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Abstract

In the framework of perturbative Algebraic Quantum Field Theory (pAQFT) recently devel-

oped by Brunetti, Dütsch, and Fredenhagen (arXiv:0901.2038), I give a general construction of

so-called “Euclidean time-ordered products”, i.e. algebraic versions of the Schwinger functions,

for scalar quantum field theories on spaces of Euclidean signature. This is done by generalizing

the recursive construction of time-ordered products by Epstein and Glaser, originally formulated

for quantum field theories on Minkowski space (MQFT). An essential input of Epstein-Glaser

renormalization is the causal structure of Minkowski space. The absence of this causal structure

in the Euclidean framework makes it necessary to modify the original construction of Epstein and

Glaser at two points. First, the whole construction has to be performed with an only partially de-

fined product on (interaction-) functionals. This is due to the fact that the fundamental solutions

of the Helmholtz operator
���+m2� of EQFT have a unique singularity structure, i.e. they are

unique up to a smooth part. Second, one needs to (re-)introduce a (rather natural) “Euclidean

causality” condition for the recursion of Epstein and Glaser to be applicable.
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I. INTRODUCTION

In perturbative quantum field theory (pQFT) one is interested in the terms of the ex-

pansion of the S-Matrix, i.e. the time-ordered exponentialS(V ) = expT(V ) = 1Xn=0 1n!V �T � � � �T V = 1Xn=0 1n!S(n)(V 
n) : (1)S(n) denotes here the nth functional derivative of S with respect to the interaction func-

tional V : ' ! V ('). As is well known the terms of this expansion, referred to as time-
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ordered products, give information about transition probabilities in collision processes of

elementary particles (LSZ-relations). The problem occurring here, referred to as the renor-

malization problem (of pQFT) is that the time-ordered product F �T G of two functionals

is generally ill-defined if the supports of the functionals intersect. The aim of renormal-

ization thus is to make sense of the time-ordered product also for (local) functionals with

coinciding supports.

Although there is a mathematically rigorous formulation of renormalization on

Minkowski-, or even curved Lorentzian spacetimes [BF00], it still seems somewhat far

from the tools applied in concrete calculations of transition probabilities, which in turn

are known to be in excellent accordance with experimental data. These calculations are

often performed on spaces of Euclidean signature, which leads to “easier” expressions

and is possible since the fundamental solutions of the Klein-Gordon operator depend on

the hyperbolic distance only (cf. [BG96]). The way back to MQFT however is not always

open (cf. [OS73, OS75, EE79]).

In the standard approach the passage to Euclidean signature is performed by an an-

alytic continuation of the Wightman functions1 to the “permuted extended tubes” and

evaluation at so-called Euclidean points or “Schwinger points” [SW64, Sch59, Sym69],

e.g. (ix0; : : : ; x4; iy0; : : : ; y4) for the two-point-function in D = 4. At these points the hy-

perbolic distance takes the form of a (negative) Euclidean distance:x20 � x21 � x22 � x23 7! �x20 � x21 � x22 � x23: (2)

Because the transition to Euclidean signature amounts to “rotating” the time coordinate

by i = ei�2 in the complex plane it is often referred to as “Wick rotation”. Performing

calculations using the Wick-rotated Wightman functions has the (rather obvious) advan-

tage that the Euclidean distance on the right hand side of (2) vanishes only in the origin,

whereas the set of zeros of the Minkowskian distance on the left hand side is the whole

forward and backward lightcone. This entails that in the Wick rotated setting the am-

plitudes of graphs with (at most) one loop can be made absolutely convergent. Diver-

gences of higher loop order and especially so-called overlapping divergences can then be

1 These are the correlation functions of Minkowski QFT, i.e. vacuum expectation values of products of

fields.
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removed using the graph-by-graph method of Bogoliubov, Parasiuk, Hepp and Zimmer-

mann, abbreviated BPHZ renormalization [BP57, Hep66, Zim69].

On the other hand one great disadvantage of the Euclidean framework becomes ap-

parent at this stage already. The causal structure as in any relativistic theory encoded

very nicely in the Minkowski signature, is completely lost.

Causality, however is a major ingredient in the formulation of (perturbative) QFT on

Minkowski and curved, globally hyperbolic spacetimes (cf. [SR50, BS59, Ste71, EG73];

and [BF00, HW01, BDF09] respectively). There are two main points where it enters in

the formalism. One is the construction of the algebra of observables, where it enters the

definition of the star-product2 in form of the causal propagator E = Eret � Eadv fulfilling['(x); '(y)℄? = iE(x� y)
in the sense of distribution kernels. The second point is the recursive construction of

time-ordered products in Epstein-Glaser renormalization. There it enters in the form of

the “causality condition”, which makes the construction of time-ordered products up to

the thin diagonal possible.

The aim of this note is to develop a Euclidean version of Epstein-Glaser renormaliza-

tion in order to investigate the local (i.e. “UV”-) structure of Euclidean pQFT. In par-

ticular we want to gain a deeper understanding of the relation of the two viewpoints

briefly introduced above, the BPHZ procedure mostly applied in the Euclidean setting

and the Epstein-Glaser recursion, seemingly tied to the causal structure of spacetimes

of Minkowski signature. Besides this there is a second motivation. The fact that the

formulation of Epstein-Glaser renormalization in the Euclidean framework is possible,

despite the absence of a globally defined star-product, suggests that the whole recur-

sive procedure of Epstein and Glaser does not depend on the star-product structure of

Minkowskian pQFT at all. Consequently it should be possible to perform the same con-

struction on Minkowski spacetime using the time-ordered product only.

As asserted above in this article we are only concerned with the local properties of the

theory, i.e. we do not take vacuum expectation values of products of fields (Wightman

functions) and then perform the Wick rotation to EQFT with them. We rather regard the

2 The “deformation quantizational” viewpoint has proven to be both, of structural clarity and convenience

for the investigation of perturbative QFT [DF01, HH02, BDF09]
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implications of going to Euclidean signature on the algebraic level (i.e. before expectation

values in certain states are taken into account). This already gives us all the information

about the local properties of the theory. Evaluating the newly defined Euclidean time-

ordered products in some “vacuum state” and performing the adiabatic limit would give

us back the original Schwinger functions. This last step however is not our concern in the

present note.

