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Comment on \Gauge Invarian
e and kT -Fa
torization of Ex
lusive Pro
esses"Hsiang-nan Li1� and Satoshi Mishima2y1Institute of Physi
s, A
ademia Sini
a, Taipei, Taiwan 115, Republi
 of China,1Department of Physi
s, National Cheng-Kung University, Tainan, Taiwan 701, Republi
 of China1Department of Physi
s, National Tsing-Hua University, Hsin
hu, Taiwan 300, Republi
 of China and2Theory Group, Deuts
hes Elektronen-Syn
hrotron DESY, 22607 Hamburg, GermanyWe point out mistakes made in the one-loop 
al
ulation of some diagrams for the pro
ess �
� !
 in the preprint arXiv:0807.0296, and present 
orre
t results. Espe
ially, we have diÆ
ulty tounderstand their argument that a highly o�-shell gluon generates a light-
one (infrared) singularity.It is shown by means of the Ward identity that the gauge-dependent light-
one singularity found inarXiv:0807.0296 does not exist. It is then shown that a hard kernel derived in the kT fa
torizationof ex
lusive pro
esses is gauge invariant and free of the light-
one singularity.In a re
ent preprint arXiv:0807.0296 [1℄, the authors studied the pion transition form fa
tor in the kT fa
torizationtheorem at one-loop level, 
al
ulating the diagrams in full QCD for the form fa
tor (see their Fig. 4) and the diagramsfor the kT -dependent pion wave fun
tion (see their Figs. 2 and 3) in the 
ovariant gauge. They fo
used on a spe
ialpie
e of 
ontribution, whi
h depends on the gauge parameter and 
ontains a light-
one singularity. It was found thatthe full QCD diagrams do not generate this 
ontribution, but those for the pion wave fun
tion do, if the involvedpartons are taken to be o�-shell. Therefore, the hard kernel, de�ned as the di�eren
e of the above two sets ofdiagrams, is gauge dependent, and 
ontains the light-
one singularity. They were then led to the 
on
lusion that thekT fa
torization theorem for ex
lusive pro
esses violates gauge invarian
e, and that the perturbative QCD (PQCD)approa
h [2, 3, 4, 5℄ to ex
lusive B meson de
ays, based on the kT fa
torization theorem, is also gauge dependent.This 
ontradi
ts the 
on
lusions drawn in our previous work [6℄. In this 
omment we point out the mistakes madein their 
al
ulation, and demonstrate that the gauge-dependent light-
one singularity dis
ussed by the authors of [1℄does not exist. The all-order proof for the gauge invarian
e and infrared �niteness of a hard kernel derived in the kTfa
torization [6℄ is indeed 
orre
t.Consider the pro
ess �(P )
� ! 
(p) in Fig. 1, with P (p) being the pion (outgoing on-shell photon) momentumalong the plus (minus) dire
tion. De�ne the momenta of the valen
e quark and anti-quark in the pion as [1℄k�1 = (k+1 ; 0; ~k1?) ; k�2 = (k+2 ; 0;�~k1?) ; (1)respe
tively, with k+1 = x0P+ and k+2 = (1� x0)P+, x0 being the momentum fra
tion. The leading-order (LO) hardkernel is given, in terms of the above momenta, byH(0) = 12k+1 p� + k21? = 1x0Q2 + k21? ; (2)with the momentum transfer Q2 = 2P+p�. At next-to-leading order (NLO), a loop momentum q 
arried by theadditional gluon may 
