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Comment on \Gauge Invariane and kT -Fatorization of Exlusive Proesses"Hsiang-nan Li1� and Satoshi Mishima2y1Institute of Physis, Aademia Sinia, Taipei, Taiwan 115, Republi of China,1Department of Physis, National Cheng-Kung University, Tainan, Taiwan 701, Republi of China1Department of Physis, National Tsing-Hua University, Hsinhu, Taiwan 300, Republi of China and2Theory Group, Deutshes Elektronen-Synhrotron DESY, 22607 Hamburg, GermanyWe point out mistakes made in the one-loop alulation of some diagrams for the proess �� ! in the preprint arXiv:0807.0296, and present orret results. Espeially, we have diÆulty tounderstand their argument that a highly o�-shell gluon generates a light-one (infrared) singularity.It is shown by means of the Ward identity that the gauge-dependent light-one singularity found inarXiv:0807.0296 does not exist. It is then shown that a hard kernel derived in the kT fatorizationof exlusive proesses is gauge invariant and free of the light-one singularity.In a reent preprint arXiv:0807.0296 [1℄, the authors studied the pion transition form fator in the kT fatorizationtheorem at one-loop level, alulating the diagrams in full QCD for the form fator (see their Fig. 4) and the diagramsfor the kT -dependent pion wave funtion (see their Figs. 2 and 3) in the ovariant gauge. They foused on a speialpiee of ontribution, whih depends on the gauge parameter and ontains a light-one singularity. It was found thatthe full QCD diagrams do not generate this ontribution, but those for the pion wave funtion do, if the involvedpartons are taken to be o�-shell. Therefore, the hard kernel, de�ned as the di�erene of the above two sets ofdiagrams, is gauge dependent, and ontains the light-one singularity. They were then led to the onlusion that thekT fatorization theorem for exlusive proesses violates gauge invariane, and that the perturbative QCD (PQCD)approah [2, 3, 4, 5℄ to exlusive B meson deays, based on the kT fatorization theorem, is also gauge dependent.This ontradits the onlusions drawn in our previous work [6℄. In this omment we point out the mistakes madein their alulation, and demonstrate that the gauge-dependent light-one singularity disussed by the authors of [1℄does not exist. The all-order proof for the gauge invariane and infrared �niteness of a hard kernel derived in the kTfatorization [6℄ is indeed orret.Consider the proess �(P )� ! (p) in Fig. 1, with P (p) being the pion (outgoing on-shell photon) momentumalong the plus (minus) diretion. De�ne the momenta of the valene quark and anti-quark in the pion as [1℄k�1 = (k+1 ; 0; ~k1?) ; k�2 = (k+2 ; 0;�~k1?) ; (1)respetively, with k+1 = x0P+ and k+2 = (1� x0)P+, x0 being the momentum fration. The leading-order (LO) hardkernel is given, in terms of the above momenta, byH(0) = 12k+1 p� + k21? = 1x0Q2 + k21? ; (2)with the momentum transfer Q2 = 2P+p�. At next-to-leading order (NLO), a loop momentum q arried by theadditional gluon may ow through the hard kernel, for example, in Fig. 2. In this ase the fatorized kT -dependentwave funtion is onvoluted with H(0) = 12(k+1 � q+)p� + j~k1? � ~q?j2 : (3)We �nd that the mistakes made in the alulation of Fig. 2 and Fig. 3 [1℄ arise from an improper appliation of theontour integration. Take the simple loop integral assoiated with Figs. 2(d), 3(b) and 3(e) as an example:I = 16i�g2s Z d4q(2�)4 1(q2 � �2L + i")[q2 � (1� �)�2L + i"℄ ; (4)where the gauge parameter � omes from the gluon propagator in the ovariant gauge [1℄�iq2 � �2L + i" �g�� � � q�q�q2 � (1� �)�2L + i"� ; (5)�Eletroni address: hnli�phys.sinia.edu.twyEletroni address: satoshi.mishima�desy.de
