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Integrability of sattering amplitudes in N = 4 SUSY �L. N. Lipatov ySt. Petersburg Nulear Physis Institute, RussiaII. Institut f�ur Theoretishe Physik, Universit�at Hamburg, GermanyFebruary 10, 2009
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AbstratWe argue, that the multi-partile sattering amplitudes in N = 4 SUSY at large N and inthe multi-Regge kinematis for some physial regions have the high energy behavior appearingfrom the ontribution of the Mandelstam uts in the orresponding t-hannel partial waves. TheMandelstam uts orrespond to gluon omposite states in the adjoint representation of the gaugegroup SU(N). The hamiltonian for these states in the leading logarithmi approximation oin-ides with the loal hamiltonian of an integrable open spin hain. We onstrut the orrespondingwave funtions using the integrals of motion and the Baxter-Sklyanin approah.1 IntrodutionAt high energies s � �t in QCD the elasti sattering amplitude for the proess AB ! A0B0 in theleading logarithmi approximation (LLA)�s ln s � 1 ; �s � 1 (1)has the Regge form [1℄A2!2 = 2 gÆ�A�A0T AA0 s1+!(t)t g T BB0 Æ�B�B0 ; t = �~q2 : (2)Here T  are the generators of the gauge group SU(N), �r are the partile heliities and j(t) = 1+!(t)is the gluon Regge trajetory for the spae-time dimension D = 4� 2�!(�~q2) = ��sN(2�)2 (2��)2� Z d2�2�k ~q2~k2(~q � ~k)2 � � a �ln ~q2�2 � 1�� : (3)In the framework of the dimensional regularization the parameter � is the renormalization point forthe 't Hooft oupling onstant anda = �sN2� �4�e��� ;  = � (1) ; (4)where  = � (1) is the Euler onstant and  (x) = (ln �(x))0. The gluon trajetory j(t) was alulatedalso in the next-to-leading approximation in QCD [2℄ and in the SUSY gauge models [3℄.In LLA gluons with momenta kr (r=1,..,n) are produed in the multi-Regge kinematiss = (pA + pB)2 � sr = (kr + kr�1)2 � �tr = q2r ; kr = qr+1 � qr ; (5)�The talk given at the memorial Alexei Zamolodhikov onferene, June 21-23, 2008, Mosow, Russia.ySupported by the Maria Curie Award and grants RFBR 07-02-00902-a, RSGSS 5788.2006.2.1
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where the amplitude has the fatorized formA2!2+n = 2 s Æ�A�A0 g T 1AA0 s!(�~q21)1 ~q21 gC�(q2; q1)e��(k1)T d121 s!(�~q22)2 ~q22 ::: s!(�~q2n+1)n+1~q2n+1 g T n+1BB0 Æ��B0 : (6)Here C�(q2; q1) is the e�etive Reggeon-Reggeon-gluon vertex. In the ase when the polarizationvetor e�(k1) desribes the gluon with a positive heliity in its .m. system with the partile A0 onean obtain [4℄ C � C�(q2; q1) e��(k1) = p2 q�2q1k1 ; (7)where the omplex notation q = qx + iqy for the two-dimensional transverse vetors ~q was used.The elasti sattering amplitude with vauum quantum numbers in the t-hannel is alulated interms of the prodution amplitude A2!2+n with the use of the s-hannel unitarity [1℄. In this approahthe Pomeron appears as a omposite state of two Reggeized gluons. It is onvenient to present the gluontransverse oordinates in the omplex form together with their anonially onjugated momenta [4, 5℄�k = xk + iyk ; ��k = xk � iyk ; pk = i ���k ; p�k = i ����k : (8)In this ase the homogeneous Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation for the Pomeron wavefuntion an be written as follows [1℄E	(~�1; ~�2) = H12	(~�1; ~�2) ; � = ��sN2� min E ; (9)where � is the Pomeron interept entering in the asymptoti expression for the total ross-setion�t � s�. The BFKL Hamiltonian has a rather simple operator representation [5℄H12 = ln jp1p2j2 + 1p1p�2 (ln j�12j2) p1p�2 + 1p�1p2 (ln j�12j2) p�1p2 � 4 (1) (10)with �12 = �1 � �2. The kineti energy is proportional to the sum of two gluon Regge trajetories!(�jpij2) (i = 1; 2). The potential energy � ln j�12j2 is obtained by the Fourier transformation fromthe produt of two gluon prodution verties C�. This Hamiltonian is invariant under the M�obiustransformation [6℄ �k ! a�k + b�k + d ; (11)where a; b;  and d are omplex parameters. The eigenvalues of the orresponding Casimir operatorsare expressed in terms of the onformal weightsm = 12 + i� + n2 ; em = 12 + i� � n2 ; (12)where � and n are respetively real and integer numbers for the prinipal series of unitary represen-tations of the M�obius group SL(2; C). The eigenvalues of H12 depend on these parameters [6℄Em;em =  (m) +  (1�m) +  (em) +  (1� em)� 4 (1) : (13)The Pomeron interept in LLA is positive� = 4 �s� N ln 2 > 0 (14)and therefore the Froissart bound �t <  ln2 s for the total ross-setion is violated [1℄. To restore thebroken s-hannel unitarity one should take into aount the ontributions of diagrams orrespondingto the t-hannel exhange of an arbitrary number of reggeized gluons in the t-hannel. The wave2



funtion of the olorless state onstruted from n reggeized gluons an be obtained in LLA as asolution of the Bartels-Kwieinski-Praszalowiz (BKP) equation [7℄E	 = H(0)	 ; � = ��sN4� min E (15)In the N ! 1 limit the olor struture is simpli�ed and the orresponding Hamiltonian has theproperty of the holomorphi separability [8℄H(0) = nXk=1Hk;k+1 = h(0) + h(0)� ; [h(0); h(0)�℄ = 0 : (16)It is a onsequene of the similar property for the pair BFKL hamiltonian H12 (10) and the energyEm;em (13).The holomorphi Hamiltonian in the multi-olor QCD an be written as follows (f. (10))h(0) =Xk h(0)k;k+1 ; h(0)12 = ln(p1p2) + 1p1 (ln �12) p1 + 1p2 (ln �12) p2 � 2 (1) ; (17)where  (x) = (ln �(x))0. As a result, the wave funtion 	 has the holomorphi fatorization [8℄	 =Xr;er ar;er	r(�1; :::; �n)	er(��1; :::; ��n) ; (18)whih in the ase of two-dimensional onformal �eld theories is a onsequene of the in�nite dimen-sional Virasoro group. Moreover, the holomorphi hamiltonian h(0) is invariant under the dualitytransformation [9℄ pi ! �i;i+1 ! pi+1 ; (19)ombined with its transposition.Further, there are integrals of motion qr ommuting among themselves and with h(0) [5, 10℄:q(0)r = Xk1<k2<:::<kr �k1k2�k2k3 :::�k2k3 :::�krk1 pk1pk2 :::pkr ; [qr; h℄ = 0 : (20)The integrability of the BFKL dynamis in LLA was established in Ref. [10℄. This remarkableproperty is related to the fat that h oinides with the loal Hamiltonian of an integrable Heisenbergspin model [11℄. Eigenvalues and eigenfuntions of this hamiltonian were onstruted in Refs. [12, 13℄in the framework of the Baxter-Sklyanin approah [14℄.In the next-to-leading approximation the integral kernel for the BFKL equation was onstrutedin Refs. [3, 15℄. In QCD the eigenvalue of the kernel ontains the Kroniker symbols Æn;0 and Æn;2but in N = 4 SUSY it is an analyti funtion of the onformal spin and having the property of themaximal transendentality [3, 16℄. This extended supersymmetri theory appears in the frameworkof the AdS/CFT orrespondene [17, 18, 19℄. It is important, that the one-loop anomalous dimensionfor twist-2 operators in N = 4 SUSY is proportional to the expression  (1)� (j�1), whih is relatedto the integrability of evolution equations for the quasi-partoni operators in this model [20℄. Theintegrability persists also for some operators in QCD [21℄. The maximal transendentality priniplesuggested in Ref. [16℄ gave a possibility to extrat the universal anomalous dimension up to three loopsin N = 4 SUSY [22, 23℄ from the orresponding QCD results [24℄. The integrability of the N = 4model was veri�ed also for other operators, large oupling onstants and in higher loops [25, 26, 27℄.The asymptoti Bethe ansatz and integrability allowed to alulate the anomalous dimensions in fourloops [28℄. The result is in an agreement with the next-to-leading BFKL preditions after taking intoaount the wrapping e�ets [29℄. The maximal transendentality was helpful for �nding a losedintegral equation for the usp anomalous dimension in this model [30, 31℄ with the use of the 4-loopresult [32℄. 3



