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AbstratWe disuss the stabilization of the ompat dimension for a lass of �ve-dimensionalorbifold supergravity models. Supersymmetry is broken by the superpotential on aboundary. Classially, the size L of the �fth dimension is undetermined, with orwithout supersymmetry breaking, and the e�etive potential is of no-sale type. Thesize L is �xed by quantum orretions to the Kähler potential, the Casimir energyand Fayet-Iliopoulos (FI) terms loalized at the boundaries. For an FI sale of orderMGUT, as in heteroti string ompati�ations with anomalous U(1) symmetries, oneobtains L � 1=MGUT. A small mass is predited for the salar �utuation assoiatedwith the �fth dimension, m� . m3=2=(LM).
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1 IntrodutionHigher-dimensional supergravity and superstring theories provide a promising frameworkfor the uni�ation of matter, gauge interations and gravity [1℄. These theories possessvaua with unbroken supersymmetry and �at higher-dimensional Minkowski spae. It is ahallenging task to �nd four-dimensional non-supersymmetri loally stable Minkowski orde Sitter vaua, with ompat extra dimensions smaller than the eletroweak sale.Classially, size and shape of the ompat dimensions are generially undetermined.Stabilization an our as a result of quantum orretions. In �eld theory, these inlude theCasimir energy [2�6℄ and loalized Fayet-Iliopoulos (FI) terms [7℄. Loop- and �0-orretionsplay a ruial role for the stabilization of volume moduli in string theory [8�11℄, in additionto �uxes. Furthermore, in string theory and �eld theory nonperturbative orretions tothe superpotential are often required to ahieve a omplete stabilization of the ompatdimensions [12, 13℄.Reently, it has been suggested that the interplay of Casimir energy and loalized Fayet-Iliopoulos terms an lead to the stabilization of the ompat dimensions [6℄. For a FI masssale O(MGUT), as it ours in some ompati�ations of the heteroti string [14℄, one thenobtains for the size of the ompat dimensions L � 1=MGUT. The height of the barrierwhih separates four-dimensional from ten-dimensional Minkowski spae is O(m23=2MGUT).It therefore vanishes for unbroken supersymmetry.In this paper we study the interplay of supersymmetry breaking and FI terms in su-pergravity. We shall onsider the simplest ase of �ve-dimensional orbifold models, whihinlude the dynamis of the radion super�eld (f. [13, 15, 16℄). Suh models an be on-sidered a toy version for anisotropi ompati�ations of ten-dimensional string theories,whih have one `large' ompat dimension. Due to the no-sale struture of the Kählerpotential, it is impossible to realize non-supersymmetri loally stable Minkowski or deSitter vaua at tree level [17�19℄. The radion �at diretion needs to be lifted by quantumorretions to the Kähler potential, whih always inlude the Casimir energy.As we shall see, perturbative orretions to the Kähler potential, together with a non-zero brane superpotential, imply `almost no-sale' models, similar to the one proposed byLuty and Okada [20℄. The hiral super�eld, whih generates the expetation value of thesuperpotential, ouples to bulk �elds. This oupling leads to a ontribution to the radionpotential, whih is of the same order of magnitude as the Casimir energy. The resultingradion potential allows for metastable Minkowski or de Sitter vaua, without the need ofan additional `uplifting' mehanism.The paper is organized as follows. Setion 2 desribes the no-sale model of a radion�eld oupled to a brane loalized hiral super�eld. The general struture of `almost no-sale' models is analyzed in Setion 3, where also a formula for the radion mass is derived.The stabilization indued by loalized FI terms is worked out in Setion 4, whih is followedby a brief summary in Setion 5.
