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1. Introduction

The main question which motivated this work is the followiitpw do conformal field theories
look like if studied from the point of view of a possibly exisf integrable structur@ There
are many quantum-field theoretical models of high intereststring theory and condensed
matter physics which are expected to have conformal inwmeeabut not enough chiral sym-
metry to make a solution in terms of standard methods of cardbfield theory look realistic.
An interesting class of examples are nonlinear sigma maodid¢hstargets being super-groups,
which have recently attracted considerable interest yoth tring theory and condensed mat-
ter physics. Some of these theories are expected to bealegit therefore seems reasonable
to expect that methods from the theory of integrable modais lie used to understand the
spectrum of these theories.

Such a program immediately faces an obstacle: Up to nowntedéhat key features of confor-
mal field theories like the factorization into left- and righoving degrees of freedom are very
hard to see with the help of the integrable structure. Udnegtaditional approaches based on
the Bethe ansatz one usually has to go a rather long way onti ®f the features of conformal
invariance become visible. We therefore looked for a simiple prototypical example where
we can improve on this state of affairs. The main point we waitustrate with the example
of Liouville theory is the following: The factorization iatleft- and right-movers can be made
manifest in a very transparent way already on the level ohtegrable lattice regularization of
a conformal field theory.

The framework in which this turns out to be the case combinesise of Baxter's Q-operators
with the Separation of Variables technique of Sklyanin [3k8k92/ Sk95]. In the cases un-
der consideration we will explicitly construct Q-opera&@"(u) andQ~ (u) which contain the
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conserved charges of left- and right-moving degrees ofifyee respectively. Within the Sep-
aration of Variables framework one may then represent aenetgte oQ*(u) andQ~(u) in
terms of a wave-function constructed directly out of theresponding eigenvalues (u) and
¢~ (u). The combination of these two ingredients yields a quantersion of the Backlund
transformation from Liouville theory to free field theoryaking the factorization into left- and
right-moving degrees of freedom transparent.

It also seems promising to view the integrable structureoof@rmal field theories as a useful
starting point for the study of massive integrable modelae @ay expect that the integrable
structure "deforms smoothly” from the massless to the massases, but is simpler to study
in the massless limits. This point of view was developed irtipalar in the beautiful series of
works [BLZ1,[BLZZ2], where conformal field theories with cealtchargec < 1 were studied.
One of our aims here is to study the counterpart of this thémry > 1. The constructions
from [BLZ1] no longer work in this case due to more severeawvitlet problems. We will use
an integrable lattice regularization to control such peofd. This will also allow us study the
Sinh-Gordon model, Liouville theory and quantum KdV theora uniform framework. We
will observe that key objects of the integrable structuke the Baxter Q-operators are indeed
related to each other by certain parametric limits.

The example chosen, Liouville theory, is of consideralterest in its own right. It has attracted
a lot of attention for more than 25 years now due to its conaestwith noncritical string
theory and two-dimensional quantum gravity (See [DGZ, Gbft]reviews and references), as
an example for interesting non-rational conformal fieldotires [TO1, TO8b], and due to its
relations to the (quantized) Teichmuller spaces of Riemsanfaces [TT06, TO7].

In the study of Liouville theory, the most popular approaotfar was based on its conformal
symmetry, leading to a complete solution in the sense of tlavih-Polyakov-Zamolodchikov
bootstrap approach [BPZ], see [CT82, GN84, D092, 2796, PT94] for some key steps in
this program, and [T01] for a more complete list of referendgénderstanding Liouville theory
from the point of view of its integrable structure has aldoaated considerable interest in the
past, going back to [FT86], and more recently being develap¢EKV| [FKO2]. This approach
has also lead to beautiful results, see in particular [FK02]

What seemed somewhat unsatisfactory, however, was theofadsults that can be directly
compared with the conformal field theory approach. It is theosd main aim of this paper to
re-derive the so-called reflection amplitude of Liouvilleebry with the help of its integrable
structure. The formula for this quantity had been conjestun [DO92 | ZZ96]. A derivation
for these conjectures was subsequently given in[[TO4]. Merare going to re-derive this result
in a completely different way, entirely based on the intbtgatructure of Liouville theory.