There is another region of investigation, in whih remarkable properties of the N=4 SUSY are alsofound. Namely, Bern, Dixon and Smirnov (BDS) suggested a simple ansatz for the gluon satteringamplitudes in this model [33℄. This ansatz was veri�ed for the elasti amplitude in the strong ouplingregime using the AdS/CFT orrespondene [34℄. But the BDS hypothesis does not agree in this regimewith the alulation of the multi-partile amplitude [35℄. The property of the onformal invarianeof the BDS amplitudes in the momentum spae was disussed in Ref. [36℄ and the relation withthe Wilson loop approah was suggested in Ref. [37℄ generalizing the results of the strong ouplingalulations of Ref. [34℄. The BDS amplitudes An for n � 6 in the multi-Regge kinematis do nothave orret analyti properties ompatible with the Steinman relations [38℄. It is a onsequene ofthe fat, that these amplitudes do not inlude the Mandelstam uts [38℄. This ut ontribution wasobtained from the BFKL-like equation for the amplitude with the t-hannel exhange in the adjointrepresentation of the gauge group [38℄. This equation was solved in LLA and the two-loop expressionfor the 6-point sattering amplitude in the multi-Regge kinematis was derived [39℄. Reently thetwo-loop orretion was alulated numerially for some values of external momenta in an agreementwith expetations based on the Wilson loop approah [40℄.In this paper we demonstrate, that in the multi-olor limit for the prodution amplitudes theontributions of the Mandelstam uts generated by the multi-Reggeon t-hannel exhange an beexpressed in terms of the solution of the BKP-like equation for the omposite states of several reggeizedgluons in the adjoint representation. It turns out, that in LLA the orresponding Hamiltonian oinideswith the loal Hamiltonian of an integrable open Heisenberg spin hain. These results partly werepresented at the onferenes [41, 42℄.2 Mandelstam utsA planar amplitude for the prodution of two gluons in the multi-Regge kinematis s� js1j � js2j �js3j � jt1j � jt2j � jt3j has the multi-Regge form almost in all physial kinematial regions. But in thephysial region where s1; s3 < 0; s > 0; s2 > 0 the amplitude ontains also the Mandelstam ut [43℄in the angular momentum plane j2 of the rossing hannel t2 = �q2 [38℄ in the adjoint representationof the olor group. The ut appears as a result of the exhange of two reggeized gluons with themomenta p1 = k and p2 = q � k, respetively [39℄ (see Appendix A for more details). In the regions1; s3 < 0; s2 > 0 the integrals over the Sudakov variables � = kpA=pApB and � = kpB=pApB do notvanish as in other regions beause the integrand ontains singularities situated above and below theorresponding integration ontours in an aordane with the Mandelstam requirements [43℄. Thesesingularities lead to simultaneous disontinuities of the amplitude in the invariants s2 and s.For the planar amplitude with six external partiles only diagrams with two reggeons in the t2-hannel give a non-vanishing ontribution beause for a larger number of reggeons the Mandelstamonditions for singularities in other Sudakov variables are not ful�lled. However in the ase of alarger number of external partiles the exhange of several reggeons with momenta pl gives also anon-vanishing ontribution to the amplitude onstruted from planar diagrams. For the Mandelstamut resulting from an exhange of n reggeons one needs at least k=2+2n external partiles to havesimultaneous singularities in upper and lower omplex semi-planes for the Sudakov parameters �0l; �0lof the reggeon momenta pl, as it is demonstrated in Appendix A.Let us disuss suh omposite state of n reggeized gluons in the adjoint representation (f. a similarapproah for the simple ase n = 4 in Ref. [39℄). One an write the homogeneous BKP equation forits wave funtion desribed by an amplitude with amputated propagators in the form (see AppendixA) H	 = E	 ; �n = �g2N16�2 E : (21)Here H is a rede�ned hamiltonian obtained after subtration of the gluon Regge trajetory !(t)4



ontaining infrared divergenies. Namely, the Regge trajetory of the omposite state is [41, 42℄!n(t) = a�1� � ln �t�2�+�n ; a = g2N8�2 �4�e��� ; (22)where �n is the infrared stable quantity expressed in terms of the energy E.The hamiltonian H in the multi-olor limit an be written in the holomorphially separable form(see Appendix A) (f. [39℄)H = h+ h� ; h = ln p1 pnq2 + n�1Xr=1 htr;r+1 ; q = nX1 pr ; (23)where the pair hamiltonian htr;r+1 is transposed to the orresponding unamputated operator (17)htr;r+1 = ln(prpr+1) + pr ln(�r;r+1) 1pr + pr+1 ln(�r;r+1) 1pr+1 + 2 : (24)It is seen from eq. (23) that the holomorphi hamiltonian for the omposite state in the adjoint repre-sentation di�ers from the orresponding expression for the singlet ase h(0) (17) after its transpositiononly by the substitution hn;1 ! ln p1 pnq2 ; (25)whih is related to the fat, that the planar Feynman diagrams have the topology of a strip and theinfrared divergenies in the Regge trajetories of the partiles 1 and n are not ompensated by theontribution from the pair potential energy Vn;1.It turns out, that the eigenvalues E do not depend on jqj2 due to the sale invariane of H , as itwill be demonstrated below. As a result, the t-dependene of !n(t) is the same as in the gluon Reggetrajetory.The transposed holomorphi hamiltonian is related to the initial hamiltonian by the similaritytransformation ht =  nYr=1 pr!�1 h  nYr=1 pr! ; (26)whih leads to the following hermiity property of the total hamiltonian HH+ =  nYr=1 jprj2!�1 H  nYr=1 jprj2! : (27)The last relation is ompatible with the normalization ondition for the wave funtionjj	jj2 = Z n�1Yr=1 d2pr	� nYs=1 jpsj�2	 ; nXs=1 ps = q : (28)Using the duality transformation (f. [9℄)p1 = z0;1 ; pr = zr�1;r ; q = z0;n ; �r;r+1 = i ��zr = i�r ; (29)the holomorphi hamiltonian an be rewritten as followsh = ln z0;1 zn�1;nz20;n + n�1Xr=1 htr;r+1 ; (30)5