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(a) (b) () (d)FIG. 2: NLO diagrams for the pion wave funtion with the loop momentum owing through the hard kernel.and the gluon mass �L is introdued to isolate the infrared (IR) pole. Applying the Feynman parametrization, it iseasy to obtain I = 4��s� ln �2L�2 +UV pole ; (6)where ln�2L denotes the IR singularity [1℄, the expliit expression for the ultraviolet (UV) pole is irrelevant here, and� is the renormalization sale. However, if employing the ontour integration naively, Eq. (4) vanishes:I = 16i�g2s Z d4q(2�)4 1(2q+q� � q2? � �2L + i")[2q+q� � q2? � (1� �)�2L + i"℄ = 0 : (7)The poles in the above integrand are loated in the same half plane, either upper or lower, no matter whether oneintegrates over the q� or q+ �rst. Therefore, one an lose the ontour in the other half plane not ontaining thepoles. Obviously, Eq. (7) ontradits Eq. (6). How to understand this puzzle is the key to larify the onit between[1℄ and [6℄.The above simple example illustrates that a naive appliation of the ontour integration in the light-one oordinatesmay lead to a false result. This is exatly the reason the authors of [1℄ drew the wrong onlusion from Fig. 2. Whenone loses the ontour in Eq. (7) by inluding the semiirle at in�nity, it has been impliitly assumed that theontribution from the semiirle is negligible. However, this assumption does not hold as q+ ! 0 [7℄: the produtq+q� in the denominator does not provide a suppression on the semiirle of a large radius jq�j as q+ ! 0. In otherwords, the poles q� = (q2? + �2L)=(2q+) and q� = [q2? + (1� �)�2L℄=(2q+), also moving to in�nity as q+ ! 0, annotbe avoided by the ontour in Eq. (7). A safe way to proeed is to lose the ontour of q� with a semiirle of alarge but �nite radius R in the half plane without the poles. For example, the semiirle in the upper half plane isonsidered for q+ > 0 in Fig. 4(a). The integration over q� along the real axis is thus equated to the integration overthe semiirle, and Eq. (7) beomesI = 16i�g2s limR!1 Z d2q?(2�)4 �i Z 0� d� Z 10 dq+ + i Z 0�� d� Z 0�1 dq+�� Rei�(2q+Rei� � q2? � �2L + i")[2q+Rei� � q2? � (1� �)�2L + i"℄ ; (8)where the �rst and seond terms in the above square brakets orrespond to Fig. 4(a) and Fig. 4(b), respetively.Performing the integration over q+ and �, and then taking the R ! 1 limit, we reprodue Eq. (6). With the above
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(d) (e) (f)FIG. 3: NLO diagrams for the pion wave funtion without the loop momentum owing through the hard kernel.
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××(a) (b)FIG. 4: Contours for Eqs. (7) and (8) in the regions (a) q+ > 0 and (b) q+ < 0 .presription, the potential ontribution from the large semiirles at q+ ! 0 is taken into aount, and a onsistentresult is obtained in the ontour integration.Below we realulate Fig. 2 (the NLO diagrams for the pion wave funtion with the loop momentum owing throughthe hard kernel) following the aforementioned method, and demonstrate that Figs. 2(a), 2(b), and 2() are in fatfree of the gauge-dependent light-one singularity � ln�2L. We also realulate Fig. 3 (the NLO diagrams for the pionwave funtion without the loop momentum owing through the hard kernel), and point out the erroneous observationderived from Figs. 3() and 3(f) in [1℄. Sine the authors of [1℄ have evaluated the NLO diagrams for the form fatorusing the Feynman parametrization, these results are valid.We start from Fig. 2(b), whose gauge-dependent part is written as [1℄��j2b = 16i�g2s Z d4q(2�)4 2(k+1 � q+)q� � ~k1? � ~q? + q2?[(k1 � q)2 + i"℄(q2 + i")2 Æ(k+ � (k+1 � q+))Æ2(~k? � (~k1? � ~q?)) : (9)The wave funtion ��j2b is onvoluted with the LO hard kernel:��j2b 