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2 A lass of no-sale modelsConsider the bosoni part of the ation of �ve-dimensional (5D) N = 1 supergravityompati�ed on S1=Z2, with bulk and brane ontributionsS5 = Sbulk + Æ(y)Svis + Æ(y � L)Shid ; (2.1)whereSbulk = M352 Z d4x Z L0 dyp�g5�R5 � 12HMNHMN + Lbulk� : (2.2)Here HMN = �MBN��NBM is the �eld strength of the graviphoton, the spin-1 omponentof the supergravity multiplet. Dimensional redution of this ation on the bakgroundmetrids25 = g��(x)dx�dx� + r2(x)dy2 (2.3)leads toS4 = M22 Z d4xp�gr�R � 1r2��B5��B5 + L(4)bulk�+ Sbranes[g��℄ ; (2.4)where we have only kept g�� ; g55 and B5; whih have even Z2 parity. The remaining �eldsg�5; B� are Z2 odd and thus do not have light modes. M =pM35L is the 4D Plank mass,for a stabilized radion with r0 = 1 in the vauum. Note that the radion �eld, i.e., the salefator of the �fth dimension, is dimensionless and has no quadrati kineti term. Due tothe bulk-brane struture, r ouples non-universally to the matter setor, hene it is not aBrans-Dike salar.After a onformal transformation of the metri, g�� ! r�1g��, one �nds for the ationin the Einstein frame,S4 = M22 Z d4xp�g�R� 32r2g����r��r � 1r2��B5��B5+1rL(4)bulk[rg��℄�+ Sbranes[rg��℄ : (2.5)This ation ontains a quadrati kineti term for the radion �eld. Note the presene of theunusual fator 3, whih will reappear in the Kähler potential below. This fator indiatesthat the kineti term is solely generated by the onformal transformation.A globally supersymmetri theory is haraterized by a holomorphi superpotentialW (z) and a real funtion 
(z; �z) whih yields the kineti termsLglobalkin = 
i�j��zi��z�j ; 
i�j � �i��j
 : (2.6)In the orresponding supergravity theory kineti terms and salar potential are determinedby the Kähler potentialK = �3M2 ln�� 
3M2� ; (2.7)3



with Lloalkin = Ki�j��zi���z�j (2.8)and VF = eK=M2 h(Wi +M�2KiW )Ki�j( �W�j +M�2K�j �W )� 3M�2jW j2i : (2.9)Let us now onsider a model with minimal �eld ontent and inlude one brane hiralsuper�eld X with anonial kineti term, suh that
 = �3M22 �T + �T�+X �X : (2.10)The Einstein frame omponent ation (2.5) is then obtained for the Kähler potential [21℄K = �3M2 ln�T + �T2 � X �X3M2� : (2.11)The salar omponent of the radion super�eld ontains the brane �eld X,T = r + X �X3M2 + ir23B5 ; (2.12)ompensating for the non-diagonal entries in the Kähler metri.The Kähler potential (2.11) has no-sale struture [22℄,KiKi = 3M2 ; (2.13)whih is harateristi for a universal Kähler modulus. Hene, the negative-de�nite on-tribution to the salar potential vanishes, and one obtainsVF = 1r2WX �W �X : (2.14)The equations of motion�rVF = 0 ; �XVF = 0 ; (2.15)are simultaneously satis�ed at stationary points of the superpotential,�XW jX0 = 0 : (2.16)The potential then vanishes for all values of r, satisfying the Minkowski ondition VF = 0,and the size of the ompat dimension is undetermined (f. Fig. 1).The Kähler potential does not depend on B5, the imaginary part of the omplex salarT . At minima of the superpotential W also the radion is a �at diretion. Hene, theorresponding two salar masses vanish,M21 = 0 ; M22 = 0 ; (2.17)4
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Figure 1: Example of a no-sale potential, in units of m23=2M2. It follows from the quadratisuperpotential (4.22) for the hoie p�0 ' 0:46.whereas the masses of real and imaginary part of X are equal and positive,M23 =M24 = 14WXX �W �X �X : (2.18)In the limit jWXX j ! 