where htr;r+1 = 2 ln(�r) + 1�r 1zr�1;r + 1�r 1zr+1;r + ln(zr;r+1 zr�1;r) + 2 : (31)Here and later we neglet the pure imaginary ontribution 2 ln(i) beause it is anelled in the totalhamiltonian H . Note, that for the olorless omposite state and q = z0;n = 0 the transformation (29)is indeed redued to the usual duality substitution of Ref. [9℄.To simplify h one an use the relations [5, 9℄ln � = � lnx+ 12( (x� + 1) +  (�x�)) ;ln(x2�) = lnx+ 12( (x�) +  (�x� + 1)) ;ln � = ln(x2�)� 2 lnx+ 1� 1x : (32)Then htr;r+1 an be presented as followshtr;r+1 = ln(z2r;r+1�r) + ln(z2r�1;r�r)� ln zr;r+1 � ln zr�1;r + 2 : (33)Further, by regrouping its terms we an write the holomorphi hamiltonian in another formh = �2 ln z0;n + ln(z20;1�1) + ln(z2n�1;n�n�1) + 2 + n�2Xr=1 h0r;r+1 ; (34)where h0r;r+1 = ln(z2r;r+1�r) + ln(z2r;r+1�r+1)� 2 ln zr;r+1 + 2= ln(�r) + ln(�r+1) + 1�r ln zr;r+1 �r + 1�r+1 ln zr;r+1 �r+1 + 2 : (35)The pair hamiltonian h0r;r+1 oinides in fat after the substitution zr ! �r with the orrespondinghamiltonian in the oordinate representation (17) ating on the wave funtion with non-amputatedpropagators.In partiular, for n = 2 one obtains (f. [39℄)h = �2 ln z0;2 + ln(z20;1 �1) + ln(z21;2 �1) + 2 : (36)It is important, that h (34) is invariant under the M�obius transformationszk ! azk + bzk + d (37)and does not ontain the derivatives �0 and �n. Therefore we an putz0 = 0 ; zn =1 ; (38)whih leads to the simpli�ed expression for hh! h0 = ln(z21�1) + ln(�n�1) + 2 + n�2Xr=1 h0r;r+1 : (39)To return to initial variables in the �nal expression for the wave funtion one should perform thefollowing substitution of zk zk ! zk � z0zk � zn = Pkr=1 prq �Pkr=1 pr : (40)6



Aording to the above representation (30) for h, its transposed part ht an be obtained from hby the similarity transformation whih an be written in terms of h0 as followsh0 t = z�11  n�2Yr=1 zr;r+1!�1 h0 z1  n�2Yr=1 zr;r+1! ; (41)whih is ompatible with the following normalization ondition for the wave funtion in the full two-dimensional spae jj	jj21 = Z d2zn�1jz1j2 n�2Yr=1 d2zrjzr;r+1j2 j	j2 : (42)On the other hand, from the expression (39) for h0 we obtain another relation for h0 th0 t =  n�1Yr=1 �r! h0  n�1Yr=1 �r!�1 ; (43)orresponding to the seond normalization ondition for 	 ompatible with the hermiity propertiesof the total hamiltonian jj	jj22 = Z n�1Yr=1 d2zr 	� n�1Yr=1 j�rj2	 : (44)By omparing two above relations between h0 and h0 t one an onlude (f. [10℄), that the operatorA0 = z1 n�2Ys=1 zs;s+1 n�1Yr=1 �r (45)ommutes with the holomorphi hamiltonian[A0; h0℄ = 0 : (46)3 Integrable open spin hainLet us verify, that the holomorphi hamiltonian h0 (39) also ommutes with the di�erential operatorD(u) being the matrix element T22 of the monodromy matrix (f. [10℄)T (u) = � A(u) B(u)C(u) D(u) � = L1(u)L2(u):::Ln�1(u) ; (47)where the L-operator is de�ned by the relationLr(u) = � u+ izr�r i�r�iz2r�r u� izr�r � : (48)To prove the ommutativity of h0 and D(u) one an use the following relation[Lk(u)Lk+1(u); h0k;k+1℄ = �i (Lk(u)� Lk+1(u)) ; (49)valid due to the M�obius symmetry of the pair hamiltonian[ ~Mk;k+1; h0k;k+1℄ = 0 ; ~Mk;k+1 = ~Mk + ~Mk+1 (50)and the ommutation relation (see [9℄)[h0k;k+1; [ ~M2k;k+1; ~Nk;k+1℄℄ = 4 ~Nk;k+1 ; ~Nk;k+1 = ~Mk � ~Mk+1 : (51)7



The last relation is a onsequene of the fat, that the operator ~Nk;k+1 has non-vanishing matrixelements only between the states jmk;k+1 > and jmk;k+1 � 1 > in the representation, where theCasimir operator of the M�obius group is diagonal~M2k;k+1jmk;k+1 >= mk;k+1(mk;k+1 � 1)jmk;k+1 > : (52)In this representation the ommutation relation (51) is redued to the reurrent relation for theeigenvalues �(mk;k+1) of the hamiltonian h0k;k+1 (35)�(m+ 1)� �(m) = 2=m ; (53)ful�lled due to the well known representation of �(m)�(m) =  (m) +  (1�m) + 2 : (54)Relation (49) leads to the equality[T (u); n�2Xr=1 h0r;r+1℄ = iL2(u)L3(u):::Ln�1(u)� iL1(u)L2(u):::Ln�2(u) : (55)On the other hand, one an easily verify, that[T22(u); ln(z21�1) + ln �n�1℄ = (0 ; 1) [T (u); ln(z21�1) + ln �n�1℄� 01 �= �i (0 ; 1) (L2(u)L3(u):::Ln�1(u)� L1(u)L2(u):::Ln�2(u))� 01 � ; (56)whih proves that the di�erential operator D(u) = T22(u) is an integral of motion[D(u); h0℄ = 0 : (57)Thus, our hamiltonian is the loal hamiltonian for an open integrable Heisenberg spin model with thespins whih are generators of the M�obius group1.With the use of the following deomposition of the L-operatorsLr(u) = � u 00 u �+� 1�zr � (zr ; 1) i�r (58)one an onstrut the matrix element T22 = D(u) in an expliit wayD(u) = n�1Xk=0 un�1�k q0k ; (59)where q00 = 1 ; q01 = �i n�1Xr=1 zr �r : (60)In a general ase the integrals of motion q0k are given belowq0k = � X0<r1<r2<:::<rk<n zr1 k�1Ys=1 zrs;rs+1 kYt=1 i�rt : (61)1I thank L. D. Faddeev for the fruitful disussion in whih he suggested, that the operator D(u) ould be an integralof motion for this open spin hain. 8



In partiular, we obtain, that q0n�1 is proportional to the integral of motion A0 (45)q0n�1 = �in�1z1 n�2Ys=1 zs;s+1 n�1Yt=1 �t = �in�1A0 : (62)Note, that one an parameterize the monodromy matrix in another formT (u) = � j0(u) + j3(u) j+(u)j�(u) j0(u)� j3(u) � ; j�(u) = j1(u)� ij2(u) : (63)In this ase the Yang-Baxter equations for the urrents j� have the Lorentz-invariant representation [9℄[j�(u); j�(v)℄ = �����2(u� v) (j�(u)j�(v)� j�(v)j�(u)) : (64)Here ����� is the antisymmetri tensor in the four-dimensional Minkowski spae and �1230 = 1 ; g�� =(1;�1;�1;�1).In partiular, we obtain from the Yang-Baxter equations the relation[j0(u)� j3(u); j0(v) � j3(v)℄ = [j0(v); j3(u)℄� [j0(u); j3(v)℄ = 0 (65)and therefore the integrals of motion q0k are independent operators and ommute eah with others[q0k; q0l℄ = 0 : (66)4 Composite states of two and three gluonsIn the ase n = 2 we have only one non-trivial integral of motionq01 = �iz1 �1 : (67)Taking into aount the normalization ondition for the eigenfuntion in the two-dimensional spaejj	jj2 = Z d2z1jz1j2 j	j2 ; (68)we �nd the orthonormalized and omplete set of eigenfuntions	(2)m;em = z� 12+m1 (z�1)� 12+em ; m = 1 + n2 + i� ; em = 1 + n2 � i� ; (69)satisfying the single-valuedness requirement. Note, that using the substitution (40) one an reproduethe wave funtions of two gluon omposite states in the momentum spae (see [39℄).For the ase n = 3 the operator D(u) is given belowD3(u) = u2 � iu(z1 �1 + z2 �2) + z1z1;2 �1�2 : (70)With taking into aount the normalization onditionjj	jj2 = Z d2z1 d2z2jz1j2jz1;2j2 j	j2 ; (71)one an searh the holomorphi eigenfuntion of this operator in the form	(3)m = z� 12+m2 f �z2z1� : (72)9