However, we feel that the interplay between conformal andgrable structures is still not
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completely understood. It seems particularly importanhtegrate the lattice Virasoro algebra
[EV93] into the picture and to clarify the relations with theautiful work [BMS] where closely
related models of statistical mechanics were studied. Wieatlo hope, however, is that this
paper lays some useful groundwork which will ultimatelydea a better understanding of this
important subject.

This paper is intended to give a reasonably concise overmy@wrthe main constructions, ideas
and results of our work. It is not self-contained. In ordemake the verification of our claims
possible, we either give sketches of the proofs or indicefierences where similar arguments
can be found. A more detailed presentation is in preparation

Note on notationsin order to distinguish objects associated to the threemifft models of interest, we
shall sometimes use subscripts liRg., Or;,. OF Oxqv. However, to unload the notation we shall omit
these subscripts whenever it is clear from the context wimiollel is considered.
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2. Definition of the lattice models

The aim of this section is to define three lattice models,esponding to the Sinh-Gordon
model, Liouville theory and the scalar free field theorypesgively. Anticipating discussions
of its integrable structure we will refer to the scalar freditheory as KdV theory below.

2.1 Lattice discretization

The classical counterparts of the models in question aramical systems whose degrees of
freedom are described by the fieldr, t) defined for(x, t) € [0, R] x R with periodic boundary
conditions¢(z + R,t) = ¢(x,t). The dynamics of these models may be described in the
Hamiltonian form in terms of variables(z, t), I1(x, t), the Poisson brackets being

{I(z,1), ¢(a', 1) } = 2md(x —a').
The time-evolution of an arbitrary observalokét) is then given as

0,0(t) = {H, O(t) },



with HamiltonianH being defined as

n hsne = 112 + (9,0)? + 87 cosh(2b¢) |
d
H = / 4—““" h(x), Bison = 112 + (0,0)° + dmpe™ (2.1)
0 ™
thV = H2 + (a:v¢)2 .
In order to regularize the ultraviolet divergencies thadeim the quantization of these models
we will pass to integrable lattice discretizations. Finsicdetize the field variables according to

the standard recipe
on = Pp(nA), TI, = All(nA),

whereA = R/N is the lattice spacing. Quantization is then canonical: idréablesd,,, I1,,,
n € Z/NZ are henceforth considered as operators with commutatiatices

[¢n ) Hm] - 27ri5n,m > (22)

that can be realized in the usual way on the Hilbert space (L?(R))®N. As another conve-
nient set of variables let us introduce the operafpdefined as

f2n = 672b¢n, fgnfl = 6%(Hn+nn—1*2¢n*2¢n—1) . (23)

This change of variables is invertible fiNr= 2741 odd. We will therefore restrict our attention
to this case in the following. The variablgssatisfy the algebraic relations

wib?

anil f2n = q2 f2n f2ni1 ) q=¢€ ) fn fn+m = In4tm fn fOI‘ m Z 2. (24)

These operators turn out to represent the initial data fioe gvolution in a particularly conve-
nient way, as we are going to discuss next.

2.2 Lattice dynamics

A beautiful way to define a suitable dynamics in these latticelels was proposed by Faddeev
and Volkov in [FV94]. This approach was adapted to the lattimuville model in [EKV].
Space-time is replaced by the cylindric lattice

L = {(V,T),VGZ/NZ,TEZ,V+TZGVGH}.

The condition that + 7 is even means that the lattice is rhombic: The lattice pailusest to
(v,7)are(v £ 1,7+ 1) and(v £ 1,7 — 1). We identify the variable§, with the initial values
of a discrete “field’f, . as

f2r,0 = for, f27"—1,1 = fo_1.



One may then extend the definition recursively ta(alir) € L by

_1 _
fV,T+1 = fll,?*l "9k (fufl,’r)gn (fl/+1,7') : fl/,’l?fl ) (25)
with functionsg defined respectively by

K2+ z

g«(2) = ——— for the Sinh-Gordon model,
1+ K2z
__* for Liouville theory, (2.6)
9(2) 1+ K22
gu(2) = 2 for KdV theory.

wherex plays the role of a scale-parameter of the theory. In the nmsase it can be identified
with a certain function of the physical mass [T08a]. We refefFV94] for a nice discussion
of the relation between the lattice evolution equation)(2s4d the classical Hirota equation,
explaining in particular how to recover the Sinh-Gordonan in the classical continuum
limit.