1, the degrees of freedom of X deouple, and it beomes a spetator�eld, i.e., only its vauum expetation value (VEV) is relevant.For non-vanishing superpotential, supersymmetry is spontaneously broken. Thefermioni omponent of the radion super�eld ats as the goldstino. The gravitino mass isgiven bym23=2 = eK=M2 jW j2M4 = r�3 jW j2M4 : (2.19)As expeted in no-sale models, the gravitino mass `slides' with the expetation value ofthe radion �eld.The potential depited in Fig. 1 illustrates the ontinuous vauum degeneray whihis generi for no-sale models. It is well known that Kähler potentials of the typeK = �3M2ln r do not admit non-supersymmetri Minkowski vaua with a positive def-inite mass matrix [17�19℄. A neessary ondition for the latter an be formulated as [18℄Ri�jk�lG�lGkG�jGi < 6M2 ; (2.20)where Ri�jk�l denotes the Riemann urvature of the Kähler manifold, andG = K +M2ln jW j2M6 : (2.21)The salar potential is then given byV = m23=2 �GiGi � 3M2� : (2.22)5



For the two-�eld no-sale Kähler potential (2.11) vanishing of the vauum energy impliesRi�jk�lG�lGkG�jGi = 6M2 : (2.23)This result holds for any superpotential W (X; T ), even in the presene of nonperturbativeorretions. Therefore at least one �at diretion is unavoidable.1 We onlude that looporretions are ruial for the stabilization of the radion in a Minkowski vauum.3 Almost no-sale modelsQuantum orretions hange the real funtion 
0 of no-sale models to
 = 
0 +�
 ; (3.1)where
0 = �3M2 �T + �T2 � �3� ; �
 � 3M2r�(r; �) ; � � X �XM2 : (3.2)The orresponding Kähler potential is given byK = �3M2 ln ��
0 �1 + �
3M2
0��= �3M2 �ln�T + �T2 � �3�+ ln(1� �)� : (3.3)In the following we shall analyze the e�et of the orretion �, whih turns the no-salemodel of the previous setion into an almost no-sale model.It is straightforward to alulate the O(�) orretion to the no-sale potential,VF = 1r2 WX �W �X(1 + 2�+ �r (r�)� 3r�� (����))+ 3 �XWX �W +W �X �W �X�M2r2 �r (r���)� 3W �WM2r2 �2�r�+ r�2r�� : (3.4)The tree level minimum X0 is now shifted to X0 + �X. At linear order in �X, theextremum ondition�XVF jX0+�X = 0 (3.5)implies�X = 3WM2WXX �� �X�r (r���) + �WM2WXXX �2�r��� + r�2r����� ���X0;r0 : (3.6)1Note that this argument also applies to the mehanism of [13℄, where the F -term uplift indues a �atdiretion in the hidden setor. 6



Our systemati expansion in � is onsistent as long as j�Xj=jX0j � O(�). Aording toEq. (3.6) this holds if jWXX j � O(jW j=M2), i.e.,M3;4 � O(m3=2) : (3.7)Note that the orresponding fermion mass has to satisfy the same bound.The resulting leading order e�etive potential an then be read o� from Eq. (3.4),V (1)(r; �) = �3jW j2M2 � 2r2�r�(r; �) + 1r�2r�(r; �)� : (3.8)The stabilization of the radion at r0 leads to a mass term for the orresponding salar�utuations,r = r0 + Ær = 1 +r23� ; (3.9)where the de�nition of � renders a anonial kineti term. The mass matrix of the omplexsalars T and X has the eigenvaluesM21 = 0 ; M22 = jW j2M4 �4�3r�+ �4r�� ���X0;r0 +O(�2m23=2) ; (3.10)M23 =M24 = 14WXX �W �X �X���X0 +O(�m23=2) : (3.11)We onlude that the radion mass is O(�) relative to the gravitino mass.2 Note thatthis result does not depend on details of the stabilization mehanism. It is unavoidablewhenever the vauum is stabilized by quantum orretions to the Kähler potential, whihan be treated perturbatively.4 Perturbative stabilization of the radionIn the previous setion we disussed how quantum orretions deform the no-sale Kählerpotential suh that a stable, non-supersymmetri Minkowski vauum an emerge. We shallnow present a spei� example where the quantum orretions leading to Casimir energyand loalized Fayet-Iliopoulos terms are taken into aount. In terms of these orretionsthe size L of the extra dimension an be expliitly alulated.In general, there is a ontribution to � from the Casimir energy of the gravitationalmultiplet [23℄ and other massless bulk �elds,�
C(r) = � 12L2 �Ar3 + 3Br2 + Cr2� � 3M2r�C(r) ; (4.1)whih, aording to (3.8), orresponds to the potentialV (1)C (r) = 3jW j2M4L2r2 �Ar +B + Cr4� : (4.2)2In the ase of �0-orretions, a similar relation for the radion mass has been obtained in [19℄.7