The funtion f(x) satis�es the equation�x(1� x)�2 + (12 +m)(1� x)� + �� f = 0 ; x = z2z1 ; (73)where � is the eigenvalue of the operator z1z1;2�1�2. Two independent solutions of this equation anbe expressed in terms of the hypergeometri funtion Ff1(x) = F (a1; a2; 1 + a1 + a2;x) ; f2(x) = xa1+a2 F (�a2;�a1; 1� a1 � a2;x) ; (74)where the parameters a1 and a2 are obtained from the set of equationsa1 + a2 = �12 +m; a1a2 = �� : (75)The solutions near the point x = 1 an be also expressed in terms of hypergeometri funtions andare expanded as follow�(a1) �(a2)�(1 + a1 + a2)f1(x)jx!1 = 1a1a2 � (x� 1) (ln(1� x)�  (1)�  (2) +  (1 + a1) +  (1 + a2))and �(�a1) �(�a2)�(1� a1 � a2) f2(x)jx!1 = 1a1a2 � (x � 1) (ln(1� x)�  (1)�  (2) +  (1� a1) +  (1� a2))Analogously one an �nd the large-x behavior of the funtions f1 and f2f1(x)jx!1 = �(a1 + a2 + 1)�(a2 � a1)�(a2) �(1 + a2) (�x)�a1 + �(a1 + a2 + 1)�(a1 � a2)�(a1) �(1 + a1) (�x)�a2 ;f2(x)jx!1 = �(1� a1 � a2)�(a1 � a2)�(�a2) �(1� a2) (�x)�a2 + �(1� a1 � a2)�(a2 � a1)�(�a1) �(1� a1) (�x)�a1 :To onstrut the wave funtion 	 with the property of the single-valuedness in the two-dimensionalsubspaes ~z1 and ~x we should write a bilinear ombination of the funtions fi(x) and the orrespondingfuntions in the anti-holomorphi subspae efi(x�) taking into aount that in the seond pair offuntions one should perform the substitutiona1 ! ea1 ; a2 ! ea2 ; m! em = 1� n2 + i� : (76)Due to the single-valuedness of the wave funtion near x = 0 we obtain for it the following expression	 = jz2j2i� � z2z�2�n2 	m;em(~x) ; 	m;em(~x) = f1(x) ef1(x�) + C f2(x) ef2(x�) ; (77)where the onstant C should be �xed from the requirement, that the analyti ontinuation of 	 in theneighborhood of the points x = 1 and x =1 leads also to a single-valued expression. The ondition,that near x = 1 the terms proportional to jx� 1j2 ln(1� x) ln(1� x�) are absent, gives the relation�(a1 + a2 + 1)�(a1) �(a2) �( ea1 + ea2 + 1)�( ea1) �( ea2) + C �(1� a1 � a2)�(�a1) �(�a2) �(1� ea1 � ea2)�(� ea1) �(� ea2) = 0 : (78)Providing, that the onstant C is �xed by this equality, the behavior of the total wave funtion atx! 1 is simpli�edlimx!1	m;em(~x) � ( (1 + a1) +  (1 + a2)�  (�a1)�  (�a2)) j1� xj2 ln(1� x�)10



+ ( (1 + ea1) +  (1 + ea2)�  (� ea1)�  (� ea2)) j1� xj2 ln(1� x) : (79)Thus, the single-valuedness ondition at x! 1 leads to the additional equationot(�a1) + ot(�a2) = ot(� ea1) + ot(� ea2) : (80)A stronger onstraint an be obtained from the single-valuedness ondition for 	 at x ! 1.Indeed, its onsequene for the bilinear ombinations(�x)�a(�x�)�fa1 ; (�x)�a2(�x�)�fa2leads to the relations a1 � ea1 = Na1 ; a2 � ea2 = Na2 ; (81)where Na1 ; Na2 are integers. Further, the absene of the interferene terms(�x)�a1(�x�)�fa2 ; (�x)�a2(�x�)�fa1is ful�lled due to the above relation (77) for C.One an write the integral representation for the wave funtion satisfying the above onstraints	 � za1+a22 (z�2)fa1+fa2 Z d2yjyj2 y�a2(y�)�fa2 � y � 1y � x�a1 � y� � 1y� � x��fa1 ; x = z2z1 ; (82)where the integration is performed over the two-dimensional plane ~y. Note, that the integrand has noambiguity in the points y = 0; 1; x due to the derived relations between a1; ea1 and a2; ea2. Moreover,the funtion 	 near the points x = 0; 1;1 an be presented in terms of the sum of produts of abovehypergeometri funtions.There is another basis for the holomorphi solutions	1(z1; z2) = za11 za22 F (a1;�a2; 1 + a1 � a2; z1z2 ) ;	2(z1; z2) = za21 za12 F (a2;�a1; 1 + a2 � a1; z1z2 ) (83)allowing to onstrut an equivalent representation for the total wave funtion 	. Note, that thesefuntions an be written in terms of the Mellin-Barnes integrals	1(z1; z2) � Z i1�i1 �(a1 + s) �(�a2 + s) �(�s)�(a1 � a2 + 1 + s) (�z1)a1+s(�z2)a2�s d s ;	2(z1; z2) � Z i1�i1 �(a2 + s) �(�a1 + s) �(�s)�(a2 � a1 + 1 + s) (�z1)a2+s(�z2)a1�s d s : (84)Here it is assumed, that the poles of �(�s) are situated to the right from the integration ontourwhereas all other poles lie to the left of it.5 Hamiltonian and integrals of motionThe holomorphi hamiltonian for omposite states of two reggeized gluons an be written as followseh = ln(z21�1) + ln(�1) + 2 =  (z1�1) +  (�z1�1) + 2 : (85)Ating by eh on the funtion zÆ1 we obtainehzÆ1 = �(Æ) zÆ1 ; �(Æ) =  (Æ) +  (�Æ) + 2 : (86)11



In the ase of wave funtion (69) satisfying the single-valuedness and orthonormality onditions in thetwo-dimensional spae one derives the following expression for the total energy [39℄Em;em = �m + �em ; �m =  (�12 +m) +  (12 �m) + 2 : (87)Note, that it does not oinide with the orresponding result (13) for the Pomeron state.The holomorphi hamiltonian for omposite states of three gluons has the formh0 = ln(z21�1) + ln(�2) + ln(z21;2�1) + ln(z21;2�2)� 2 ln z1;2 + 4 : (88)In the region z1 � z2 (89)it is a sum of two independent pair hamiltoniansh0 =  (z1�1) +  (�z1�1) +  (z2�1) +  (�z2�1) + 4 : (90)Beause the limit x = z2=z1 !1 in solution (72) orresponds to this kinematis, we obtain� = �(a1) + �(a2) ; (91)where a1 and a2 are parameters of the three-gluon omposite state (see (75)). The eigenvalues of theintegrals of motion are also expressed in terms of these parameters. Due to the normalizability ondi-tion these quantities together with the parameters ea1; ea2 of the wave funtion in the anti-holomorphispae should be hosen as followsa1 = i�a1 + na12 ; a2 = i�a2 + na22 ;ea1 = i�a1 � na12 ; ea2 = i�a2 � na22 ; (92)where �r are real and nr are integer numbers.Note, that � = �a1 + �a2 ; n = na1 + na2 ; a1a2 = �� ; ea1 ea2 = �e� (93)and the eigenvalues of two integrals of motion q0k an be obtained as oeÆients of the polynomialsP2(u) = (u� ia1)(u� ia2) ; eP2(u) = (u� i ea1)(u� i ea2) : (94)Generally for the omposite state of n reggeized gluons the situation is similar. Namely, theholomorphi wave funtion in the regionz1 � z2 � z3 � :::� zn�1 : (95)is fatorized 	a1;a2;:::;an�1 = n�1Yr=1 zarr : (96)The energy for this solution is the sum of the partile energies� = n�1Xr=1 �(ar) : (97)The eigenvalues of integrals of motion q0k an be expressed in terms of the oeÆients of thepolynomial Pn(u) = n�1Yr=1(u� iar) : (98)12