The strategy of the construction presented here is as follows. We will use a fundamen-

tal solution P of the Helmholtz operator (��+m2), i.e. the “Wick rotated” Klein-Gordon

operator, to define a “Euclidean time-ordered product” for functionals with disjoint sup-

ports. These functionals will then form an associative partial algebra, i.e. an algebra with

only partially defined product. Due to associativity the n-fold Euclidean time-ordered

product can be defined as a multi-linear map En on this partial algebra. We then intro-

duce a supplement for the causality condition of Epstein and Glaser called “Euclidean

causality” which makes it possible to extend the domain of definition of En to tensor

products of functionals whose support does not intersect the thin diagonal. The Epstein-

Glaser induction closes if an extension of the domain of definition to the thin diagonal is

possible. As in the original work of Epstein and Glaser the extension problem can be re-

duced to the extension of certain scalar distributions, which in the case of flat (Euclidean)

space are translation invariant. This reduces the extension problem for the En to that of

extending the domain of the scalar distributions to the origin. The extension problem for

scalar distributions however is well understood [Ste71, EG73] and is most conveniently

discussed in terms of two fundamental theorems by Brunetti and Fredenhagen [BF00,

Thm. 5.2 & 5.3].

II. PRELIMINARIES

In this section I introduce the basic setup of perturbative Algebraic Quantum Field

Theory (pAQFT) as developed by Brunetti, Dütsch and Fredenhagen [BDF09] applied,

however, to the Euclidean setting. A remark on how to translate the concepts from

Minkowski to Euclidean signature was also given by R. Stora, see [Sto06] for instance.

Within this article let E be a d-dimensional Euclidean space and C(E ) � C1(E ) the

configuration space of a scalar field theory. Let furthermore eF(E ) be the space of smooth
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functionals. These are maps F : C(E ) ! C for which the nth functional derivative, denoted
by 
F (n)('); h
n� � ÆnFÆ'n (h
n) := dnd�n �����=0F ('+ �h) ;
exists as a symmetric distribution in n variables, F (n)(') 2 D 0(E n).3 We define F(E ) �eF(E ) to be the subspace of (smooth) functionals of compact support, i.e. for F 2 F(E)
and all n 2 N the nth functional derivative F (n)(') � ÆnFÆ'n of F is a distribution of compact

support, F (n)(') 2 E 0(En).
Remark II.1. The support of a functional F 2 F(E ) can be defined by the equivalence:supp(F ) \ supp(h) = ; , 8' 2 C(E ) : F ('+ h) = F (') ;
where h 2 C1(E ). Observe that if supp(F ) \ supp(h) = ;we have
F (n)('); h
n� = dnd�n �����=0F ('+ �h) = dnd�n �����=0F (') = 0 :
Conversely if ÆFÆ' (h) = 0 it follows that F ('+�h) is invariant under (infinitesimal) changes

in �, i.e. F does not change in the “direction” of h, F ('+ h) = F ('). It follows thatsupp(F ) � ['2C(E) supp(F (1)(')) ;
where the support of the distribution F (1)(') is defined in the standard way (e.g. [RS80,

p.139]). Hence the support of the nth functional derivative F (n)(') is contained in then-fold Cartesian product: supp(F (n)(')) � supp(F )n ;
which is compact if supp(F ) is compact.

We define yet another class of so-called local functionals, which describe local interac-

tions

Definition II.2. A functional of compact support, F 2 F(E ), is called a local functional if

for all n 2 N
[LF-1] the support of the nth functional derivative of F is contained in the thin diagonalDiag(En) := f(x1; : : : ; xn) 2 En : x1 = � � � = xng,supp(F (n)(')) � Diag(En) :
3 We will generally assume the functionals occuring in this article to be smooth in the above sense.
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[LF-2] the wave front set4 of F (n)(') is perpendicular to the tangent bundle of the thin

diagonal, WF(F (n)) � (TDiag(En))? :
We denote the space of local functionals by Flo(E ).
Example II.3. Typical examples for local functionals are field monomialsF (') = 1k! ZE ('(x))k f(x) dx ; f 2 D(E ) :
Their functional derivatives have integral kernels of the form�F (n)(')� (x1; : : : ; xn) = 1(k � n)! ('(x1))(k�n) f(x1) Æ(x1 � x2) � � � Æ(xn�1 � xn) ;
which obviously are compactly supported on the thin diagonal, i.e. [LF-1]. Furthermore

their wave front set is that of Dirac’s Æ-distribution (see Appendix A),WF(F (n)(')) = ((x;k) 2 T �En : x1 = � � � = xn; nXi=1 ki = 0) ;
which is transversal to the tangent bundle of the thin diagonal5TDiag(E n) = f(x; v) 2 TEn : x1 = � � � = xn; v1 = � � � = vn = vg ;
as is readily seen from the dual pairing at points x 2 Diag(E n). For any (x;k) 2WF(F (n)(')) and (x; v) 2 TDiag(En) we havehk; vix � nXi=1 hki; vi = 0 ;
hence [LF-2].

III. THE PARTIAL ALGEBRAOF FUNCTIONALSOF COMPACT SUPPORT

We regard the Helmholtz operator �� +m2 on Euclidean space E . This corresponds
to the “Wick rotated” Klein-Gordon operator �+m2 for scalar QFT onMinkowski space-

time. The Helmholtz operator is an elliptic partial differential operator, and hence its

4 For the definition of the wave front set of a distribution see e.g. [Hör03]. An easy example is also given

in Appendix A.
5 This for instance can be computed as the range of the differential of the diagonal map, E ! En : x 7!(x; : : : ; x), as done e.g. in [Hör03].
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fundamental solution P , fulfilling ���+m2�P = Æ ; (3)

in the sence of distributions, is unique up to a smooth part. This is due to the fact that the

solutions of the homogeneous equation are smooth functions (cf. [Hör03, Eq. (8.1.11) and

Thm. 8.3.1]). We choose a fixed P by requiring invariance under the full Euclidean group6

and Dirichlet boundary conditions at infinity, i.e. P (x) kxk!1����! 0. This choice is arbitrary,

but corresponds to the standard one. I want to emphasize that most of the arguments

in this article do not depend on the choice of a specific fundamental solution P . This

applies to all arguments depending only on the wave front set of P and in particular

to the domain of definition of the Euclidean time-ordered product, to be defined below.