ow through the hard kernel, for example, in Fig. 2. In this 
ase the fa
torized kT -dependentwave fun
tion is 
onvoluted with H(0) = 12(k+1 � q+)p� + j~k1? � ~q?j2 : (3)We �nd that the mistakes made in the 
al
ulation of Fig. 2 and Fig. 3 [1℄ arise from an improper appli
ation of the
ontour integration. Take the simple loop integral asso
iated with Figs. 2(d), 3(b) and 3(e) as an example:I = 16i�g2s Z d4q(2�)4 1(q2 � �2L + i")[q2 � (1� �)�2L + i"℄ ; (4)where the gauge parameter � 
omes from the gluon propagator in the 
ovariant gauge [1℄�iq2 � �2L + i" �g�� � � q�q�q2 � (1� �)�2L + i"� ; (5)�Ele
troni
 address: hnli�phys.sini
a.edu.twyEle
troni
 address: satoshi.mishima�desy.de
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(a) (b) (
) (d)FIG. 2: NLO diagrams for the pion wave fun
tion with the loop momentum 
owing through the hard kernel.and the gluon mass �L is introdu
ed to isolate the infrared (IR) pole. Applying the Feynman parametrization, it iseasy to obtain I = 4��s� ln �2L�2 +UV pole ; (6)where ln�2L denotes the IR singularity [1℄, the expli
it expression for the ultraviolet (UV) pole is irrelevant here, and� is the renormalization s
ale. However, if employing the 
ontour integration naively, Eq. (4) vanishes:I = 16i�g2s Z d4q(2�)4 1(2q+q� � q2? � �2L + i")[2q+q� � q2? � (1� �)�2L + i"℄ = 0 : (7)The poles in the above integrand are lo
ated in the same half plane, either upper or lower, no matter whether oneintegrates over the q� or q+ �rst. Therefore, one 
an 
lose the 
ontour in the other half plane not 
ontaining thepoles. Obviously, Eq. (7) 
ontradi
ts Eq. (6). How to understand this puzzle is the key to 
larify the 
on
i
t between[1℄ and [6℄.The above simple example illustrates that a naive appli
ation of the 
ontour integration in the light-
one 
oordinatesmay lead to a false result. This is exa
tly the reason the authors of [1℄ drew the wrong 
on
lusion from Fig. 2. Whenone 
loses the 
ontour in Eq. (7) by in
luding the semi
ir
le at in�nity, it has been impli
itly assumed that the
ontribution from the semi
ir
le is negligible. However, this assumption does not hold as q+ ! 0 [7℄: the produ
tq+q� in the denominator does not provide a suppression on the semi
ir
le of a large radius jq�j as q+ ! 0. In otherwords, the poles q� = (q2? + �2L)=(2q+) and q� = [q2? + (1� �)�2L℄=(2q+), also moving to in�nity as q+ ! 0, 
annotbe avoided by the 
ontour in Eq. (7). A safe way to pro
eed is to 
lose the 
ontour of q� with a semi
ir
le of alarge but �nite radius R in the half plane without the poles. For example, the semi
ir
le in the upper half plane is
onsidered for q+ > 0 in Fig. 4(a). The integration over q� along the real axis is thus equated to the integration overthe semi
ir
le, and Eq. (7) be
omesI = 16i�g2s limR!1 Z d2q?(2�)4 �i Z 0� d� Z 10 dq+ + i Z 0�� d� Z 0�1 dq+�� Rei�(2q+Rei� � q2? � �2L + i")[2q+Rei� � q2? � (1� �)�2L + i"℄ ; (8)where the �rst and se
ond terms in the above square bra
kets 
orrespond to Fig. 4(a) and Fig. 4(b), respe
tively.Performing the integration over q+ and �, and then taking the R ! 1 limit, we reprodu
e Eq. (6). With the above