Due to the ondition of the normalizability the parameters should have the formar = i�r + nr2 ; (99)where �r is real and nr is an integer number. The energies and eigenvalues of the integrals of motionin the anti-holomorphi spae are given by the same expressions with the orresponding substitutionof parameters ar ! ear = i�r � nr2 : (100)The holomorphi wave funtion satis�es a set of di�erential equations following from the eigenvalueequation for the operator D(u)D(u)	a1;a2;:::;an�1 = n�1Yr=1(u� iar)	a1;a2;:::;an�1 : (101)This equation an be solved with the use of the Taylor expansion	a1;::an�1 = n�1Yr=1 zarr 1Xs2=0�z1z2�s2 ::: 1Xsn�1�zn�2zn�1�sn�1 (s2; :::; sn�1) ; (102)where the oeÆients (s2; :::; sn�1) are alulated in a reurrent way. The reurrent relations obtainedfrom the eigenvalue equations for di�erent operators q0r are ompatible due to their ommutativity. Theobtained solution has the singularities at zkl = 0. But, if we onsider (n � 1)! funtions 	ai1 ;::ain�1obtained by all possible permutations of parameters ar and multiply them on the orrespondingfuntions in the anti-holomorphi subspae, it is possible to onstrut the wave funtion having thesingle-valuedness property in two-dimensional spaes ~zr	(~z1; :::; ~zn�1) = Xfi1;i2;:::;in�1gCfi1;:::;in�1g	ai1 ;ai2 ;:::;ain�1 	eai1 ;eai2 ;:::;eain�1 : (103)For this purpose one should adjust the oeÆients Cfi1;:::;in�1g in an appropriate way presumablywithout additional onstraints on the parameters ar and ear. The omposite state of n� 1 gluons hasthe following total energy E = �+ e� ; � = n�1Xr=1 �(ar) ; e� = n�1Xr=1 �(ear) : (104)6 Baxter-Sklyanin approahTo �nd a solution of the Yang-Baxter equation for the open spin hain one an use the Bethe ansatz.For this purpose it is onvenient to work in the transposed representation for the monodromy matrixT t(u) = � jt0(u) + jt3(u) jt+(u)jt�(u) jt0(u)� jt3(u) � = Lt1(u)Lt2(u):::Ltn�1(u) ; (105)where the L-operator an be hosen as followsLtr(u) = � u+ i�rzr i�r�i�rz2r u� i�rzr � : (106)The pseudo-vauum state is de�ned as a solution of the equationjt�(u)	0 = 0 : (107)13



It an be written in the form [11℄ 	0 = n�1Yr=1 z�2r : (108)Note, that the funtion j	0j2 does not belong to the prinipal series of the unitary representations.As a result, the states onstruted in the framework of the Bethe ansatz by applying the produt ofthe operators jr+(ur) to 	0 	tk = kYr=1 jt+(ur)	0 (109)are non-physial. Nevertheless, these states are eigenfuntions of the integral of motionDt(u)	tk = (jt0(u)� jt3(u))	tk = �(u)	tk (110)providing that �(u) = (u+ i)n�1 kYt=1 u� ut + iu� ut � (u+ i)n�1Q(u+ i)Q(u) (111)is a polynomial, whih leads to a quantization ondition for the Bethe roots ut. If we parameterizethis polynomial as follows �(u) = n�1Yl=1 (u� ial) ; (112)the above de�ned Baxter funtion Q(u) an be alulatedQ(u) = �(u) n�1Yl=1 �(�iu� al)�(�iu+ 1) : (113)Here for generality we inluded the fator �(u) whih is an arbitrary periodi funtion�(u) = �(u+ i) : (114)In the ase of a �nite number of the multipliers jt+(ur) in the Bethe ansatz for the wave funtion	k the expression Q(u) is also a polynomialQ(u) = kYr=1(u� ur) : (115)For suh solutions the parameters al = �kl � 1 are negative integer numbers satisfying the onditionn�1Xl=1 kl = k : (116)The orresponding Baxter funtions an be written as followsQ(u) = n�1Yl=1 klYt=1(u+ it) = maxt ktYp=1 (u+ ip)rp ; (117)where rp is the number of kt satisfying the ondition kt � p.As it was mentioned above, the polynomial solutions for Q(u) are non-physial, beause the or-responding wave funtions 	 do not belong to the prinipal series of unitary representations of theM�obius group. We should �nd a set of non-polynomial solutions Qs(u) satisfying this physial re-quirement. 14



Aording to E. Sklyanin [14℄ the orret variables in whih the dynamis of the Heisenberg spinmodel is drastially simpli�ed are the zeroes b̂r of the operator B(u) = jt+(u) entering in the mon-odromy matrix B(u) = Pn�1 n�2Yk=1(u� b̂r) ; Pn�1 = i n�1Xr=1 �r ; (118)where the operators b̂r and Pn�1 ommute eah with others[b̂r; b̂s℄ = [b̂r; Pn�1℄ = 0 : (119)It is onvenient to pass from the oordinate representation ~z to the Baxter-Sklyanin representa-tion [12℄, in whih the urrents jt+(u) and (jt+(u))� (together with the operators b̂r; b̂�r and Pn�1; P �n�1)are diagonal. We denote the eigenvalues of the Sklyanin operators by br; b�r . The kernel of the uni-tary transformation to the Baxter-Sklyanin representation is known expliitly for the ases n = 2,n = 3 and n = 4 [12℄. For general n this integral operator an be presented as a multi-dimensionalintegral [13℄.In the Baxter-Sklyanin representation the wave funtion in the holomorphi subspae an beexpressed as a produt of the pseudo-vauum state in this representation 	0(Pn�1; b1; b2; :::; bn�2)and the Baxter funtions Q(ut)	t(Pn�1; b1; :::; bn�2) = P�n�12 �mn�1 n�2Yk=1Q(bk)	0(Pn�1; b1; :::; bn�2) ; (120)where the power-like behavior in the variable Pn�1 is in an agreement with the normalization ondition.The analogous representation is valid for the total wave funtion	+(~Pn�1;~b1; :::;~bn�2) = P�n�12 �mn�1 (P �n�1)�n�12 �em n�2Yk=1Q(~br)	0(~Pn�1;~b1; :::;~bn�2) (121)with the use of the generalized Baxter funtion Q(~u) being a bilinear ombination of the usual Baxterfuntions in the holomorphi and anti-holomorphi subspaesQ(~u) =Xs;t ds;tQs(u)Qt(u�) : (122)Here Qs(u) are di�erent solutions of the Baxter equation with the same eigenvalue �(u). The oeÆ-ients ds;t are hosen from the requirement, that the funtion Q(~u) satis�es the normalization onditioneverywhere inluding the points where the funtions Qs(u) and Qt(u�) have the poles [12, 13℄. Forthe periodi spin hain this ondition leads to the quantization of the eigenvalue of the operatorA(u) +B(u) although a simpler method of quantization is based on the requirement, that all Baxterfuntions orresponding to the same eigenvalue should have the same holomorphi energy [12℄. In thease of the open Heisenberg spin model the situation is simpler and will be disussed below.7 Baxter-Sklyanin representation for two and three gluon statesLet us onsider the omposite states onstruted from two and three reggeons in the framework ofthe Baxter-Sklyanin approah. In the ase n = 2 we have the following integral of motion in thetransposed spae Dt(u) = j0 � j3 = u� i�1z1 (123)and its eigenstates in aordane with the Sklyanin approah are given by the expression	t � p� 12�m1 z�21 � z� 32+m1 : (124)15