According to [Hör03, Cor. 8.3.2] the wave front set of any P (x; y) fulfilling (3) is that of

the Dirac Æ-distribution,WF(P (x; y)) = WF(Æ(x; y)) = �(x; k1; x; k2) 2 T �E 2 : k1 + k2 = 0	 : (4)

Motivated by the result for Minkowski spacetime [BDF09] we define a “time ordering”

operator on functionals F 2 F(E ) byTE := exp (~�) ; � = 12 Z dx dy P (x; y) Æ2Æ'(x)Æ'(y) : (5)

Remark III.1. There is a formal correspondence of the approach we choose here to the

more standard approach to Euclidean QFT in terms of Gaussian functional integrals as

discussed e.g. in [Roe94] and [Sal99]. Namely, as the exponential of a second order

differential operator, TE can formally be written as the operator of convolution with a

Gaussian measure with zero mean and covariance ~P ; see also the remark in the original

treatment [BDF09, p. 6], (TEF ) (') = Z d�~P ('� �)F (�) :
Tomake this more explicit, but without pondering toomuch about well-definedness here,

we write the Gaussian measure as to be a measure in a suitably chosen path space:d�~P (�) = e 1~S[�℄D� ;
6 In particular symmetry and translation invariance of P are used explicitly in the proof of Proposition

III.3 and in section IVB, respectively.
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where S denotes the free action functional. By using the analogy to the finite-dimensional

case one computes:Z d�~P ('� �)F (�) = Z D� e 1~S['��℄F (�)= Z D� e 12~h'��;(��+m2)'��iF (�)= Z D� Z DJ eih'��;Ji e~2DJ;(��+m2)�1JEF (�)= Z DJ eih';Ji Z D� e�ih�;Ji e~2 hJ;PJiF (�)= Z DJ eih';Ji Z D� e�ih�;Ji e~2 h ÆÆ� ;P ÆÆ�iF (�)= �F�1F �e~�F �� (') = (TEF ) (') ;
where we have written F for the “functional Fourier transform” and used (3). However,

I want to emphasize that the definition of the Euclidean time-ordering operator TE above

is completely independent of the Gaussian measure d�~P .
We proceed by defining the so called Euclidean time-ordered product for F;G 2 F(E ).

It is obtained as a deformation of the pointwise productM , [M (F 
G)℄ (') := F (')G('),F(E )[[~℄℄
2 T
2E
//M

��

F(E )[[~℄℄
2�E
��
�

�

�F(E )[[~℄℄ TE
// F(E )[[~℄℄ ; F �E G := TE ÆM Æ �T�1E F 
 T�1E G� : (6)

F(E ) is embedded in the space of formal power series in ~, F(E )[[~℄℄, as the component of

order ~0. The time-ordering operator TE as well as the product �E is extended to F(E )[[~℄℄
by linearity. By abuse of terminology we refer to the elements in F(E )[[~℄℄ also as func-

tionals of compact support.

Example III.2. The inverse time ordering operator T�1E in (6) induces what is sometimes

called “Euclidean Wick ordering”. Take as an example the linear functionalsF (') := Z dx f(x)'(x); G(') := Z dx g(x)'(x) ; f; g 2 D(E ) :
Then �T�1E (FG)� (') = Z dx dy f(x) g(y) ['(x)'(y)� ~P (x; y)℄ ;
which can be interpreted as the Euclidean correspondence of the point splitting approxi-

mation to normal ordering. This is why the corresponding product (6), is often referred to
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as the “Euclidean Wick product”. Due to its domain of definition (see below), however, I

refrain from doing so and rather call �E the “Euclidean time-ordered product”.

Observe that applying the inverse time ordering operator T�1E := exp(�~�) before

pointwise multiplication makes the tadpole terms in the expansion of F �E G vanish (see

Appendix B). Hence we can write (6) more conveniently as:F �E G = 1Xk=0 ~kk! 
F (k); P
kG(k)� ; (7)

where we used the notation P
kG(k) for the application of the mapP : E 0(E ) ! D 0(E )f 7! P � f = R dy P (�; y)f(y)
in each argument of G(k). The convolution on the right hand side is well-defined for allf 2 E 0(E ) (cf.[Hör03, Def. 4.2.2]). Hence for functionals F 2 F(E ) we can define:P
k : E 0(Em) ! E 0(E (m�k))
D 0(E k)F (m)(') 7! P
kF (m)(') =: F (m�k)(k) (') ; (8)

where we introduced subscript indices to denote the part of P
kF (m)(') in D 0(E k). Ob-

serve that the application of P
k does not preserve symmetry; while F (m) is a symmetric

distribution in m variables, F (m�k)(k) � P
kF (m) is symmetric in each set of variables sep-

arately. To be more explicit, the part in the integral kernel representing F (m�k)(k) is given

by kYi=1 P (xi; yi)F (m)(x1; : : : ; xk; xk+1; : : : ; xm) ;
which is totally symmetric in fx1; : : : ; xkg and fxk+1; : : : ; xmg separately. Hence we defineF (k)(l)(m) := P
lF (k+l)(m) ; (9)

which makes it easy to read off the (permutational) symmetry of the distribution. Ob-

serve however that by the total symmetry of F (k+l+m) we have that F (k)(l)(m) = F (k)(m)(l).
The product F �E G is not defined for all functionals F;G 2 F(E ). This becomes ap-

parent if we regard local functionals F;G 2 Flo(E ), since for them the pointwise product

of the distributions F (k)(') and G(k)(') is not well-defined. Explicitly we can see this by

writing the kth term of (7) as:
F (k); P
kG(k)� = ZE2k dx1 � � �dyk kYi=1 P (xi; yi)F (k)(x1; � � � ; xk)G(k)(y1; � � � ; yk) : (10)
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According to the wave front set of the fundamental solution P (4) the product ofP (x; y) with itself is not defined for coinciding points x = y (cf. [Hör03, Thm.

8.2.10]). There are covectors (k1; k2) ; (k01; k02) 2 [WF(P )℄2 such that for i 2 f1; 2g:ki + k0i = 0, hence 0 2 [WF(P )�WF(P )℄2.7 Now, if F and G are local func-

tionals, F (k)(x1; : : : ; xk) and G(k)(y1; : : : ; yk) have support only on the thin diagonalfx1 = � � � = xkg and fy1 = � � � = ykg, respectively. Hence in order for the integral (10) to

be well-defined, we have to ask for the functionals to fulfillsupp(F ) \ supp(G) = ; : (11)

To sum up, we have a Euclidean time-ordered product F �E G of functionals F;G 2 F(E)
which is well-defined up to the diagonal, i.e. on E 2nDiag(E 2).

Observe that if (11) holds then F �E G is not a local functional. The first term in the

expansion (7) is the pointwise product FGwhose nth functional derivative is given by(FG)(n) = nXk=0 F (k)G(n�k):
And for non-vanishing n and k, supp(F (k)G(n�k)) * Diag(E n) if supp(F ) \ supp(G) = ;.
A similar argument applies to the other terms in the expansion. Nevertheless for func-

tionals of compact support, the support of the functional derivatives of any term in (7)

is a Cartesian product of compact regions and hence compact. In the above example we

would have supp(F (k)G(n�k)) � supp(F )k � supp(G)(n�k).
Regardless of the fact that the Euclidean time-ordered product is well-defined on a

subset of F(E )2 only, we can prove associativity for its domain of definition.