In order to construct the unitary operatdysthat generate the time evolution above let us,
following [FKV] closely, introduce the special functions,(z) andy(z) which are defined as

B Céffxz B dt e~ 2itx
wp() = o(z) ’ plr) = exp (/RHOZI_t sinh (bt) sinh(blt)> ’ 2.7)

where¢ = e5: "+ The special functionp(z) has been introduced in a related context in
[E95]. All the relevant properties (zeros, poles, asymptioéhavior, functional relations) can
be found in[Mo05, BT06, BMS]. Out of these functions let usstouct

Go(e¥™) = wy(4 + z)wy(4 — 2) for the Sinh-Gordon model,
G, (e¥™7) = ¢le 3@ (2 —z)  for Liouville theory, (2.8)
Go(e2™7) = (27133 7153 for KdV theory.

Let us then consider the operatdrdefined as

N N
U =[] Gas(fon) - Uo - [ [ Gas(fon—1) , (2.9)

n=1 r=1
whereU, is the parity operator that acts Hg - f, = f, ' - U,. The functions’s,(2) satisfy the
functional relations

Gas(q2) | Gos(q'2) = gu(z) if kK =e ", (2.10)

whereG, andy, are chosen froni.(2.8) and (2.6) according to the case at hiaeakily follows
from (2.10) thatU is indeed the the generator of the time-evolutlonl(2.5),

f,/77+1 == Ui1 . fl,’T,1 . U . (211)

One of our tasks is to exhibit the integrability of this dister time evolution.



2.3 Fock space representation

Classically the Hamiltonian density of KdV theory is the mia free field theory. The corre-
spondence with free field theory becomes manifest in thig¢athodel if we introduce lattice
analogs of the fields’(?*9-)¢ as follows [Ge85, V092]

+ —1 + = -1

n qf2n+1f2n+27 Wyr = qu,'r fy+1,7717 (2 12)

= Gfan o e =qf, £ '
Wp = qlopyilon s WU,T =4q v, 'v—1,7—1"

Note that the operatorg,, w;, satisfy the following commutation relations:

gt — + 2 —-n) ; —
L W Wy = W, W W _|a sen(m=n) if |p —m| =1,
W W, = W, W, , S L Wam = ' (2.13)
W, W, = W, W, W, Lif |n—ml| # 1.
The evolution generated by the operdtqy, is represented in these variables as
+ — wt - — w
Wl/,T+1 - Wufl,*r ) WV,T+1 - WV+1,T . (214)

This means that that the variables andw, represent the right and the left-moving degrees of
freedom respectively.

We will sometimes use an alternative representation forHitigert spaceX which not only
makes the chiral factorization into left- and right-movithegrees manifest for KdV-theory, but
will also be used in the discussion of Liouville theory. Keepin mindN = 2L + 1 let

L

N
1 1
= §1 + :_E: .
Po 21N BWn» Qo = on n:1¢ )

=TI

(2.15)
1 L
We have the following commutation relations,
_ sin 2pn s
[a:br:am]:oﬂ [ariwai]:ién m,0 ) P ==
i p N (2.16)
[poaqo]:@ﬂi)ilﬂ [q07a7jl,:]:07 [p07a7jl,::|:0'

Let F* be the Fock spaces generated by the harmonic oscill&gigta®,) for n # 0, re-
spectively. There are representations for the Hilbert sgég, in which eitherp, or q, are
represented as multiplication operators,

%SG:%Fockz/ dpf;r®-7:p_, po(f;®f;):p(f;®f;)
> (2.17)
~ Mo E/ do, .7:;2 R F,. qo(f;“o ® F;) = ¢o (ft@fd;).

o0

These representatior®,.. and Hs... for # will be called the Fock and the (zero mode)
Schrodinger representation, respectively.