The orresponding transposed hamiltonian is presented belowht = ln(�1z21) + ln �2 + 2 : (125)Its eigenvalue alulated on the above eigenfuntion 	t is�m =  (�12 +m) +  (12 �m) + 2 : (126)For the states omposed from three reggeized gluons the transposed integral of motion in theholomorphi subspae is Dt3(u) = u2 � iu(�1 z1 + �2 z2) + �1�2 z1z1;2 (127)and the operator jt+ is given belowjt+ = iu(�1 + �2)� �1�2z12 = i(�1 + �2) (u� b̂1) ; (128)where b̂1 = �i �1�2�1 + �2 z12 : (129)The operator jt+ is easily diagonalized after a transition to the momentum representation, wherei�1 fp1;p2 = p1 fp1;p2 ; i�2 fp1;p2 = p2 fp1;p2 : (130)In this ase the eigenvalue equation for jt� has the form�u(p1 + p2)� i p1p2( ��p1 � ��p2 )� f = (p1 + p2)(u� b1) f ; (131)where b1 is the eigenvalue of b̂1. Its solution is given belowf = �(p1 + p2; b1) �p1p2��ib1 ; (132)where � is an arbitrary funtion of p1+ p2 and b1. The dependene of 	t from p1+ p2 is �xed by thenormalization ondition 	t � (p1 + p2)�a1�a2 : (133)On the other hand, the eigenvalue equation for the integral of motion in the momentum spae anbe written in the form p1p2 ��p1 � ��p2 � ��p1�	(p1; p2) = a1a2	(p1; p2) : (134)Using the anzatz 	(p1; p2) = (p1 + p2)�a1�a2 �(y) ; y = p2p1 ; (135)we obtain the following equation for the funtion �(y)�y2 �2 + (a1 + a2 + 1) y � � a1a2� �(y) = ��y3 �2 � 2 y2 �� �(y) : (136)There are two independent solutions of this equation�1(y) = 1Xk=1 �(k � a1) �(k � a2) (�1)k�1 y�k�(k + 1)�(k)�(1� a1)�(1� a2) =16



1y F (1� a1; 1� a2; 2;�1y ) = �(a1 � a2) y�a1�(1� a2) �(1 + a1) F (�a1; 1� a1; 1 + a2 � a1;�y)+ �(a2 � a1) y�a2�(1� a1) �(1 + a2) F (�a2; 1� a2; 1 + a1 � a2;�y) (137)and �2(y) = 1a1 a2 + 1Xk=1 �(k � a1) �(k � a2) (�1)k�1 y�k�(k + 1)�(k)�(1� a1)�(1� a2) (ln y + k(a1; a2))= ��(�a1) �(+a2)�(1 + a2 � a1) y�a1 F (�a1; 1� a1; 1 + a2 � a1;�y) ; (138)where k(a1; a2) =  (k) +  (k + 1)�  (k � a1)�  (1� k + a2) : (139)One an onstrut the bilinear ombination of these solutions having the single-valuedness propertyat ~y =1 �(~y) � �1(y) e�2(y�) + �2(y) e�1(y�) + eC �1(y) e�1(y�) : (140)On the other hand let us use the above expression for �1(y) and �2(y) expressed in terms of thehypergeometri funtion regular at y = 0. To anel the interferene terms violating the single-valuedness ondition at y ! 0 in the above bilinear ombination for �(~y) we should �x eC as followseC = � sin(a1�) sin(a2�)� sin((a1 � a2)�) = � sin(ea1�) sin(ea2�)� sin((ea1 � ea2)�) : (141)Finally with the use of the integral representation for the hypergeometri funtion the wave funtion	t in the momentum spae an be written as follows	t(~p1; ~p2) = (p1 + p2)�a1�a2(p�1 + p�2)�ea1�ea2 �(~y) ; (142)where �(y) is given below�(~y) = Z d2t � 1t y + 1�a1 � 1t� y� + 1�ea1 (1� t)a2�1 (1� t�)ea2�1 (143)and satis�es the single valuedness ondition in the ~y-spae due to the quantization onditions (92).The transition to the Baxter-Sklyanin representation (u; eu) orresponds to the Mellin-type trans-formation of �(~y)�(u; eu) = Z d2yjyj2 y�iu (y�)�ieu�(~y) = Z d2t (1� t)a2�1 (1� t�)ea2�1 �(~t) ; (144)where � iu = i�u + Nu2 ; �ieu = i�u � Nu2 : (145)Here �u is a real number and Nu = 0;�1;�2; :::. The funtion � is given below�(~t) = Z d2yjyj2 y�iu (y�)�ieu � 1t y + 1�a1 � 1t� y� + 1�ea1 = tiu(t�)ieu 1 : (146)The orresponding integrals an be alulated expliitly1 = � �(1 + ea1)�(�a1) �(iu) �(�iu� a1)�(1� ieu) �(1 + ieu+ ea1) ;17



2 = Z d2tj1� tj2 (1� t)a2 (1� t�)ea2 tiu(t�)ieu = � �(a2)�(1� ea2) �(1 + ieu) �(�iu� a2)�(�iu) �(1 + ieu+ ea2) :Therefore we obtain for �(u; eu) the following expression�(u; eu) = �2�(1 + ea1)�(a2)�(�a1) �(1� ea2) �(iu)�(1 + ieu)�(�iu) �(1� ieu) �(�iu� a1) �(�iu� a2)�(1 + ieu+ ea1)�(1 + ieu+ ea2) : (147)The inverse transformation orresponds to the Baxter-Sklyanin representation for the wave funtion	t(~p1; ~p2) = (p1 + p2)�a1�a2(p�1 + p�2)�ea1�ea2 Z d2u�(u; eu) �p1p2��iu �p�1p�2��ieu ; (148)where � iu = i�u + Nu2 ; �ieu = i�u � Nu2 ; Z d2u � Z 1�1 d�u 1XNu=�1 : (149)One an interpret the wave funtion �(u; eu) in the Baxter-Sklyanin representation as a produt ofthe pseudo-vauum state u eu and the total Baxter funtion�(u; eu) = u euQ(u; eu) ; (150)where Q(u; eu) � �(iu)�(ieu)�(1� iu) �(1� ieu) �(�iu� a1) �(�iu� a2)�(1 + ieu+ ea1)�(1 + ieu+ ea2) : (151)This expression for Q(u; eu) is symmetri to the substitution(u; a1; a2)$ (eu;ea1;ea2) (152)and an be written in the fatorized formQ(u; eu) � Q(u; a1; a2)Q(eu;ea1;ea2) ; (153)where Q(u; a1; a2) = �(�iu� a1)�(�iu� a2)�2(1� iu) �(u) ; (154)�(u) =s sin(�(�iu� a1)) sin(�(�iu� a2))sin2(�i�u) : (155)The expression Q(u; a1; a2) di�ers from the Baxter funtion in the holomorphi spaeQ(u) = �(�iu� a1)�(�iu� a2)�2(1� iu) (156)only by the periodi funtion �(u) and therefore it an be onsidered also as a Baxter funtion. Note,however, that the funtion �(u) ontains a square root singularity and, as a result, the reurrenerelation for the funtion Q(u; eu) di�ers from the similar relation for Q(u) by a sign in its right handside Q(u+ i; eu) = � (u� ia1)(u� ia2)(u+ i)2 Q(u; eu) : (157)To overome this problem we an write Q(u; eu) as followsQ(u; eu) = Q(u)Q(eu) �(u; eu) ; (158)18