H(0) = Z 10 dx Z d2k? 1xQ2 + k2? ��j2b ; (10)with the variable x � k+=P+. Integrating the two Æ-funtions over x and k?, the LO hard kernel in Eq. (3) appears.In the light-one region the saling law for the omponents of q is de�ned by (q+; q�; q?) � (Æ2; 1; Æ) with Æ being asmall parameter [1℄, aording to whih the �rst term (k+1 � q+)q� in Eq. (9) gives the leading ontribution. Thelight-one singularity is regularized by introduing the gluon mass �2L as shown in Eq. (5). Applying the ontour
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×××(a) (b) ()FIG. 5: Contours for Eqs. (9) and (12) in the regions (a) q+ > k+1 , (b) 0 < q+ < k+1 , and () q+ < 0.integration over q� for 0 < q+ < k+1 naively, we reprodue the result in [1℄,�FMW� j2b 
H(0) = 4��sP+� ln�2Lx0Q2 + k21? + �nite terms : (11)As explained above, we have to examine the potential ontribution from the large semiirles. For the rangeq+ > k+1 , all the poles are loated in the lower half plane, so we lose the ontour of q� with a large semiirle in theupper half plane shown in Fig. 5(a). The ontribution from this semiirle remains negligible in the limit q+ ! k+1 ,beause of the suppression fator (k+1 � q+) in the numerator of Eq. (9). For q+ < 0, all the poles are loated in theupper half plane, so we lose the ontour with a large semiirle in the lower plane shown in Fig. 5(). In this ase,the semiirle may ontribute as q+ ! 0, and we equate the integral over q� to the ontribution from the semiirleof a radius R. For 0 < q+ < k+1 , the single pole q� = (j~k1? � ~q?j2 � i")=[2(q+ � k+1 )℄ is loated in the upper halfplane and the double pole q� = (q2?� i")=(2q+) in the lower half plane. We lose the ontour of q� through the upperhalf plane with a semiirle shown in Fig. 5(b), whih piks up the residue from the single pole, giving Eq. (11). Theontribution from the semiirle of a radius R needs to be subtrated, sine it does not vanish at in�nity as q+ ! 0.Therefore, Fig. 2(b), as onvoluted with the LO hard kernel, ontains the additional ontribution from the twosemiirles, one for 0 < q+ < k+1 and another for q+ < 0,�0�j2b 
H(0) = 16i�g2sP+ limR!1 Z d2q?(2�)4 "i Z 0� d� Z k+10 dq+ + i Z 0�� d� Z 0�1 dq+#� 2(k+1 � q+)(Rei�)2(2q+Rei� � q2? � �2L)[2q+Rei� � q2? � (1� �)�2L℄[2(q+ � k+1 )Rei� � j~k1? � ~q?j2℄� 1(k+1 � q+)Q2=P+ + j~k1? � ~q?j2 : (12)Working out the integration over q+, � and q?, and then taking the R!1 limit, we obtain�0�j2b 
H(0) = �4��sP+� ln�2Lx0Q2 + k21? + �nite terms ; (13)whih anels the IR pole in Eq. (11) exatly, implying that Fig. 2(b) is free of the gauge-dependent light-onesingularity. Note that the limit R ! 1 must be taken after the q+ integration. Then the ontribution from thesemiirles at q+ = 0 an be evaluated orretly. The same onlusion applies to Fig. 2().We have explained the absene of the light-one singularity in Fig. 2(b) through the ontour integration over q�by inluding the semiirle ontribution. Eah of the residue ontribution in Eq. (11) and the semiirle ontributionin Eq. (13) has the light-one singularity, but they anel eah other exatly. It is thus understood why the authorsin [1℄ got a fake light-one singularity from Fig. 2(b): they have missed the ontribution from the large semiirles.Their wrong result in Eq. (11) has an origin similar to that of Eq. (7). Performing the integration over q+ �rst,we obtain the same result as in the ase starting with the q� integration. In the ontour integration over q+, thesemiirle ontribution must be handled appropriately as q� ! 0. For the range q� > 0, we equate the integralover q+ to the ontribution from the semiirle of a radius R in the upper half plane. For q� < 0, we lose theontour of q+ through the lower half plane with a semiirle of a radius R, whih piks up the residue from the poleq+ = (k+1 Q2+P+j~k1?�~q?j2�i")=Q2. It is found that neither the residue ontribution nor the semiirle ontributionontains the light-one singularity, beause the integral in Eq. (9) may be singular in the region (q+; q�; q?) � (Æ2; 1; Æ),but not as q� ! 0.