Proposition III.3 (Partial Algebra of Functionals of Compact Support). Let F;G 2F(E )[[~℄℄ be functionals of compact support. Then the Euclidean time-ordered product�E : (F;G) 7! F �E G = 1Xk=0 ~kk! 
F (k); P
kG(k)�
is well-defined in the regionD := �(F;G) 2 F(E )[[~℄℄2 : supp(F ) \ supp(G) = ;	 ;
7 [WF(P )℄2 denotes the second, i.e. covector-, component of WF(P ) � T �E2 .
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and F �E G 2 F(E )[[~℄℄.
When restricted to D, the product �E is commutative and associative. Hence (F(E )[[~℄℄; �E) is

a commutative partial algebra, i.e. a vector space F(E )[[~℄℄ with a commutative, associative

product which may not be defined for all pairs (F;G) 2 F(E )[[~℄℄2 .
Proof. We have already discussed the domain properties of the product �E. The commu-

tativity follows immediately from the symmetry of P (x; y), and associativity of �E follows

readily from the associativity of the pointwise product and the definition (6),(F �E G) �E H = TE �T�1E �TE �T�1E F � T�1E G�� � T�1E H	= TE �T�1E F � T�1E G � T�1E H	= F �E (G �E H) ;
where we assumed that F;G;H 2 F(E ) have pairwise disjoint supports, i.e.; = supp(F ) \ supp(G) = supp(G) \ supp(H) = supp(H) \ supp(F ) such that all products

in the above expressions are well-defined. Observe that the functional equation, eAeB =eA+B , holds for the exponential TE � e~� due to the symmetry of the functional deriva-

tive.

Observe that bywriting the product F �EG�EH in terms of its series expansion (7), using

Cauchy’s product formula and the Leibniz rule, the graph structure of the expansion

becomes immediately apparent:F �E G �E H = 1Xn=0 ~nn! nXm=k mXk=0 �nm��mk�DF (k+m�k)G(n�m)(k) H(n�m)(m�k)E :
The terms on the right hand side correspond to graphs with three vertices, F , G, H ,

where k lines connect F and G, (m� k) edges connect F and H and there are (n�m)
lines between G and H , see also Appendix B.

IV. RENORMALIZATION

Associativity makes it possible to speak of n-fold time-ordered productsEn(F1 
 � � � 
 Fn) := F1 �E � � � �E Fn ; (12)
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These are linear maps En : F(E )[[~℄℄
n ! F(E )[[~℄℄ ;
which are well-defined, if the supports of the functionals F1; : : : ; Fn 2 F(E) are pairwise

disjoint, i.e. supp(Fi) \ supp(Fj) = ; 8i; j 2 f1; : : : ; ng ; i 6= j : (13)

In order to be able to properly define the coefficients S(n)E (V 
n) � En(V 
n) in the expan-

sion of the Euclidean S-matrix (cf. (1)), we have to extend the maps En towards function-

als with arbitrary support properties. In the presented formalism this is possible for local

functionals only. The extension is performed by applying the recursive procedure of Ep-

stein and Glaser. In each recursion step Epstein and Glaser use the causality condition to

define the time-ordered products up to the thin diagonal, translation invariance to defineEn for all points except the origin and in the last step include the origin in the domain

of a newly defined time-ordered product. It is this last step, which corresponds to renor-

malization. The freedom in the definition of the new time-ordered product is governed

by the theory of extension of distributions.

As already described in the introduction, in the Euclidean framework we have to find

a suitable replacement for the causality condition, in order to make the Epstein-Glaser

recursion applicable.

We first define 8F 2 F(E ) : E0(F ) = 11 and E1(F ) = F : (14)

This serves as the induction basis and already implies that E2 : Flo(E )[[~℄℄
2 ! F(E )[[~℄℄
is symmetric and uniquely defined up to the diagonal Diag(E 2). Assuming that Ek is

properly defined for all k < n on the whole of E k , makes it possible, using a certain fac-

torization property (see below), to uniquely define the n-fold product En on EnnDiag(E n).
The last step, which makes the whole argument valid, is to show that En can be extended

to the whole space En .
A. Construction up to the thin diagonal

For the recursive construction of Epstein and Glaser - as well as for its generalizations

- the causality condition for the time-ordered product is crucial. Since we cannot make
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use of this condition in a Euclidean framework, we have to replace it by another one,

which we call Euclidean causality, and which makes also sense on general Riemannian

manifolds.

Condition 1 (Euclidean Causality). Let I � f1; : : : ; kg be a subset of the index setf1; : : : ; kg with non-empty complement I. If for all i 2 I and for all j 2 I the supports

of the corresponding functionals are disjoint,8i 2 I; 8j 2 I : supp(Fi) \ supp(Fj) = ; ;
then the k-fold Euclidean time-ordered product has the following factorization property:Ek(F1 
 � � � 
 Fk) = EjIj(Oi2I Fi) �E EjIj(Oj2I Fj) :

Having this supplement for causality, we can start the induction procedure.

Induction hypothesis. We assume that for all k < n the maps Ek are� properly defined on the whole of Flo(E )[[~℄℄
k ,� symmetric: 8� 2 S(k) : Ek(F�(1) 
 � � � 
 F�(k)) = Ek(F1 
 � � � 
 Fk) ;� and fulfill Euclidean causality, i.e. Condition 1, for all k < n.
This already determines the nth order maps En uniquely up to the thin diagonal:

Proposition IV.1. Let Ek : Flo(E )[[~℄℄
k ! F(E )[[~℄℄ fulfill the induction hypothesis for allk < n. Then the nth order mapEn : Flo(E )[[~℄℄
n ! F(E )[[~℄℄Pi F i1 
 � � � 
 F in 7! PiEn(F i1 
 � � � 
 F in) :
is uniquely determined for all functional tensors,

Pi F i1 
 � � � 
 F in, with[i supp(F i1 
 � � � 
 F in) \Diag(En) = ; :
14



Proof. Condition 1 makes it possible to follow closely the proof of [BF00]. Let I =fI ( f1; : : : ; ngg and define neighborhoodsUI := f(x1; : : : ; xn) � EnnDiag(E n) : xi 6= xj 8i 2 I; 8j 2 Ig : (15)

Then fUI : I 2 Ig is a cover for E nnDiag(En), that is[I2I UI = EnnDiag(En) : (16)

The inclusion
SI2I UI � E nnDiag(En) is obvious. To show the inclusion in the other

direction let (x1; : : : ; xn) 2 EnnDiag(En). Then for at least one pair (i; j) we have thatxi 6= xj . Defining I = fk 2 f1; : : : ng : xk = xig, we have (x1; : : : ; xn) 2 UI , hence the

inclusion in the opposite direction.