3. Integrability

In order to exhibit the integrability of the discrete timeo&wtions introduced in the previous
section one needs to construct mutually commutative fasmi of self-adjoint operator§

such that
(A) [T, T'] =0, VT,T € Q,

(B) [T,U] =0, VT e Q, (3.1)
(C) if [T,0] =0, YT € Q, then O =0(Q).
Within the framework of the quantum inverse scattering édtbne may conveniently define
the family Q in terms of one-parameter famili@§«) andQ(v) of operators that are mutually

commuting for arbitrary values of the spectral parametensdv, and which satisfy a functional
relation of the form

T(u)Q(u) = a(u)Q(u — ib) + d(u)Q(u + ib) , (3.2)

with a(u) andd(u) being certain model-dependent coefficient functions. Tregator of lattice
time evolution will be constructed from the specializatmfrthe Q-operators to certain values
of the spectral parameter making the integrability of the evolution manifest.

3.1 T-operators
The definition of T-operators for the models in questionandard. It is of the general form
T(u) = treM(u), M(u) = Ly(u)Ly_y(u)...Ly(u). (3.3)

In the following subsection we will describe possible clesidor the Lax-matriceg,, (u) for
the models of interest.

3.1.1 Sinh-Gordon model

For future use let us note that the L-operator of lattice Skandon model[[FST, 1IK82, Sk83]
can be written as

_ Up + (i VUV, pv, + vt
Lp(u) = Ly(p, p) = ( , (3.4)

-1, -1 -1 ——1,—1,,—1,—1

where we have used the notations

o1, b(u—s)

u, = ex'" | v, = e = —je" , emouts)

—1e
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The key point about the definition (3.4) is the fact that thenowutation relations for the matrix
elements of_, (u) can be written in the Yang-Baxter form

Ry (U - U)Lln(u)LQn(U) = Ly, (U)Lln(U)Rm(u - U) ) (3.5)
where thel x 4-matrix Ryo(u — v) is

sinh wb(u + ib)
. h b . . b2
R(u) = sinh by isinm ‘ (3.6)

isinwbh? sinh wbhu
sinh wb(u + ib)

This implies as usual that the one-parameter family of dpesa () is mutually commutative,
[T(u), T(v)] = 0.

3.1.2 Liouville theory

Faddeev-Tirkkonen [FT95] proposed the following L-mafox the lattice Liouville model,

N i} Up + L NV lnVy v,
LLiou,n(/’Lv ILL) = < nluvil—'—ﬂinlvn " Uil ° (3'7)
n n n

This L-matrix can be obtained froth,q , (1, i) in the limit

+ -\ — 1z —Zbso ib +27bs — _'ib + T bso:
LLiou,n(/l’Jlu) = lim e 277 uy 'LShG,n(:uﬂe /L)'unZ e 2" (38)

§—00

and it also satisfies (3.5). However, it is easy to see thatdhesponding transfer matrix
T'(u) = trea (Ly(u) -+~ Ly (u)) (3.9)

generates only. + 1 commuting operators if we havé = 2L + 1 degrees of freedonT. " (u)
alone will thereforenot generate sufficiently many conserved quantities.

Fortunately there exist a second reasonable limit

L;ml’n(,u, i) = lim et 20503 u}? . LSG’n(e*%bs,u, i) - u;% e 20803 (3.10)

§—00

which leads to yet another solution fo (3.5), namely

- _ u, + uﬂ_lvnunvn uv,, + ﬂ_lv;1
LLiou,’l’L(M? /’[’) = < — 1 . (311)
n "Vn u,

The mutual commutativity of " (u) andT~ (v) for all u, v follows by standard arguments from

the commutation relations

- - +

Riy(u—v) Lf(U) Ly (v) = Ly (v) Ly (u) Rip(u —v), (3.12)



where
wb(u+ib)

67rbu 0

mbu

Riy(u) = (3.13)

isinwh? e
(b(utib)

We will later show that the splitting of the transfer maffig) into T, (v) reflects

the chiral factorization of Liouville theory into left- andght-moving degrees of freedom.

(u)andT

Liou

3.1.3 KdV theory

The operatord *(u) for lattice KdV theory can finally be constructed from the Lraatrices

[Ge85/V092]
Uy [V -
( —1 1) Y LTL (II"L)
pv, - u,

These L-matrices also satisfy (8.5) and can be obtained2M®m L, (u) and LT, (u)
by certain limiting procedures similar to (3.8).(3.10).