5If applying the ontour integration naively to Fig. 3(),��j3 
H(0) = �16i�g2sP+ Z d4q(2�)4 2(k+1 � q+)q� � ~k1? � ~q? + q2?[(k1 � q)2 + i"℄(q2 + i")2(x0Q2 + k21?) ; (14)the mistake made in [1℄ is more obvious. The term (k+1 � q+)q� gives a light-one singularity from the region(q+; q�; q?) � (Æ2; 1; Æ) in the naive ontour integration, whih is the same as in Eq. (11). Sine the loop momen-tum does not ow through the hard kernel, the term (k+1 � q+)q� also generates a UV divergene from the region(q+; q�; q?) � (1;�2;�) with the sale � ! 1 in the naive ontour integration. However, aording to the ovari-ane argument [1℄, the orresponding loop integral, proportional to q�, should vanish like k�1 = 0. To overomethis apparent ontradition, the authors in [1℄ dropped the gluon mass �L, adopted the dimensional regularization,misinterpreted the UV divergene as another light-one singularity, and made the UV divergene and the light-onesingularity anel eah other. The momentum on�guration q � (1;�2;�) should give a UV divergene, sine it mustbe regularized with the number of dimensions n < 4 in the dimensional regularization, and annot be regularized bythe gluon mass �L. Hene, we have diÆulty to understand their argument [1℄ that a gluon with in�nite invariantmass q2 � �2 !1 produes the light-one (infrared) singularity. The fat is that Fig. 3() has neither UV divergenenor light-one singularity, after arefully inluding the ontribution from the semiirles.Our result is natural from the viewpoint of the Ward identity. Contrating the loop momentum q to the vertex onthe internal quark line (see the numerator of the gauge-dependent term in Eq. (5)),6 p� 6 k1(p� k1)2 6 q 6 p� 6 k1+ 6 q(p� k1 + q)2 = 6 p� 6 k1(p� k1)2 � 6 p� 6 k1+ 6 q(p� k1 + q)2 ; (15)the �rst (seond) term leads to the LO hard kernel assoiated with Fig. 3() (Fig. 2(b)). The diagram Fig. 4 in [1℄for the form fator is then fatorized into onvolutions of the LO hard kernel with Figs. 2(b) and 3(). If Fig. 4 in[1℄ and Fig. 3() do not ontain the light-one singularity as observed in [1℄, Fig. 2(b) should not either. Anothersupport to our result omes from the following simple observation. In the light-one region the q+ and q? dependenein the LO hard kernel is negligible. Then Figs. 2(b) and 3() involve exatly the same loop integral, namely, the samebehavior in the light-one region. If Fig. 3() does not produe the light-one singularity as found in [1℄, Fig. 2(b)should not either.We then turn to Fig. 2(a), whih appears as a onsequene of fatorizing the box diagram Fig. 4a of [1℄ for theform fator. Again, Fig. 2(a) should not ontain the gauge-dependent light-one singularity, beause Fig. 4a of [1℄does not. The expliit expression for the leading ontribution from Fig. 2(a) in the light-one region is given by��j2a = �64i�g2s Z d4q(2�)4 (k+1 � q+)(k+2 + q+)(q�)2[(k1 � q)2 + i"℄[(k2 + q)2 + i"℄(q2 + i")2�Æ(k+ � (k+1 � q+))Æ2(~k? � (~k1? � ~q?)) ; (16)where the numerator (q�)2 arises from q�q� in the gluon propagator for � = � = �. Integrating over q� �rst, wehave two poles, q� = (j~k1? � ~q?j2 � i")=[2(q+ � k+1 )℄ for 0 < q+ < k+1 and q� = (j~k1? � ~q?j2 � i")=[2(q+ + k+2 )℄ for�k+2 < q+ < 0. Closing the ontour in the upper half plane for the former, and in the lower half plane for the latternaively, the result in [1℄ is reprodued,�FMW� j2a 
H(0) = �4��sP+� ln�2Lx0Q2 + k21? + �nite terms ; (17)whih is also a fake singularity.Similarly, the ontribution from the two semiirles of a radius R, whih were added to form the losed ontoursmentioned above, is written as�0�j2a 
H(0) = �256i���sP+ limR!1 Z d2q?(2�)4 "i Z 0� d� Z k+10 dq+ + i Z 0�� d� Z 0�k+2 dq+#� (k+1 � q+)(k+2 + q+)(Rei�)3h�2(k+1 � q+)Rei� � j~k1? � ~q?j2 + i"i h2(k+2 + q+)Rei� � j~k1? � ~q?j2 + i"i� 1(2q+Rei� � q2? � �2L + i")(2q+Rei� � q2? � (1� �)�2L + i")� 1(k+1 � q+)Q2=P+ + j~k1? � ~q?j2 � i" : (18)



6The rest of the proedure is straightforward, leading to�0�j2a 