3
q

π(P )

k1

k2

q

π(P )

k1

k2

qπ(P )

k1

k2

(a) (b) (
)
q

π(P )

k1

k2

q
π(P )

k1

k2

q

π(P )

k1

k2

(d) (e) (f)FIG. 3: NLO diagrams for the pion wave fun
tion without the loop momentum 
owing through the hard kernel.
q−

××

q−

××(a) (b)FIG. 4: Contours for Eqs. (7) and (8) in the regions (a) q+ > 0 and (b) q+ < 0 .pres
ription, the potential 
ontribution from the large semi
ir
les at q+ ! 0 is taken into a

ount, and a 
onsistentresult is obtained in the 
ontour integration.Below we re
al
ulate Fig. 2 (the NLO diagrams for the pion wave fun
tion with the loop momentum 
owing throughthe hard kernel) following the aforementioned method, and demonstrate that Figs. 2(a), 2(b), and 2(
) are in fa
tfree of the gauge-dependent light-
one singularity � ln�2L. We also re
al
ulate Fig. 3 (the NLO diagrams for the pionwave fun
tion without the loop momentum 
owing through the hard kernel), and point out the erroneous observationderived from Figs. 3(
) and 3(f) in [1℄. Sin
e the authors of [1℄ have evaluated the NLO diagrams for the form fa
torusing the Feynman parametrization, these results are valid.We start from Fig. 2(b), whose gauge-dependent part is written as [1℄��j2b = 16i�g2s Z d4q(2�)4 2(k+1 � q+)q� � ~k1? � ~q? + q2?[(k1 � q)2 + i"℄(q2 + i")2 Æ(k+ � (k+1 � q+))Æ2(~k? � (~k1? � ~q?)) : (9)The wave fun
tion ��j2b is 
onvoluted with the LO hard kernel:��j2b 
H(0) = Z 10 dx Z d2k? 1xQ2 + k2? ��j2b ; (10)with the variable x � k+=P+. Integrating the two Æ-fun
tions over x and k?, the LO hard kernel in Eq. (3) appears.In the light-
one region the s
aling law for the 
omponents of q is de�ned by (q+; q�; q?) � (Æ2; 1; Æ) with Æ being asmall parameter [1℄, a

ording to whi
h the �rst term (k+1 � q+)q� in Eq. (9) gives the leading 
ontribution. Thelight-
one singularity is regularized by introdu
ing the gluon mass �2L as shown in Eq. (5). Applying the 
ontour
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×××
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××

q−

×××(a) (b) (
)FIG. 5: Contours for Eqs. (9) and (12) in the regions (a) q+ > k+1 , (b) 0 < q+ < k+1 , and (
) q+ < 0.integration over q� for 0 < q+ < k+1 naively, we reprodu
e the result in [1℄,�FMW� j2b 
H(0) = 4��sP+� ln�2Lx0Q2 + k21? + �nite terms : (11)As explained above, we have to examine the potential 
ontribution from the large semi
ir
les. For the rangeq+ > k+1 , all the poles are lo
ated in the lower half plane, so we 
lose the 
ontour of q� with a large semi
ir
le in theupper half plane shown in Fig. 5(a). The 
ontribution from this semi
ir
le remains negligible in the limit q+ ! k+1 ,be
ause of the suppression fa
tor (k+1 � q+) in the numerator of Eq. (9). For q+ < 0, all the poles are lo
ated in theupper half plane, so we 
lose the 
ontour with a large semi