where the funtion � is given below�(u; eu) = sin(�(ieu+ ea1)) sin(�(ieu+ ea2))sin(i�u) sin(i�eu) : (159)This additional fator �(u; eu) an be inluded in the de�nition of a new pseudo-vauum state	0 = �(u; eu)u eu : (160)Really this pseudo-vauum state an be onsidered as the additional fator for the wave funtionin the Baxter-Sklyanin representation providing orret hermiity properties of the hamiltonian andintegrals of motion in this representation2 (see also Ref. [13℄). We shall return to this problem in ourfuture publiations.8 ConlusionIn this paper we established, that the gluon prodution amplitudes in the planar approximation ouldhave the Mandelstam ut ontributions in the multi-regge kinematis at some physial regions. Forthe ut orresponding to the omposite states of n reggeized gluons the number of external partilesshould be k � 2 + 2n. The wave funtions of these states in the adjoint representation satisfy theBFKL-like equation integrable in LLA and have the property of the holomorphi fatorization. Theorresponding holomorphi hamiltonian oinides with the loal hamiltonian for an integrable openHeisenberg spin model. The Baxter equation for this model is redued to a simple reurrent relationand an be solved in terms of the produt of the �-funtions. We onstruted the wave funtions ofomposite states of 2 and 3 gluons expliitly.I thank L. Faddeev, F. Smirnov, M. Staudaher, J. Bartels and A. Sabio Vera for helpful disussions.A Mandelstam uts in planar diagramsHere we disuss an appearane of the Mandelstam uts [43℄ in the rossing hannels having adjointrepresentations of the olor group SU(N) for the planar Feynman diagrams in the t'Hooft limit� � 1; �N � 1 and alulate the impat fators orresponding to the multi-reggeon exhange. Tobegin with, let us onsider the elasti amplitude A(s; t) for the gluon-gluon sattering in the Reggekinematis. It is well known, that in the leading logarithmi approximation the orresponding t-hannel partial wave ontains only one reggeized gluon pole. The ontribution from the Pomeronexhange with olor singlet quantum numbers is suppressed at large N. The BFKL Pomeron appearsas a omposite state of two reggeized gluons and orresponds to the Mandelstam ut in the j-planeof the rossing hannel. For the elasti amplitude the uts in the adjoint representation appear innon-planar diagrams and are also suppressed at large N. Indeed, aording to S. Mandelstam theseontributions should have the following formA(s; t) � Z d2k?(2�)2i s (�s)j(�~k2)~k2 (�s)j(�(~q�~k)2)(~q � ~k)2 �1(k?; q) �2(k?; q) ; (A.1)where j(t) are the Regge trajetories. The impat fators �r are the integrals from the partile-reggeon sattering amplitudes fr (inluding the reggeon residues) over the invariants sr in the direthannel �r(k?; q?) = ZL dsr2�ifr(pr; k; q) ; s1 = (pA � k)2 ; s2 = (pB + k)2 : (A.2)2I thank Prof. F. Smirnov for disussions related to this important interpretation of the pseudo-vauum state.19



Here the integration ontour L goes along the real axis above the right singularities of fr and belowleft ones aording to the Feynman presription. Only when the amplitude fr is onstruted fromthe diagrams having both these singularities simultaneously the result of the integration is non-zerobeause in an opposite ase we an shift the ontour L from the real axis to in�nity with a vanishingresult. The Mandelstam uts are absent also for the planar amplitude with �ve external partiles.However, in the ase of the six point amplitude there are planar diagrams in whih the Mandelstamuts are present. Let us denote the momenta of initial gluons by pA; pB and the momenta of �nalpartiles by pA0 ; k1; k2; pB0 in an aordane with the order of multipliation of the orrespondingolor matries Tr. Then this ut appears in the physial region, wheres = (pA + pB)2 > 0 ; s1 = (pA0 + k1)2 < 0 ; s2 = (k1 + k2)2 > 0 ; s3 = (k2 + pB0)2 < 0 : (A.3)This region orresponds to the transition of four partiles with their momenta pA;�k1;�k2 andpB to the two partiles with the momenta pA0 and pB0 . In the multi-Regge kinematis, where theorresponding Sudakov parameters are strongly ordered 1 � ��1 � ��2 ; ��1 � ��2 � 1, theintegrands in the impat fators �r�1(~k;~k1; ~q2; ) = ZL s d�2�i f1(pA; k; k1; q2) ; �2(~k;~k2; ~q2; ) = ZL s d�2�i f2(pB ; k; k2; q2) (A.4)in the simplest ase have only the poles in the integration variables � � 2kpA=s and � � 2kpB=s.f1 = 1(pA � k)2 + i� 1(k1 + q2 � k)2 + i� = 1�s�� ~k2 + i� 1�s��1 � (~k1 + ~q2 � ~k)2 + i� ;f2 = 1(pB + k)2 + i� 1(k2 � q2 + k)2 + i� = 1s� � ~k2 + i� 1s�2� � (~k2 � ~q2 + ~k)2 + i� : (A.5)These poles are situated above and below the integration ontours L due to the inequalities �1 <0; �2 < 0 valid in the onsidered kinematial region where s1 < 0; s3 < 0. Therefore the integrals arenon-zero and an be alulated by residues�1(~k;~k1; ~q2) = 1(~k1 + ~q2 � ~k)2 ; �2(~k;~k2; ~q2) = 1(~k2 � ~q2 + ~k)2 : (A.6)In the ase of prodution of two gluons with the same heliity at the multi-Regge kinematis inthe physial region where s1 < 0; s2 > 0; s3 < 0 the amplitude is proportional to the Born expressionA2!4 = f2!4 2s g T 1A0A 1jq1j2 g C(q2; q1)T d121 1jq2j2 g C(q3; q2)T d232 1jq3j2 g T 3B0B ; (A.7)where the Reggeon-Reggeon gluon vertex C is given above (see (7)). In the lowest order approximationthe orresponding proportionality fator fLO for the Mandelstam ut ontribution in the t2-hannelontains some additional multipliers from the e�etive verties C in omparison with the above result(see [4, 39℄) fLO = i g2N4� Z �2�d2�2�k(2�)1�2� (�s2)j(�~k2)�1jkj2 (�s2)j(�(~q2�~k)2)�1jq2 � kj2 e�1 e�2 ; (A.8)where e�1 = q�1(k1 + q2 � k) (q�2 � k�) �1(~k;~k1; ~q2) = q�1(q�2 � k�)k�1 + q�2 � k� ; (A.9)e�2 = q3(q�2 � k�2 � k�) (q2 � k) �2(~k;~k2; ~q2) = q3(q2 � k)q2 � k2 � k : (A.10)20



In the weak oupling limit j = 1 and at �! 0 the amplitude fLO islimj!1 fLO = �i a  ln ~q21~q22(~k1 + ~k2)2�2 � 1�! ; a = g2N8�2 �4� e��� ; (A.11)whih oinides in this limit with the logarithm of the fator C introdued in Ref. [38℄. This fatorviolates the Regge fatorization of the BDS amplitude in the onsidered kinematial region due to thepresene of the Mandelstam ut [38℄.One an take into aount the gluon reggeization in the hannels t1 and t3 using the followingsubstitution in the above expressions1�s�� ~k2 + i� ! �(s�� i�)j(t1)�2 ; 1s� � ~k2 + i� ! �(�s� � i�)j(t3)�2 : (A.12)It would lead to the multipliation of the integrand with the real fatorR =  �(~k1 + ~q2 � ~k)2�1 !j(t1)�1  �(~k2 � ~q2 + ~k)2�2 !j(t3)�1 � (�s1)j(t1)�1 (�s3)j(t3)�1 : (A.13)We an inlude also the diagrams with the reggeized gluon sattering in the rossing hannel. It leadsto the following expression for the Mandelstam ontribution in LLAfMandLLA = i R g2N4� Z �2�d2�2�k(2�)1�2� �2�d2�2�k0(2�)1�2� 1jkj2 1jq2 � kj2 G(~k;~k0; ~q2; ln(�s2)) e�1 e�2 ; (A.14)where G is the Green funtion satisfying the BFKL-like equation for the otet quantum numbers int2-hannel �� ln s2 G(~k;~k0; ~q2; ln(�s2)) = KG(~k;~k0; ~q2; ln(�s2)) ;G(~k;~k0; ~q2; 0) = (2�)1�2��2� Æ2�2�(k � k0) : (A.15)Here the operator K in LLA an be expressed in terms of the Hamiltonian H whih does not ontaininfrared divergenies K = !(t2)� g2N16�2 H ; !(t) = a�1� � ln �t�2� ;H = 2 ln jp1j2jp2j2jq2j2 + p1p�2 ln j�12j2 1p1p�2 + p�1p2 ln j�12j2 1p�1p2 ; (A.16)where p1 = k; p2 = q � k.Let us onsider now the Mandelstam uts onstruted from several reggeons. The non-vanishingontribution from the exhange of r + 1 reggeons appears in the planar diagrams only if the numberof the external lines is n � 2r + 4. For the inelasti transition 2 ! 2 + 2r with the initial and �nalmomenta pA; pB and pA0 ; k1; k2; :::; k2r; pB0 , respetively, the ut exists in the rossing hannel withthe momentum q = pA � pA0 � rXl=1 kl = pB0 � pB + 2rXl=r+1 kl = r+1Xl=1 q0l ; (A.17)where q0l are momenta of reggeons forming the omposite state. The orresponding amplitude has theformA(pA; pA0 ; k1; :::; k2r; pB0 ; pB) � Z rYt=1 d2q0t2� s r+1Yl=1 (�s)j(�~q02l )jq0lj2 �1(~q01; :::; ~q0r+1)�2(~q01; :::; ~q0r+1) : (A.18)21