The Casimir energy (4.2) vanishes for W = 0, i.e., for unbroken supersymmetry. Theonstant C is determined by the number of massless degrees of freedom in the bulk, theonstants A and B are bulk and brane tensions, respetively. They are needed for therenormalization of the divergent Casimir energy and depend on the renormalization sale(f. [4, 6℄). These onstants have been used to stabilize the radion at a minimum withvanishing osmologial onstant [3℄.3 Our expansion around no-sale models is onsistentas long as A and B are O(�). For simpliity, we hoose A = B = 0 in the following. As weshall see, radion stabilization in a Minkowski vauum an still be ahieved by �ne tuningthe remaining parameters of the salar potential.In addition, massive bulk �elds ontribute to the Casimir energy. The resulting termin the e�etive radion potential is known to take the form [3, 20℄V (1)C0 (r) = 3jW j2M4L2r2 C 0r4�M2bulkL2r23 Li1 �e�MbulkLr�+MbulkL r Li2 �e�MbulkLr�+ Li3 �e�MbulkLr�� ; (4.3)with the polylogarithmi funtionsLis �e�MbulkLr� � 1Xk=1 e�kMbulkLrks : (4.4)The onstant C 0 in (4.3) is related to the number of degrees of freedom with mass Mbulk,and will be spei�ed below. Note that �C0(r) an be obtained by integrating Eq. (3.8) forthe potential (4.3) (f. [23℄), whih, however, is not required for our further alulations.There are further orretions to the potential in the presene of brane-loalized kinetiterms. Their ontribution orresponds to a two-loop e�et [5,25℄ and is therefore sublead-ing. Moreover, in string theory the Kähler potential is modi�ed by supersymmetri looporretions and �0-orretions, whih ould be treated as additional ontributions to thefuntion �.In orbifold ompati�ations, generially Fayet-Iliopoulos terms of anomalous U(1) sym-metries arise at �xed points [7,14℄. They indue a non-trivial vauum on�guration of thesalar setor: Bulk �elds that are harged under the U(1) symmetry develop vauum ex-petation values and beome massive. These VEVs ensure vanishing F - and D-terms inthe bulk and at the �xed points. In the simplest ase of one hypermultiplet, ontainingthe N = 1 hiral multiplets H and H, one has�
bulk = H �H +H �H ; (4.5)�
brane = �0M35 �H �H +H �H�X �X : (4.6)A detailed analysis [26℄ shows that if the sum of the FI terms is non-zero, one of the twohiral multiplets, say H, develops an r-dependent VEV, while hHi = 0. In the 4D theory3Note, however, that the hoie of the onstants has to be onsistent with supersymmetry [24℄.8
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Figure 2: The relation between the bulk �eld ontent and the size of the ompat dimensionL = `=Mbulk. The plotted ratio of multipliities has a maximum at ^̀' 1:2.one then obtains (f. (3.2))�
FI = Z L0 dy �rhH �Hi+ Æ(y � L) �0M35 hH �HiX �X�= ��1 + �X �XM2r � � 3M2r�FI(r; �) : (4.7)Here � is the sum of the two FI terms loalized at the �xed points at y = 0 and y = L,and M35L =M2, provided r0 = 1. The di�erent ouplings � and �0 re�et the disrepanybetween the ondensate at y = L and its average value. The funtion �FI orresponds tothe e�etive radion potential (f. (3.8))V (1)FI (r; �) = �2��r3 �jW j2M4 : (4.8)Note that the r-dependent bakground �eld value results in a deformation of the Kaluza-Klein spetrum. The speial ase � = 0, aompanied by strong loalization of the bulk�elds, was disussed in [27℄. Here we onsider nearly onstant VEVs. We then expetthat the bakreation on the internal geometry remains negligible, suh that the �at orbi-fold is a valid approximation. However, small warping ould be treated as an additionalontribution to the � orretion (f. [25℄ and referenes therein).Furthermore, the VEV hHi breaks the anomalous U(1) and the orresponding gaugeboson aquires a mass MV = O(p�), like the hypersalars. For simpliity, we assume aommon mass parameter for the U(1) vetor- and massive hypermultiplets.4 O(1) massdi�erenes would not hange our results qualitatively. With � = O(M2GUT) (f. [14℄), onehas MH =MV =Mbulk = O(MGUT) : (4.9)4Their ontribution to the Casimir energy was negleted in [6℄.9