Now that we dispose of the cover fUI ; I 2 Ig, observe the equivalence of the asser-

tions 8i 2 I; 8j 2 I : supp(Fi) \ supp(Fj) = ;
and supp(F1 
 � � � 
 Fn) � UI :
By using the induction hypothesis, we are able to define n-fold time-ordered products onUI , for all F1 
 � � � 
 Fn 2 F(E )[[~℄℄
n with supp(F1 
 � � � 
 Fn) � UI we set:EIn(F1 
 � � � 
 Fn) := EjIj(Oi2I Fi) �E EjIj(Oj2I Fj) : (17)

Where the right hand side is well-defined since the maps EjIj for jIj < n
have already been defined by assumption and supp(F1 
 � � � 
 Fn) � UI impliessupp(EjIj(Ni2I Fi)) \ supp(EjIj(Nj2I Fj)) = ;.

We have to make sure that on the overlaps UI \ UJ , the maps EIn and EJn coincide:EIn���UI\UJ = EJn ���UI\UJ : (18)

Again from the induction hypothesis it follows that for all F1 
 � � � 
 Fn withsupp(F1 
 � � � 
 Fn) � UI \ UJ we have:EjIj(Oi2I Fi) = EjI\Jj(Ok2I\J Fk) �E EjI\Jj( Ol2I\J Fl)
15



and analogously for EjJj. Hence we haveEIn(F1 
 � � � 
 Fn) = EjIj(Oi2I Fi) �E EjIj(Oj2I Fj)= EjI\Jj �E EjI\Jj �E EjI\Jj �E EjI\Jj= EjI\Jj �E EjI\Jj �E EjI\Jj �E EjI\Jj= EjJj(Oi2I Fi) �E EjJj(Oj2J Fj)= EJn (F1 
 � � � 
 Fn) ;
where we used the symmetry of �E and have omitted the arguments in the second and

third row. Observe that if I \ J = ;, the argument is still valid by (14).

The individual time-ordered products EIn defined on the sets of the open coverfUI : I 2 Ig now need to be “glued together” to give one time-ordered product E0n onEnnDiag(En). A standard way to achieve this, in the case when the time-ordered prod-

ucts are distributions, is to introduce a partition of unity f�I : I 2 Ig subordinate tofUI : I 2 Ig, and to define the unique time-ordered product on EnnDiag(En) as the as

the weighted sum of the individual time-ordered products on UI weighted with �I ; see
[BF00, Sec. 4] for details. Observe, however, that in contrast to [BF00] the time-ordered

products
�EIn(F1 
 � � � 
 Fn) : I 2 I	 we are dealing with here are functionals on C(E )

rather than distributions on E nnDiag(En). In particular, there is no ad hoc notion of a

product of the functional EIn(F1 
 � � � 
 Fn) with a smooth function, �I say. Hence for

the gluing of
�EIn; I 2 I	 we cannot use the standard method of [BF00]. Instead we

implement an argument given in [BDF09], which, as well as the original reasoning, is

conclusive only for local functionals. Let
Pi F i1 
 � � � 
 F in 2 Flo(E )[[~℄℄
n such that8i : supp(F i1 
 � � � 
 F in) \Diag(En) = ; ; (19)

by abuse of notation we write
PF1
 � � �
Fn 2 Flo(E )
nnDiag(E n) in this case. We now

want to define the product En for those elements of Flo(E )
nnDiag(E n)whose support is

not contained in any neighborhood of the cover fUI ; I 2 Ig, 8I 2 I: supp(PF1 
 � � � 
Fn) * UI . The crucial fact, to be shown below, is that any element in Flo(E )
nnDiag(E n)
can be written as a finite sum of tensor products of local functionals, which are fully

supported inside some neighborhood UI . For these tensor products the map EIn is al-

ready defined by (17). It is unique due to the sheaf property (18). This definition is then
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extended to the sum by linearity. So what remains to be shown is the decomposition

property for Flo(E )
nnDiag(E n). LetPi F i1 
 � � � 
 F in 2 Flo(E )
nnDiag(En), then by (19)

we have that 8i : n\k=1 supp(F ik) = ; : (20)

The F ik are local functionals, and hence can be written as a finite sum of local functionals

of arbitrarily small support (cf. [BDF09, Lem. 3.2]),8F ik =Xri;k sri;kF i;ri;kk ; sri;k 2 f+;�g : (21)

Because of (20) the supports supp(F i;ri;kk ) can be chosen in such a way that at most (n� 1)
of them intersect. To be more precise this means that for each pair (i; ri), ri 2 Nn there is

some index set I(i;ri) 2 I such thatsupp(F i;ri;11 
 � � � 
 F i;ri;nn ) � UI(i;ri) ; (22)

see Figure 1. Since the n-fold Euclidean time-ordered product is uniquely defined on

these neighborhoods, we can define for any element of Flo(En)
nnDiag(E n):E0n(Xi F i1 
 � � � 
 F in) :=Xi;ri  nYk=1 sri;k!EI(i;ri)n (F i;ri;11 
 � � � 
 F i;ri;nn ) :
Thus we have reached a definition of the Euclidean time-ordered product up to the

thin diagonal. We introduce the notation E0n for this product in order to distinguish it

from its extension to the whole space, we aim at constructing. For the first part of the

induction, i.e. Proposition IV.1, it remains to be shown that the definition is independent

of the choice of the expansion (21), that the maps E0n are symmetric and that they fulfill

Euclidean causality (Condition 1) for k = n.
Independence of expansion (21). Taking another expansion, also fulfilling (22), corre-

sponds to taking different index sets I(i;ri), i.e. different neighborhoods, for the definition
of E0n. However the Euclidean time-ordered product is uniquely defined on the intersec-

tions of these neighborhoods due to the sheaf property (18).