The impat fators �1;2 are given in terms of the integrals over the Sudakov parameters �0l =2q0lpA=s; �0l = 2q0lpB=s from the reggeon-partile sattering amplitudes f1;2�1 = r�1Yl=1 ZL s d�0l2�i f1 ; �2 = r�1Yl=1 ZL s d�0l2�i f2 : (A.19)In QCD the tree expressions for f1;2 appearing in the planar diagrams are given belowf1 = I1 1(pA � q01)2 1(pA � k0 � q01)2 ::: 1(pA �Prl=1 q0l �Pr�2l=0 kl)2 1(pA �Prl=1 q0l �Pr�1l=0 kl)2 ;f2 = I2 1(pB + q01)2 1(pB � k2r+1 + q01)2 ::: 1(pB +Prl=1 q0l �P2r+1l=r+3 kl)2 1(pB +Prl=1 q0l �P2r+1l=r+2 kl)2 ;where k0 = pA0 ; k2r+1 = pB0 . The additional fators I1;2 ontain e�etive reggeon verties for theprodution and sattering of the gluons with the same heliity. They an be written in the multi-Reggekinematis (5) as follows (f. [4℄)I1 = rYl=1 q0�l+1(Q�Plt=1 q0t �Pl�1t=1 kt)(Q� �Pl+1t=1 q0�t �Pl�1t=1 k�t ) rYl=1 �r ;I2 = rYl=1 q0l+1( eQ� +Plt=1 q0�t �Pl�1t=1 k�2r�t+1)( eQ+Pl+1t=1 q0t �Pl�1t=1 k2r�t+1) rYl=1�r ; (A.20)where Q = pA � pA0 ; eQ = pB � pB0 and the Sudakov variables of the produed partiles �l =2klpA=s; �l = 2klpB=s are strongly ordered1� j�1j � j�2j:::� j�2kj ; j�1j � j�2j � :::j�2kj � 1 : (A.21)In these variables the funtions f1;2 are given belowf1 = I1 1�s�01 + i� 1�s�1�01 � jQ� q01j2 + i� 1�s�1�02 + i� 1�s�2�02 � jQ� q01 � q02 � k1j2 + i� ::: ;f2 = I2 1s�01 + i� 1s�2r�01 � j eQ+ q01j2 + i� 1s�2r�02 + i� 1s�2r�1�02 � j eQ+ q01 + q02 � k2rj2 + i� ::: ;where we took into aount, that in the essential region of integration�0l � jQj2s�l ; �0l � j eQj2s�2r�l+1 : (A.22)In the physial region, where the signs of the Sudakov parameters of momenta kl alternate with theindex l �1; �2r < 0 ; �2; �2r�1 > 0 ; �3; �2r�2 < 0 ; ::: ; (A.23)whih is equivalent to the following onstraints on the invariantss1 < 0; s2 < 0; :::; sr < 0; sr+1 > 0; sr+2 < 0; sr+3 < 0; :::; s2r+1 < 0; s > 0 ; (A.24)the integrands in expressions for �1;2 ontain poles above and below the integration ontours L overall variables �0l; �0l . Therefore �1;2 are non-zero and an be alulated by taking residues from thepoles in f1;2�1(~q01; :::; ~q0r+1) = rYl=1 q0�l+1(Q� �Pls=1 q0�s �Pl�1s=1 k�s ) (Q� �Pl+1t=1 q0�t �Pl�1t=1 k�t ) (A.25)22



�2(~q01; :::; ~q0r+1) = rYl=1 q0l+1( eQ+Pls=1 q0s �Pl�1s=1 k2r�s+1) ( eQ+Pl+1t=1 q0t �Pl�1t=1 k2r�t+1) : (A.26)In the ase of the prodution of 2r gluons with the same heliity the amplitude in N = 4 SUSY isproportional to the Born expression ontaining the e�etive Reggeon-Reggeon-gluon verties C (7).The proportionality fator f2!2+2r for the Mandelstam ut onstruted from r + 1 reggeized gluonsan be written as followf2!2+2rLO = �i g2N4� �r Q� eQZ rYl=1 �2�d2�2�q0l(2�)1�2� r+1Yl=1 (�sr+1)j(�jq0lj2)�1jq0lj2 �1�2 rYt=1 k�t k2r�t : (A.27)In the leading logarithmi approximation the proportionality fator has the formf2!2+2rLLA= �i g2N4� �r Q� eQZ rYl=1 �2�d2�2�pl(2�)1�2� �2�d2�2�p0l(2�)1�2� r+1Yl=1 1jplj2 G(p; p0; sr+1)�1�2 rYt=1 k�t k2r�t ; (A.28)where we introdue the new notation pl for the reggeon momenta q0l. The Green funtion satis�es theequation �� ln sr+1 G(~p; ~p0; sr+1) = KG(~p; ~p0; sr+1) ; G(~p; ~p0; 0) = rYl=1 (2�)1�2��2� Æ2�2�(pl � p0l) : (A.29)Here the operator K in LLA an be expressed in terms of the Hamiltonian H whih does not ontaininfrared divergenies K = !(t)� g2N16�2 H ; !(t) = a�1� � ln �t�2� ; t = �jqj2 ;H = ln jp1j2jpr+1j2jqj4 + rXl=1 Hl;l+1 ; (A.30)whereHl;l+1 = ln jplj2 + ln jpl+1j2 + pl p�l+1 ln j�l;l+1j2 1pl p�l+1 + p�l pl+1 ln j�l;l+1j2 1p�l pl+1 : (A.31)Note, that the above hamiltonian has the property of the holomorphi separabilityH = h+ h� ; h = ln p1 pr+1q2 + rXl=1 hl;l+1 ; (A.32)where hl;l+1 = ln pl + ln pl+1 + pl ln �l;l+1 1pl + pl+1 ln �l;l+1 1pl+1 : (A.33)One an take into aount also the enhaned ontributions in the impat fators leading to the Regge-type dependene of the amplitude from other invariants si (i 6= r + 1).Referenes[1℄ L. N. Lipatov, Sov. J. Nul. Phys. 23 (1976) 338;V. S. Fadin, E. A. Kuraev, L. N. Lipatov, Phys. Lett. B 60 (1975) 50;E. A. Kuraev, L. N. Lipatov, V. S. Fadin, Sov. Phys. JETP 44 (1976) 443 ; 45 (1977) 199;I. I. Balitsky, L. N. Lipatov, Sov. J. Nul. Phys. 28 (1978) 822.23
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