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Figure 3: The funtion f(`), ` = LMbulk, whih determines the radion mass m� (f. (4.18)).In terms of the dimensionless parameter ` de�ned byL = `Mbulk ; (4.10)the resulting radion e�etive potential reads up to terms O(�),V (1)(r; �) = V (1)FI (r; �) + V (1)C (r) + V (1)C0 (r)= 3jW j2M2r2 M2bulkM2 ��2��3r3 �M2bulk + C`2r4+ C 0`2r4 �`2r23 Li1 �e�`r�+ `rLi2 �e�`r�+ Li3 �e�`r��� : (4.11)The onstant C (C 0) is determined by the number of massless (massive) vetor and hyper-multiplets nV ; nH (n0V ; n0H), respetively,C = �(3)32�2 (nH � nV � 2) ; C 0 = 132�2 (n0H � n0V ) : (4.12)In the minimal ase nH = nV = 0, only the supergravity multiplet ontributes to themassless setor. Note that only hypermultiplets give rise to positive ontributions, leadingto repulsive behaviour at small distanes. A loal minimum an be obtained for C < 0,C 0 > 0, and thereforenH < nV + 2 ; n0H > n0V : (4.13)With n0H�n0V = 1 : : :O(100), as in heteroti orbifolds [28℄, this yields the parameter range10�2 . C 0 . 1. 10



We shall now show how to obtain a ground state with vanishing vauum energy anddetermine the orresponding ompati�ation sale. For this, we have to solve the equations�rV (1)���r0;�0 = 0 ; V (1)���r0;�0 = 0 : (4.14)Imposing r0 = 1; we obtain two onditions on the quantities ` and �0,CC 0 = `23 � `1� e` � 2Li1(e�`)�� `Li2(e�`)� Li3(e�`) ; (4.15)��0C 0 = M2bulk2� � `1� e` � Li1(e�`)� : (4.16)The RHS of (4.15) is negative and bounded from below, whih translates into a onditionon the �eld ontent (f. Fig. 2),0 < 2� nH + nVn0H � n0V . 1:1 : (4.17)If this bound is satis�ed, Eq. (4.15) an be solved for `. For loal minima of the radionpotential, this gives the size L in units of 1=Mbulk (f. Eq. (4.10)).Expanding the potential (4.11) around the loal Minkowski vauum and using (4.16),one obtains for the radion massm2�m23=2 = C 0�MbulkM �2 f(`) ; (4.18)wheref(`) = 23 "` �1 + (`� 1)e`�(e` � 1)2 � Li1(e�`)# : (4.19)The radion mass vanishes for ` = ^̀' 1:2, where the ratio C=C 0 is maximal (f. Figs. 2,3).For ` > ^̀, m2� is positive and we have a stable Minkowski vauum with L & 1=MGUT(f. (4.9)). Fig. 3 also demonstrates that f(`) has a loal maximum, whih yields an upperbound on the radion mass. For C 0 . 1, one obtainsm2�m23=2 . 0:2�MbulkM �2 : (4.20)Larger radion masses require a huge number of massive speies.Having determined the size L of the ompat dimension by solving Eq. (4.15), we stillhave to satisfy Eq. (4.16). This is a ondition on ��0. Sine the RHS of (4.16) is negative,the oupling � also has to be negative. Given �, this yields a ondition on the expetationvalue �0 = X0 �X0=M2, and therefore on the parameters of the brane superpotential, whih11
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Figure 4: The two-�eld potential VF (X; r) given by (4.23) in units of m23=2M2bulk, for thehoie �=M2bulk = 1, � = �1, C 0 ' 1:0 and ` ' 2:1.determine this VEV. This ondition represents the �ne tuning whih is needed to obtain aMinkowski vauum. With M2bulk=� ' 1, one obtains the upper boundj�j�0 . 0:4C 0 : (4.21)Hene, for C 0 < 1 and j�j = O(1), the expetation value of X is smaller than the Plankmass.As an example, onsider the superpotentialW (X) = m3=2M2 "2 Xp�0M + � Xp�0M�2# ; (4.22)whih gives X = p�0M up to terms O(�X=p�0) (f. 3.6). Note that Eq. (4.22) mayrepresent the expansion of a nonperturbative brane superpotential up to seond order inthe �eld X. The orresponding two-�eld potential (3.4) is given byVF (X; r) = 1r2 WX �W �X � �� �XWX �W +W �X �W �X�M4r4 + V (1)(r; �) +O(jWX j2�) : (4.23)The potential is plotted in Fig. 4 in the viinity of X0, whih learly illustrates the almostno-sale struture of our model ompared to the no-sale ase shown in Fig. 1.Figure 5 shows the resulting radion potential VF (X0; r) for ` ' 2:1, whih orrespondsto n0H � n0V = 2� nH + nV . The stable Minkowski vauum is separated from the runawaysolution by a barrier of heightVbarrier � m23=2M2GUT : (4.24)12