8 Although the definition of a local functional in [BDF09] differs from the one given in this article, it can

be shown that both definitions are equivalent, see Appendix C and also [BFR09]. Hence the results of

[BDF09] on local functionals, and Lemma 3.2 in particular, are applicable in our context.
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Symmetry. For the definition of the maps E0n for permuted arguments one can take the

maps EI�(r)n defined on the neighborhoods UI�(r),E0n(F�(1) 
 � � � 
 F�(n)) = Xr=(rk) nYk=1 srk!EI�(r)n (F r�(1)�(1) 
 � � � 
 F r�(n)�(n) )= X�(r)=(r�(k)) nYk=1 srk!EIrn (F r11 
 � � � 
 F rnn )= E0n(F1 
 � � � 
 Fn) :
Euclidean causality. If for all i 2 I and for all j 2 I we have supp(Fi) \ supp(Fj) = ;,

then supp(F1 
 � � � 
 Fn) � UI andE0n(F1 
 � � � 
 Fn) = EIn(F1 
 � � � 
 Fn) = EjIj(Oi2I Fi) �E EjIj(Oj2I Fj) :
supp(F2)

supp(F1)

supp(F3)supp(F3,1) supp(F3,2)

supp(F1,1)

supp(F1,2)

supp(F2,1)

supp(F2,2)

Figure 1: Dividing the supports of local functionals helps with defining E0n. In the pic-

ture supp(F1 
 F2 
 F3) \ Diag(E 3) = ; but there is no index set I � f1; 2; 3g such thatsupp(F1 
 F2 
 F3) � UI . However, for any three of the functionals of smaller support such a

neighborhood can always be found, 8 (i; j; k): supp(F1;i 
 F2;j 
 F3;k) � UI(i;j;k) .
Up to here we have constructed the n-fold Euclidean time-ordered productsE0n(PF1 
 � � � 
 Fn) up to the thin diagonal, under the assumption that the maps Ek

where already defined on the whole space E k for all k < n. So what remains to be done,

is to prove that for each n 2 N the map E0n can be extended to the whole space E n .
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B. Extension to the whole space

In their original work [EG73], Epstein and Glaser reduce the problem of extending the

algebra-valued distributions T (L (x1) : : :L (xq)) (adapting to their notation here) to an

extension problem for scalar distributions by expanding the n-fold time-ordered product

in terms of Wick products of the fields (cf. formulas (42)/(43) loc. cit.). We will show in

this section that, using the tools of [BDF09], an analogous expansion can be done in the

Euclidean framework. The fact that we regard local functionals is essential.

1. Expansion Formula of Epstein-Glaser in (Euclidean) pAQFT

The definition of local functionals (Def. II.2) implies that the integral kernel of the nth
functional derivative of any F 2 Flo(E ) can be written as (cf. [BF00])F (n)(')(x1; : : : ; xn) =Xk fn;k' (x) pk(�r) Æ(r) ; fn;k' 2 D(Diag(E n)) �= D(E ) (23)

where x = 1nPni=1 xi is the “center of mass”-coordinate, r = (r1; : : : ; rn�1) are relative

coordinates and (pk)k2N is a basis of homogeneous, symmetric polynomials in (n� 1)
variables.9 Equation (23) is equivalent to saying that the functional derivatives, F (n)('),
can be restricted to surfaces which are transversal to the thin diagonal Diag(E n), which is

implied by the second condition [LF-2] of Def. II.2 (cf. [Hör03, Cor. 8.2.7], [BF00, Lem.

6.1]). By using (23) we find a compact formula for the Taylor expansion up to order N of

a local functional at some reference field configuration '0:F [N ℄'0 (') = NXn=0 1n! 
F (n)('0); ('� '0)
n�= NXn=0Xk �fn;k'0 (x);�Æ(r); pk(��r)('� '0)
n (x; r)n! ��= NXn=0Xk Dfn;k'0 (x); An;k'�'0(x)E ; (24)

9 We do not specify the relative coordinates any further, but will assume them to be chosen in such a way

that the product measure on En is invariant,dx1(x; r) � � � dxn(x; r) = dx dr1 � � � drn�1 � dx dr ;
which is always possible. For an explicit choice see [DF04, Prop. 3.1].
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where we introduced the so-called balanced fields (cf. [BOR02])An;k'�'0(x) = �Æ(r); pk(��r)('� '0)
n (x; r)n! � :
Following [BDF09] we impose two further conditions on the Euclidean S-matrixSE(F ) := exp�E(F ) � 1Xn=0 1n!En(F
n) : (25)

Let F 2 Flo(E ). The first condition, called '-locality, states that the S-matrix SE(F )('0) at
a given field configuration '0 should depend only on the Taylor expansion of F around'0.
Condition 2 ('-locality). SE(F )('0) = SE(F [N ℄'0 )('0) +O(~N+1).

This condition makes it possible to treat not only polynomial, but also more general

functions of the fields as interaction functionals in pAQFT. Since the S-matrix in pertur-

bation theory is defined in terms of a formal power series in ~, according to Condition 2SE(F )('0) is (up to the renormalization freedom) fully determined by the Taylor expan-

sion of F around '0, because the additional terms are required to be of sufficiently high

order in ~. Non-polynomial interactions where excluded in the original treatment by Ep-

stein and Glaser. However, their consistent incorporation in the pertubative treatment

of QFT is desireable not only from the viewpoint of non-polynomial models like, for

instance, the Sine-Gordon model. They also seem to be necessary in a perturbative treat-

ment of super-symmetric extensions of the standard model.10 Observe, however, that

Condition 2 is a condition within perturbation theory, which aims at a consistent treat-

ment of the topic, rather than an extension to the non-perturbative regime.

The second condition, field independence, states that S should only depend implicitly

(i.e. via the interaction) on the field configuration ', which makes the chain rule easily

applicable:

Condition 3 (Field independence). 8g 2 E (E ): D ÆSE(F )Æ' ; gE = S(1)E (F )DÆFÆ' ; g E.
Using Conditions 2 and 3 one can consistently insert the approximation (24) for F into

(25). This, as shown below, reduces the extension problem of the functionals E0n to that of

10 Private communication with K. Fredenhagen. See also [GS08, Sib08].
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certain scalar coefficients in the “Wick expansion” of En(F
n),En(F
n)(') = En(F [N ℄'0 
 � � � 
 F [N ℄'0 )(') +O �~n(N+1)�=Xlj ;kj En(Df l1;k1'0 (x1); Al1;k1'�'0(x1)E
 � � � 
 Df ln;kn'0 (xn); Aln;kn'�'0(xn)E)=Xlj ;kj Z dx1 � � �dxn nYj=0 f lj ;kj'0 (xj)En(Al1;k1'�'0(x1)
 � � � 
 Aln;kn'�'0(xn)) :
Setting ' = '0 and defining the scalar distributionstl;k(x1; : : : ; xn) := En(Al1;k1'�'0(x1)
 � � � 
 Aln;kn'�'0(xn))����'='0 ; l; k 2 Nn ; (26)

we arrive at En(F
n)('0) =Xlj ;kj Z dx1 � � �dxn nYj=0 f lj ;kj'0 (xj) tl;k(x1; : : : ; xn) : (27)

Hence the problem of defining the coefficients of the S-matrix, En(F
n)('0), for local

interactions F 2 Flo(E ) is reduced to extending the coefficients tl;k (26).11 These are

scalar distributions, which in general are well-defined up to the thin diagonal. Observe

however, that they only depend on differences of the variables fx1; : : : ; xng, since the fun-
damental solution P (x � y) with respect to which the Euclidean time-ordered productsEn were defined depend only on relative distances. Hence in flat Euclidean space the

distributions tl;k are translation invariant (along diagonal directions), i.e. under transfor-

mations (x1; : : : ; xn) 7! (x1 + a; : : : ; xn + a). Consequently, for the extension to the thin

diagonal it suffices to define them at the origin.

