = − i
αs vl · vk

4π
2Tl · Tk

∫
d~q

2|~q|
θ(m2 < |~q| < m1)

× δ((~vk − ~vl) · ~q)
(

1

|~q|+ ~vl · ~q
+

1

|~q| − ~vk · ~q

)
.

(D.5)

Now choose coordinates with both ~vk and ~vl in the x-z plane, with ẑ in the direction

of ~vk − ~vl and vl,x > 0, vk,x > 0. Then with ~q⊥ = (qx, qy) and qx = −|~q⊥| cos θ, we have

i ImG = − i
αs vl · vk

4π|~vk − ~vl|
2Tl · Tk

∫ m1

m2

d|~q⊥|
|~q⊥|

∫ 2π

0
dθ

1

1− vl,x cos θ
. (D.6)

In eq. (D.5), there are two terms that are related by ~q → −~q and ~vl ↔ ~vk, but since

vl,x = vk,x, these two terms are equal. We have just written one of the terms here and

multiplied by 2.

The integrals are trivial:

i ImG = − 2πi
αs vl · vk

4π|~vk − ~vl|[1− v2l,x]1/2
2Tl · Tk log(m1/m2) . (D.7)
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The velocity dependent prefactor can be simplified using

|~vk − ~vl|2[1− v2l,x] = (vk · vl)2v2kl , (D.8)

where

vkl =

√
1−

v2k v
2
l

(vk · vl)2
=

√
1−

m2
km

2
l

(p̂k · p̂l)2
. (D.9)

Then

i ImG = − 2πi
αs

4π vkl
2Tl · Tk log(m1/m2) . (D.10)

If the soft gluon is exchanged between initial state partons l and k, there are some sign

differences in the derivation but the the result is the same. However, if the soft gluon is

exchanged between an initial state parton and a final state parton then we find ImG = 0.

Thus the general result is

i ImG = − 2πi
θkl
vkl

αs

4π
2Tl · Tk log(m1/m2) , (D.11)

where θkl is 1 if k and l are both final state partons or both initial state partons and zero

otherwise, as in eq. (10.5).

The logarithm in eq. (D.11) results from an integration d|~q|/|~q| between m2 and m1.

If we say that |~q| is related to shower time t by

|~q| = C Q0 e
−t , (D.12)

where Q0 represents the hard momentum scale corresponding to shower time zero and C

is any dimensionless constant, then d|~q|/|~q| = −dt, so

i ImG = − 2πi
θkl
vkl

αs

4π
2Tl · Tk

∫ t2

t1

dt , (D.13)

where m1 = C Q0e
−t1 and m2 = C Q0e

−t2 . The coefficient of dt here is the differential

gluon exchange phase,

iφlk({p, f}m, t) = − 2πi
θkl
vkl

αs

4π
2Tk · Tl , (D.14)

as reported in eq. (10.4).19

We have related the shower time t to |~q| in eq. (D.12) with the aid of an unspecified

parameter C. Different parton shower schemes use different choices for shower time. For

our present purposes, we do not need to make a definite choice. Nevertheless, it is useful

to present at least one choice in order to illustrate the physics issues involved.

19Note that in eq. (10.4) the term corresponding to gluon exchange between partons l and k occurs

twice in the sum over parton indices. That is why an explicit factor 2 disappears between eq. (D.14) and

eq. (10.4).
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Note that there is an energy denominator for the parton l plus gluon state before

parton l absorbs the gluon, previously emitted from parton k: to first order in |~q|/El, we

have

∆E =
√
~p 2
l +m2

l − |~q| −
√

(~pl + ~q)2 +m2
l ∼ −

(
|~q|+ ~vl · ~q

)
. (D.15)

This is the denominator in the first term in eq. (D.5). One sensible way to define the

shower time for the first term in eq. (D.5) would be to set

|~q|+ ~vl · ~q ≈ Q0 e
−t . (D.16)

That is, integrating over a range of shower time up to t2 would mean integrating over ~q

subject to |~q|+~vl ·~q > Q0 exp(−t2). Using the change of variables in eq. (D.6), the relation

between shower time and the integration variables is

|~q |(1− vl,x cos θ) ≈ Q0 e
−t . (D.17)

It is convenient to define θ̃ by

vl,x = cos θ̃ . (D.18)

(For massless partons, θ̃ is half the angle between ~vl and ~vk.) Then the relation is

2|~q|
[
sin2(θ̃/2) + cos θ̃ sin2(θ/2)

]
≈ Q0 e

−t . (D.19)

We integrate over θ. If θ̃ is of order 1, then the integration over θ is dominated by θ values

of order 1. If θ̃ � 1, then the integration over θ is dominated by θ values of order θ̃. Thus,

after the θ integration, the effective relation between |~q| and the shower time is

2|~q| sin2(θ̃/2) ∼ Q0 e
−t . (D.20)

Thus one possible relation between t and |~q| is eq. (D.12), with C = 1/[2 sin2(θ̃/2)].

What about the renormalization scale, µ2R(t)? One might base this on the denomina-

tors of covariant Feynman diagrams instead of the energy denominators. Define Dl(q) =

(p̂l + q)2 − m2
l , where p̂l is the final state momentum of parton l, p̂l = (El, ~ps) with

El = [~p 2
l + m2

l ]
−1/2. The exchanged gluon is virtual, but let us consider the on-shell

contribution with E = −|~q|. Then

Dl(q) = 2p̂l · q = −2El
(
|~q|+ ~vl · ~q

)
. (D.21)

If we use −Dl for µ2R we would take µ2R = 2ElQ0 exp(−t). Similarly, we might take

µ2R = 2EkQ0 exp(−t). For the graph as a whole,

µ2R = (El + Ek)Q0 e
−t (D.22)

might seem sensible as long as El and Ek are not too different.
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