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on a brane, and stabilization is ahieved by the Casimir energy of massive and masslessbulk �elds. Here, a supersymmetri bulk mass Mbulk ' MGUT � m3=2 is indued byloalized Fayet-Iliopoulos terms [14℄ via the Higgs mehanism. Finally, the brane �eld,whih provides the non-zero superpotential, ouples to massive bulk �elds. This yields anadditional ontribution to the potential, whih has the same order of magnitude as theCasimir energy [6℄. In this way, a loally stable Minkowski or de Sitter vauum an beobtained without the need of an additional uplifting mehanism.5 ConlusionsWe have onsidered �ve-dimensional supergravity theories ompati�ed on the orbifoldS1=Z2. The expetation value of a hiral super�eld loalized at one of the �xed points,with non-vanishing superpotential, indues supersymmetry breaking by the radion �eld.The result is a no-sale model where the gravitino mass slides with the undeterminedexpetation value of the radion �eld. Perturbative orretions to the Kähler potential,Casimir energy and bakground values of bulk �elds indued by loalized Fayet-Iliopoulosterms, deform the no-sale model into an almost no-sale model. The size of the ompatdimension is �xed at L � 1=Mbulk � 1=MGUT.Our study of �ve-dimensional orbifold supergravity models has been motivated byreent orbifold ompati�ations of the heteroti string whih yield the supersymmetristandard model in four dimensions [28℄, with orbifold GUTs in �ve or six dimensions as in-termediate step. It will be interesting to expliitly hek whether the one-loop �eld theoryorretions to the Kähler potential onsidered in this paper are indeed the leading part ofthe one-loop string orretions. This may be the ase for anisotropi orbifold ompati�a-tions of the heteroti string leading to orbifold GUTs, sine the Kaluza-Klein masses whihontribute to the Casimir energy are smaller than the masses of string exitations. Stringtheory also predits a superpotential for loalized hiral super�elds and ouplings of braneto bulk �elds. Hene, also radion mediated supersymmetry breaking may be realized.For a general perturbative orretion � to the Kähler potential, we have alulatedthe orretion to the e�etive radion potential to leading order in �. The orrespondingradion mass is volume suppressed ompared to the gravitino mass. Moreover, sine thestabilization is ahieved by quantum orretions, the radion mass is also loop-suppressed.In addition, a tiny mass for the pseudosalar partner of the radion, an axion, is generated bynonperturbative e�ets of non-Abelian gauge theories. Hene, the presene of light moduli�elds is an unavoidable onsequene of the proposed stabilization mehanism. This is inontrast to models where the nonperturbative dependene of the superpotential on moduli�elds plays a ruial role. In suh models the moduli �elds an be heavy (f. [12, 32℄).It remains to be seen whether the light moduli predited by our stabilization meh-anism are onsistent with the various potential `osmologial moduli problems'. On theother hand, a radion with a mass two to four orders of magnitude smaller than thegravitino mass, ould produe a distintive signature in the osmi gamma-ray spetrumand in this way beome a `smoking gun' for the existene of extra dimensions related to14
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