Example IV.2. To illustrate this procedure in a graphical setting let us regard the following

example �G(4) H(3)F (5) F (') = 15! R dx f(x) ('(x))5 ;G(') = 14! R dx g(x) ('(x))4 ;H(') = 13! R dx h(x) ('(x))3 ;
11 In the case of polynomial interactions in MQFT formula (27) reduces to the familiar Wick expansion

formula of Epstein and Glaser (cf. [BDF09, Ex. on p. 19]).
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with f; g; h 2 D(E ) test functions of compact support. The integral kernels of the func-

tional derivatives are given by:�F (5)(')� (x1; : : : ; x5) = f(x1) Æ(x1 � x2) � � � Æ(x4 � x5)�G(4)(')� (y1; : : : ; y4) = g(y1) Æ(y1 � y2) � � � Æ(y3 � y4)�H(3)(')� (z1; : : : ; z3) = h(z1) Æ(z1 � z2) Æ(z2 � z3) :
Hence the corresponding amplitude for the above graph is given byZ dx dy dz (P (x� y))3 (P (x� z))2 P (y � z) f(x) g(y) h(z) ;
where in the first induction step the translation invariant distributions (P (x� y))3
and (P (x� z))2 have to be extended to the origin, giving renormalized distributions(P (x� y))3ren and (P (x� z))2ren, respectively. In the second step the domain of the equally

translation invariant distributiont0(x; y; z) = (P (x� y))3ren (P (x� z))2ren P (y � z)
has to be extended to give the renormalized amplitude tren.

2. Extension to the origin

The extension problem for scalar distributions, is well understood and can conve-

niently be discussed in terms of the scaling degree [Ste71] of the corresponding distri-

bution.

Definition IV.3 (scaling degree; cf. [BF00]). Let dim(E ) = d and define� : R+ �D(E ) ! D(E )(�; �) 7! �� := ��d�(��1�)
to be the action of the positive real numbers on test functions. This induces, via the

pullback, the action on distributions. For t 2 D 0(E ) we have:t�(�) := (��t) (�) = t(��) :
The scaling degree sd(t) of a distribution t (with respect to the origin) is defined to besd(t) := inf�!0 2 R : lim�&0�!0t� = 0 2 D 0(E )� :
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The extension of the scalar distributions is governed by the following theorem due to

Brunetti and Fredenhagen

Theorem IV.4 (cf. [BF00]). Let t0 2 D 0(Rdn f0g) have scaling degree sd(t0) with respect to the

origin. Let� sd(t0) < d. Then there exists a unique extension t 2 D 0(Rd) of t0, i.e. t(f) = t0(f) for allf 2 D(Rdn f0g), which has the same scaling degree, sd(t) = sd(t0).� d � sd(t0) < 1. Then there exist several extensions t 2 D 0(Rd) with sd(t) = sd(t0),
which are uniquely determined by their values on a finite set of test functions.

The freedom in the possible extensions is described by the Stückelberg-Petermann

renormalization group, see [BDF09] for a thorough discussion of the topic. According to

the theorem, given a particular extension tp, the most general solution for the extension t
of t0 reads (cf. [DF04]) t = tp + Xjaj��(t0)Ca�aÆ (28)

where �(t0) := sd(t0) � d denotes the degree of divergence of t0, a 2 Nd is a multiindex

and Ca 2 C . Hence the freedom in the choice of an extension t is governed by the scaling

degree of t0.
Observe, however, that the existence of a renormalized time-ordered product En,

given by an extension (28), does not imply that the underlying theory is renormalizable in

the sense of power counting. For the sake of readability we quote here the classification of

renormalizable theories as it was given by Epstein and Glaser [EG73]. Given an extension

of En of E0n exists for all orders n of perturbation theory. A theory is called renormalizable,

if there is a (finite) upper bound for the degree of divergence of the n-fold time-ordered

product, �(tn0 ), which does not depend on the order n of perturbation theory. The theory

is called unrenormalizable, if there is no such bound and it is called superrenormalizable,

if there is a certain order n0 above which the degree of divergence is negative, i.e. the

extensions En are unique for n > n0.
This closes the Euclidean version of the Epstein-Glaser induction and at the same time

shows that this induction is completely performable without reference to the star-product

structure of Minkowskian pQFT.
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V. CONCLUSION

We have shown that the construction of Epstein and Glaser can be adapted to the

Euclidean case. On the one hand side, as asserted in the introduction this shows that

the construction of Epstein and Glaser can generally be performed without the notion of

a star-product. On the other hand the formalism introduced here gives strong tools for

the investigation of the local properties of Euclidean QFT. Particularly interesting is the

investigation of the relation to other approaches to renormalization, like for instance the

BPHZ renormalization scheme. New results in this direction have recently been gained

by an investigation of certain examples in momentum space [FHS09].

In principle it is possible to get back non-local objects like the analytic Schwinger func-

tions of EQFT from the formalism introduced above. As in the Minkowskian setting of

Algebraic Quantum Field Theory one gets back the correlation functions by evaluating

their corresponding algebraic versions in the vacuum state. In the introduced setting this

is given by the evaluation at ' = 0,!0 : En(F1 
 � � � 
 Fn) 7! En(F1 
 � � � 
 Fn)��'=0 :
Performing the adiabatic limit, provided it exists, gives back the Schwinger functions of

EQFT.
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Appendix A: THEWAVE FRONT SET OF THE DIRAC DELTA DISTRIBUTION