ir
le in the lower plane shown in Fig. 5(
). In this 
ase,the semi
ir
le may 
ontribute as q+ ! 0, and we equate the integral over q� to the 
ontribution from the semi
ir
leof a radius R. For 0 < q+ < k+1 , the single pole q� = (j~k1? � ~q?j2 � i")=[2(q+ � k+1 )℄ is lo
ated in the upper halfplane and the double pole q� = (q2?� i")=(2q+) in the lower half plane. We 
lose the 
ontour of q� through the upperhalf plane with a semi
ir
le shown in Fig. 5(b), whi
h pi
ks up the residue from the single pole, giving Eq. (11). The
ontribution from the semi
ir
le of a radius R needs to be subtra
ted, sin
e it does not vanish at in�nity as q+ ! 0.Therefore, Fig. 2(b), as 
onvoluted with the LO hard kernel, 
ontains the additional 
ontribution from the twosemi
ir
les, one for 0 < q+ < k+1 and another for q+ < 0,�0�j2b 
H(0) = 16i�g2sP+ limR!1 Z d2q?(2�)4 "i Z 0� d� Z k+10 dq+ + i Z 0�� d� Z 0�1 dq+#� 2(k+1 � q+)(Rei�)2(2q+Rei� � q2? � �2L)[2q+Rei� � q2? � (1� �)�2L℄[2(q+ � k+1 )Rei� � j~k1? � ~q?j2℄� 1(k+1 � q+)Q2=P+ + j~k1? � ~q?j2 : (12)Working out the integration over q+, � and q?, and then taking the R!1 limit, we obtain�0�j2b 
H(0) = �4��sP+� ln�2Lx0Q2 + k21? + �nite terms ; (13)whi
h 
an
els the IR pole in Eq. (11) exa
tly, implying that Fig. 2(b) is free of the gauge-dependent light-
onesingularity. Note that the limit R ! 1 must be taken after the q+ integration. Then the 
ontribution from thesemi
ir
les at q+ = 0 
an be evaluated 
orre
tly. The same 
on
lusion applies to Fig. 2(
).We have explained the absen
e of the light-
one singularity in Fig. 2(b) through the 
ontour integration over q�by in
luding the semi
ir
le 
ontribution. Ea
h of the residue 
ontribution in Eq. (11) and the semi
ir
le 
ontributionin Eq. (13) has the light-
one singularity, but they 
an
el ea
h other exa
tly. It is thus understood why the authorsin [1℄ got a fake light-
one singularity from Fig. 2(b): they have missed the 
ontribution from the large semi
ir
les.Their wrong result in Eq. (11) has an origin similar to that of Eq. (7). Performing the integration over q+ �rst,we obtain the same result as in the 
ase starting with the q� integration. In the 
ontour integration over q+, thesemi
ir
le 
ontribution must be handled appropriately as q� ! 0. For the range q� > 0, we equate the integralover q+ to the 
ontribution from the semi
ir
le of a radius R in the upper half plane. For q� < 0, we 
lose the
ontour of q+ through the lower half plane with a semi
ir
le of a radius R, whi
h pi
ks up the residue from the poleq+ = (k+1 Q2+P+j~k1?�~q?j2�i")=Q2. It is found that neither the residue 
ontribution nor the semi
ir
le 
ontribution
ontains the light-
one singularity, be
ause the integral in Eq. (9) may be singular in the region (q+; q�; q?) � (Æ2; 1; Æ),but not as q� ! 0.