H(0) = 4��sP+� ln�2Lx0Q2 + k21? + �nite terms : (19)The sum of Eqs. (17) and (19), i.e., Fig. 2(a), is free of the gauge-dependent light-one singularity, ontrary to theobservation in [1℄. In summary, all the diagrams in Figs. 2 and 3, exept those with the gluons attahing only theWilson lines (Figs. 2(d), 3(b), and 3(e)), do not generate the gauge-dependent IR singularity.We then omment on the diagrams Figs. 2(d), 3(b), and 3(e). These diagrams do not appear in the fatorization ofollinear gluons [8, 9, 10℄ from the pion transition form fator. It has been shown that their sum is IR �nite [1℄. Thismust be the ase, sine all the IR divergenes in the form fator diagrams, whih arise from the ollinear region withthe saling law (q+; q�; q?) � (1; Æ2; Æ), have been absorbed into the other diagrams in Figs. 2 and 3 [6℄. However,in view of a gauge invariant de�nition for the pion wave funtion, Figs. 2(d), 3(b), and 3(e) should be inluded. Aresolution is to invoke a soft subtration fator in the denominator [1, 8℄:�(x0;x; k?) = Z dy�2�i d2y?(2�)2 e�i(1�x)P+y��i~k?�~y? h0j�q(y)Wy(n)yIn;y;0W0(n)+5q(0)jq(k1)�q(k2)ih0jWy(n)yWy(u)In;y;0Iyu;y;0W0(n)W0(u)yj0i ; (20)whih removes Figs. 2(d), 3(b), and 3(e) in a gauge invariant way. In the above de�nition, y = (0; y�; ~y?) is theoordinate of the anti-quark �eld �q , n with n2 6= 0 the diretion of the Wilson line, and jq(k1)�q(k2)i the leading Fokstate of the pion. The fator Wy(n) denotes the Wilson line operatorWy(n) = P exp��igs Z 10 d�n � A(y + �n)� : (21)The two Wilson lines Wy(n) and W0(n) must be onneted by a link In;y;0 at in�nity [10, 11℄.The subtration fator in the denominator generates the soft diagrams similar to Figs. 2 and 3, but with the fermionlines being replaed by the Wilson lines in the diretion u. Besides Figs. 2(d), 3(b), and 3(e), additional soft diagrams,suh as the vertex orretions with the gluons attahing the Wilson lines in the diretions n and u, are introdued atthe same time. To ensure that the soft subtration does not hange the ollinear struture of the numerator, u shouldnot lie on the light one, namely, u2 6= 0. Other than this requirement, the diretion of u is ompletely arbitrary.Hene, the subtration of Figs. 2(d), 3(b), and 3(e) will result in an arbitrary UV pole for the pion wave funtion.One an then take advantage of this arbitrariness, adjusting u so that the UV pole of the above vertex orretionsanels the UV pole of the self-energy orretions to the Wilson lines along u. Below we demonstrate this anellationexpliitly. Beause the subtration fator is gauge invariant, we evaluate the soft diagrams in the Feynman gauge,i.e., onsider only the g�� tensor for the gluon propagator. Then the former is given by [12℄� �sCF4� u � np(u � n)2 � u2n2 lnp(u � n)2 � u2n2 + u � np(u � n)2 � u2n2 � u � n �1� + ln 4��2�2LeE � ; (22)and the latter by �sCF4� �1� + ln 4��2�2LeE � : (23)It is easy to �nd that the above two expressions anel exatly for u2n2 < 0 and u �n=pju2n2j � 0:85. It is also trivialto show that the remaining soft diagrams with the loop momentum owing through the hard kernel anel, when theabove onditions for u and n are satis�ed. Eventually, we just need to alulate the seven e�etive diagrams in Fig. 2of [6℄, i.e., Figs. 2(a)-2(), and Figs. 3(a), 3(), 3(d) and 3(f) in this omment, in the Feynman gauge at one-loop level.After larifying the onit, the all-order proof of the leading-power kT fatorization theorem for the pion transitionform fator in Se. III of [6℄ follows straightforwardly. Below we mention the points of the proof briey. Sine thelight-one singularity does not exist, the substitution for the metri tensor of the gluon propagator in the ovariantgauge, Eq. (47) of [6℄, works for extrating all IR (ollinear) divergenes. We then employ the derivative in Eq. (50)of [6℄ to ollet the gauge-dependent terms arising from the o�-shell partons. The derivative of the soft subtrationfator vanishes, sine it is gauge invariant. The derivative of the pion wave funtion is then related to the derivativeof the numerator in Eq. (20), whih, after applying the Ward identity, gives Eq. (53) in [6℄. Combining Eqs. (52) and(53) in [6℄, the kT fatorization theorem for the pion transition form fator is proved by indution.In onlusion, the only neessary revision for [6℄ is to replae the de�nition for the kT -dependent pion wave funtionby Eq. (20) with an appropriate vetor u. Exept this modi�ation, all the results in [6℄ are valid. The gauge-dependent light-one singularity found in [1℄ does not exist; their result is attributed to a areless appliation of
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