Just as an example for the computation of the wave front set of a given distribution we

compute WF(Æ(x; y)). The singular support of Æ is the diagonal Diag(E 2) � f(x; x) 2 E 2g.
Following the definition [Hör03, Def. 8.1.2] we are interested in the directions (k; k0) 2T �(x;x)E 2 in which the Fourier transform of Æ, FT(Æ) � Æ̂, does not decrease rapidly.Æ̂(k; k0) = 1(2�)n Z dx dy e�ihk;xie�ihk0;yiÆ(x; y)= 1(2�)n Z dx e�ihk+k0;xi = Æ(k + k0)
where one can use Fourier’s inversion formula to show the last equality. Hence

the Fouriertransform of Æ(x; y) is rapidly decreasing in all directions exceptn(k; k0) 2 T �(x;x)E 2 : k + k0 = 0o. The wave front set of Æ is therefore given byWF(Æ) = �(x; k; x; k0) 2 T �E 2 : k + k0 = 0	 :
Appendix B: COMBINATORICS: GRAPHS AND TADPOLES

Graphs

As is well known, the symmetry of the time-ordered product is conveniently ac-

counted for by writing its terms as (sums of) graphs. Using Cauchy’s product formula

and the Leibniz rule one derives from the formal power series (7) the following expres-

sion for the threefold Euclidean time-ordered product, whose addends have a direct in-

terpretation in terms of graphs,F �E G �E H = 1Xn=0 ~nn! nXm=k mXk=0 �nm��mk�DF (k+m�k)G(n�m)(k) H(n�m)(m�k)E= FGH + ~ �
FG(1)H(1)�+ 
F (1)GH(1)�+ 
F (1)G(1)H��+ ~2�12 
FG(2)H(2)�+ 
F (1)G(1)H(1)(1)�+ DF (1)G(1)(1)H(1)E+ 12 
F (2)GH(2)�+ 
F (2)G(1)H(1)�+ 12 
F (2)G(2)H��+ � � �= � + ~�� +� +� �
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+ ~2�12 � +� +� + 12 	 +
 + 12 � �+ � � �
The symmetry factor Sym()�1 = 1n!�nm��mk� = 1(n�m)!k!(m�k)! of a given term is reflected

in the graph as (the reciprocal of) the product of the number of possible permutations of

edges which join the same vertices.12 This is what remains of the symmetry of the func-

tional derivatives after convolution with the fundamental solution P . The interpretation
in terms of graphs gives a straight-forward generalization to n-fold products:En(F1 
 � � � 
 Fn) = 1Xl=0 ~l X2�(n;l) 1Sym()  ;
where �(n; l) is the set of graphs with n vertices and l edges, in which each edge e
joins two different points, s(e) 6= r(e) (no tadpoles). The graph with the interactionsfF1; : : : ; Fng at n vertices and li;j edges between Fi and Fj corresponds to the term:�(F1)(l1;2+l1;3+���+l1;n) � � � (Fk)(lk;k+1+���+lk;n)(l1;k)���(lk�1;k) � � � (Fn)(l1;n)���(ln�1;n)� :
Notice that both the upper and the lower indices add up to the total number L of edges

in the graph, n�1Xi=1 nXj=i+1 li;j = nXj=2 j�1Xi=1 li;j =Xi<j li;j = L :
Tadpoles

As asserted in the main part of the article, we want to prove here, that there are no

tadpole terms, i.e. graphs with at least one line connecting a vertex with itself, in the

graph-expansion of F �E G as defined in (6). By doing so, we give the justification for

formula (7).

Proposition B.1. There are no tadpole terms contributing to F �E G :=TE ÆM Æ �T�1E (F )
 T�1E (G)�, that is:F �E G = 1Xn=0 ~nn! 
F (n)G(n)� :
12 In the graph representing

DF (k+m�k)G(n�m)(k) H(n�m)(m�k)E there are k lines joining F and G, (n�m)
lines from G toH , and (m� k) edges connecting H with F .
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Proof. The Euclidean time ordering operator, as well as the corresponding operator(s) in

pAQFT [BDF09] are induced by second order functional differential operators, cf. Eq. (5),� = 12 Z dx dy P (x; y) Æ2Æ'(x) Æ'(y) :
As differential operators on F(E ) they fulfill the Leibniz rule, which in turn may be writ-

ten as a co-product rule:13�(F �G) =M Æ (��) (F 
G) ; �� = �
 1 + 1
 � + �0;
where �0(F 
G) = Z dx dy P (x; y) ÆFÆ'(x) 
 ÆGÆ'(y) :

The time-ordered product hence is given by, cf. Eq. (6),F �E G = e~� ÆM Æ �e�~�F 
 e�~�G� :
Applying the Leibniz rule and using the functional identity for the exponential (eAeB =eA+B), which holds due to commutativity and associativity of the product of differential

operators, leads to: F �E G =M Æ e~�� Æ �e�~�F 
 e�~�G�=M Æ e~�0 �e~�e�~�F 
 e~�e�~�G�=M Æ e~�0 (F 
G) :
Hence the result stated before:F �E G = 1Xn=0 ~nn! 
F (n); P
nG(n)� :

Appendix C: LOCAL FUNCTIONALS

The definition of a local functional in [BDF09] differs from the one given in this article.

Hence, in order to be able to apply their results on local functionals in our context, we

13 see also [Bro09]
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have to make sure that the functionals fulfilling the conditions of Definition II.2 are a

subset of the set of local functionals in the sense of [BDF09, Section 3.2]. For this it suffices

to show that the support property [LF-1] implies the additivity condition of [BDF09].

Together with Lemma 3.1 of [BDF09] this proves equivalence of both definitions. The

argument is taken from [BFR09].

Proof. Let F be a smooth functional fulfillingÆ2FÆ'(x)Æ'(y) = 0 for x 6= y ; (C1)

we have to show thatsupp(')\supp(�) = ; implies 8 : F ('+ +�) = F ('+ )�F (�)+F ( +') : (C2)

We have 8 :�2�� ��F (�'+  + ��) = Z dx dy F (2)(�'+  + ��)(x; y)'(x)�(y) ; (C3)

where due to (C1) the domain of integration can be restricted to the diagonalf(x; y) : x = yg. And since 8x: '(x)�(x) = 0 due to the assumption in (C2), we have

that the integral on the right hand side of (C3) vanishes, i.e.�2�� ��F (�'+  + ��) � 0 :
Integration with respect to � gives���F ('+  + ��) = Z 10 d� �2�� ��F (�'+  + ��) + ���F ( + ��)= ���F ( + ��) ;
and integrating another time with respect to � gives the desired result:F ('+  + �) = F ('+  ) + Z 10 d� ���F ( + ��)= F ('+  )� F ( ) + F ( + �) :
[BDF09] R. Brunetti, M. Dütsch, and K. Fredenhagen. Perturbative Algebraic Quantum Field

Theory and the Renormalization Groups. 2009. arXiv:0901.2038.
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