5If applying the 
ontour integration naively to Fig. 3(
),��j3
 
H(0) = �16i�g2sP+ Z d4q(2�)4 2(k+1 � q+)q� � ~k1? � ~q? + q2?[(k1 � q)2 + i"℄(q2 + i")2(x0Q2 + k21?) ; (14)the mistake made in [1℄ is more obvious. The term (k+1 � q+)q� gives a light-
one singularity from the region(q+; q�; q?) � (Æ2; 1; Æ) in the naive 
ontour integration, whi
h is the same as in Eq. (11). Sin
e the loop momen-tum does not 
ow through the hard kernel, the term (k+1 � q+)q� also generates a UV divergen
e from the region(q+; q�; q?) � (1;�2;�) with the s
ale � ! 1 in the naive 
ontour integration. However, a

ording to the 
ovari-an
e argument [1℄, the 
orresponding loop integral, proportional to q�, should vanish like k�1 = 0. To over
omethis apparent 
ontradi
tion, the authors in [1℄ dropped the gluon mass �L, adopted the dimensional regularization,misinterpreted the UV divergen
e as another light-
one singularity, and made the UV divergen
e and the light-
onesingularity 
an
el ea
h other. The momentum 
on�guration q � (1;�2;�) should give a UV divergen
e, sin
e it mustbe regularized with the number of dimensions n < 4 in the dimensional regularization, and 
annot be regularized bythe gluon mass �L. Hen
e, we have diÆ
ulty to understand their argument [1℄ that a gluon with in�nite invariantmass q2 � �2 !1 produ
es the light-
one (infrared) singularity. The fa
t is that Fig. 3(
) has neither UV divergen
enor light-
one singularity, after 
arefully in
luding the 
ontribution from the semi
ir
les.Our result is natural from the viewpoint of the Ward identity. Contra
ting the loop momentum q to the vertex onthe internal quark line (see the numerator of the gauge-dependent term in Eq. (5)),6 p� 6 k1(p� k1)2 6 q 6 p� 6 k1+ 6 q(p� k1 + q)2 = 6 p� 6 k1(p� k1)2 � 6 p� 6 k1+ 6 q(p� k1 + q)2 ; (15)the �rst (se
ond) term leads to the LO hard kernel asso
iated with Fig. 3(
) (Fig. 2(b)). The diagram Fig. 4
 in [1℄for the form fa
tor is then fa
torized into 
onvolutions of the LO hard kernel with Figs. 2(b) and 3(
). If Fig. 4
 in[1℄ and Fig. 3(
) do not 
ontain the light-
one singularity as observed in [1℄, Fig. 2(b) should not either. Anothersupport to our result 
omes from the following simple observation. In the light-
one region the q+ and q? dependen
ein the LO hard kernel is negligible. Then Figs. 2(b) and 3(
) involve exa
tly the same loop integral, namely, the samebehavior in the light-
one region. If Fig. 3(
) does not produ
e the light-
one singularity as found in [1℄, Fig. 2(b)should not either.We then turn to Fig. 2(a), whi
h appears as a 
onsequen
e of fa
torizing the box diagram Fig. 4a of [1℄ for theform fa
tor. Again, Fig. 2(a) should not 
ontain the gauge-dependent light-
one singularity, be
ause Fig. 4a of [1℄does not. The expli
it expression for the leading 
ontribution from Fig. 2(a) in the light-
one region is given by��j2a = �64i�g2s Z d4q(2�)4 (k+1 � q+)(k+2 + q+)(q�)2[(k1 � q)2 + i"℄[(k2 + q)2 + i"℄(q2 + i")2�Æ(k+ � (k+1 � q+))Æ2(~k? � (~k1? � ~q?)) ; (16)where the numerator (q�)2 arises from q�q� in the gluon propagator for � = � = �. Integrating over q� �rst, wehave two poles, q� = (j~k1? � ~q?j2 � i")=[2(q+ � k+1 )℄ for 0 < q+ < k+1 and q� = (j~k1? � ~q?j2 � i")=[2(q+ + k+2 )℄ for�k+2 < q+ < 0. Closing the 
ontour in the upper half plane for the former, and in the lower half plane for the latternaively, the result in [1℄ is reprodu
ed,�FMW� j2a 
H(0) = �4��sP+� ln�2Lx0Q2 + k21? + �nite terms ; (17)whi
h is also a fake singularity.Similarly, the 
ontribution from the two semi
ir
les of a radius R, whi
h were added to form the 
losed 
ontoursmentioned above, is written as�0�j2a 
H(0) = �256i���sP+ limR!1 Z d2q?(2�)4 "i Z 0� d� Z k+10 dq+ + i Z 0�� d� Z 0�k+2 dq+#� (k+1 � q+)(k+2 + q+)(Rei�)3h�2(k+1 � q+)Rei� � j~k1? � ~q?j2 + i"i h2(k+2 + q+)Rei� � j~k1? � ~q?j2 + i"i� 1(2q+Rei� � q2? � �2L + i")(2q+Rei� � q2? � (1� �)�2L + i")� 1(k+1 � q+)Q2=P+ + j~k1? � ~q?j2 � i" : (18)



6The rest of the pro
edure is straightforward, leading to�0�j2a 
H(0) = 4��sP+� ln�2Lx0Q2 + k21? + �nite terms : (19)The sum of Eqs. (17) and (19), i.e., Fig. 2(a), is free of the gauge-dependent light-
one singularity, 
ontrary to theobservation in [1℄. In summary, all the diagrams in Figs. 2 and 3, ex
ept those with the gluons atta
hing only theWilson lines (Figs. 2(d), 3(b), and 3(e)), do not generate the gauge-dependent IR singularity.We then 
omment on the diagrams Figs. 2(d), 3(b), and 3(e). These diagrams do not appear in the fa
torization of
ollinear gluons [8, 9, 10℄ from the pion transition form fa
tor. It has been shown that their sum is IR �nite [1℄. Thismust be the 
ase, sin
e all the IR divergen
es in the form fa
tor diagrams, whi
h arise from the 
ollinear region withthe s
aling law (q+; q�; q?) � (1; Æ2; Æ), have been absorbed into the other diagrams in Figs. 2 and 3 [6℄. However,in view of a gauge invariant de�nition for the pion wave fun
tion, Figs. 2(d), 3(b), and 3(e) should be in
luded. Aresolution is to invoke a soft subtra
tion fa
tor in the denominator [1, 8℄:�(x0;x; k?) = Z dy�2�i d2y?(2�)2 e�i(1�x)P+y��i~k?�~y? h0j�q(y)Wy(n)yIn;y;0W0(n)
+
5q(0)jq(k1)�q(k2)ih0jWy(n)yWy(u)In;y;0Iyu;y;0W0(n)W0(u)yj0i ; (20)whi
h removes Figs. 2(d), 3(b), and 3(e) in a gauge invariant way. In the above de�nition, y = (0; y�; ~y?) is the
oordinate of the anti-quark �eld �q , n with n2 6= 0 the dire
tion of the Wilson line, and jq(k1)�q(k2)i the leading Fo
kstate of the pion. The fa
tor Wy(n) denotes the Wilson line operatorWy(n) = P exp��igs Z 10 d�n � A(y + �n)� : (21)The two Wilson lines Wy(n) and W0(n) must be 
onne
ted by a link In;y;0 at in�nity [10, 11℄.The subtra
tion fa
tor in the denominator generates the soft diagrams similar to Figs. 2 and 3, but with the fermionlines being repla
ed by the Wilson lines in the dire
tion u. Besides Figs. 2(d), 3(b), and 3(e), additional soft diagrams,su
h as the vertex 
orre
tions with the gluons atta
hing the Wilson lines in the dire
tions n and u, are introdu
ed atthe same time. To ensure that the soft subtra
tion does not 
hange the 
ollinear stru
ture of the numerator, u shouldnot lie on the light 
one, namely, u2 6= 0. Other than this requirement, the dire
tion of u is 
ompletely arbitrary.Hen
e, the subtra
tion of Figs. 2(d), 3(b), and 3(e) will result in an arbitrary UV pole for the pion wave fun
tion.One 
an then take advantage of this arbitrariness, adjusting u so that the UV pole of the above vertex 
orre
tions
an
els the UV pole of the self-energy 
orre
tions to the Wilson lines along u. Below we demonstrate this 
an
ellationexpli
itly. Be
ause the subtra
tion fa
tor is gauge invariant, we evaluate the soft diagrams in the Feynman gauge,i.e., 
onsider only the g�� tensor for the gluon propagator. Then the former is given by [12℄� �sCF4� u � np(u � n)2 � u2n2 lnp(u � n)2 � u2n2 + u � np(u � n)2 � u2n2 � u � n �1� + ln 4��2�2Le
E � ; (22)and the latter by �sCF4� �1� + ln 4��2�2Le
E � : (23)It is easy to �nd that the above two expressions 
an
el exa
tly for u2n2 < 0 and u �n=pju2n2j � 0:85. It is also trivialto show that the remaining soft diagrams with the loop momentum 
owing through the hard kernel 
an
el, when theabove 
onditions for u and n are satis�ed. Eventually, we just need to 
al
ulate the seven e�e
tive diagrams in Fig. 2of [6℄, i.e., Figs. 2(a)-2(
), and Figs. 3(a), 3(
), 3(d) and 3(f) in this 
omment, in the Feynman gauge at one-loop level.After 
larifying the 
on
i
t, the all-order proof of the leading-power kT fa
torization theorem for the pion transitionform fa
tor in Se
. III of [6℄ follows straightforwardly. Below we mention the points of the proof brie
y. Sin
e thelight-
one singularity does not exist, the substitution for the metri
 tensor of the gluon propagator in the 
ovariantgauge, Eq. (47) of [6℄, works for extra
ting all IR (
ollinear) divergen
es. We then employ the derivative in Eq. (50)of [6℄ to 
olle
t the gauge-dependent terms arising from the o�-shell partons. The derivative of the soft subtra
tionfa
tor vanishes, sin
e it is gauge invariant. The derivative of the pion wave fun
tion is then related to the derivativeof the numerator in Eq. (20), whi
h, after applying the Ward identity, gives Eq. (53) in [6℄. Combining Eqs. (52) and(53) in [6℄, the kT fa
torization theorem for the pion transition form fa
tor is proved by indu
tion.In 
on
lusion, the only ne
essary revision for [6℄ is to repla
e the de�nition for the kT -dependent pion wave fun
tionby Eq. (20) with an appropriate ve
tor u. Ex
ept this modi�
ation, all the results in [6℄ are valid. The gauge-dependent light-
one singularity found in [1℄ does not exist; their result is attributed to a 
areless appli
ation of



7the 
ontour integration in the light-
one 
oordinates. The 
orre
t pres
ription is to keep the 
ontribution from thesemi
ir
les of a �nite radius �rst, work out the loop integration, and then move the semi
ir
les to in�nity. We have
on�rmed that the all-order proof of the kT fa
torization theorem for the pion transition form fa
tor holds: the gaugedependen
e, arising from the o�-shell external partons, 
an
els between the full QCD diagrams for the form fa
torand the e�e
tive diagrams for the pion wave fun
tion. Therefore, the kT fa
torization produ
es a gauge invariant andIR �nite hard kernel, and provides a solid basis for the PQCD approa
h to ex
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