Ly (1)

Il
S
=i
- £
<
S
=
|
c
S <H
N
N~

It was shown in Subsectidn 2.3 that the decoupling of the fieldd dynamics into right- and
left-moving degrees of freedom becomes manifest in the¢athodel in terms of the variables
w,;r andw,, . Itis possible to show [V092] that the transfer matridésu), ¢ = +, can be
represented as a polynomial in the variablésvhich is independent of,, “.

3.2 Construction of Q-operators

Algebraic constructions of Q-operators have previouslgnbgiven in [Vo97] for the KdV
model and for the lattice Liouville theory [FKV, Ka01]. It has to ldserved, however, that
only the Q-operator related to the T-operalgr,, by means of a Baxter-type equation was
considered in[[FKV| Ka01]. We observed in the previous satige that the T-operatof
does not generate sufficiently many conserved quantitiess. sSiggests that we need a second
Q-operatoQ,, , related toT |, by a Baxter-type relation in order to complete the proof ef th

Liou

integrability of the lattice Liouville model in the senseatwulated above.

We will in the following give a uniform construction of Q-opaors for all the models in ques-
tion. For our purposes it will be most convenient to représea Q-operators as integral op-
erators with explicitly specified integral kernels. Thisifaates the derivation of the analytic
properties of the Q-operators, as first done in [BT06] forSieh-Gordon model, considerably.

IMore precisely its chiral half, as will become clear later.
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3.2.1 Representations as integral operators

In order to represent the Q-operators as integral operaitoit be convenient to use the repre-
sentation where the operatarsandv, are represented as

u, = e™Zn=pn) v, = e™Pn (3.14)
with x,,, p,, being realized on wave-functiongx), x = (xy,...,2x) as
U(x) = 5,0(x) 1) = - L)
x, - ¥(x) = 2,V (x), n Y(X) = — X).
P 271 0z,

Out of the special functiom, () let us form a few useful combinations:

= wy(z — %)
vai = 27 ,

77(33) wb(x n %)

N _sh _ wb(x —+ 2)
Wi = (W) = e |

2 —_—
Jy mtion L e B =50b+07). (3.15)
m+v ( ) - ( in—v (l‘)) = wb(l‘ — 5) ,
Lp-iT(o+8)?

Wik (z) = (Wiks¥(z)) ' =

in—v
From the known asymptotic properties of the functigyiz) it is easily found that¥ > and
WXV can be obtained frofd/*s"¢ by taking suitable limits.

The Q-operators may then be constructed in the followingegEriorm:

QF(u) = Y ' - YT (u), Q (u) =Y (u)-Y! (3.16)

—00 )

whereY¢(u) can be represented as integral operators with kernels
N
(x| Y*(u) | x HW (= )Wy (@ )+ 2,) (3.17)

whereas the operatoYs, ., have the distributional kernels

N

(x| Yioo [x) = [ eFriontontant), (3.19)

n=1

The expressions for the kernel of the operalii:) are very similar to the remarkable factor-
ized expressions for the matrix elements of Q-operatonsdan [BS90] for models with related
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guantum algebraic structures. We will present a systemadicedure to derive such factorized
expressions for a certain class of models in [BT09].

The mutual commutativity of T- and Q-operators,
[Q“(u), Q“(v)] = 0, [Q(u), T(0)] =0, e =1, (3.20)

can be shown either along the lines of [BS90, PG92, BTO06] ftben star-triangle relation
satisfied by the functiof, () [Ka00, Mo05%, BT06, BMSH, or more elegantly by writing the
Q-operators as traces of generalized monodromy matriegsyeescillator type representations
in auxilliary spacel[BT09], similar to the constructions@foperators in[BLZ1].

3.3 Proof of integrability

The key observation proving the integrability of the modslthe fact that

U=U"-U"  U"=Q¥sy) U = (Q(s.)™" (3.21)

where we have introduced the notations = s — in, s = —s — in for convenience. The
operatorsU* and U~ will be regarded as light cone evolution operators. Equaf®21) is
easily proven by noting that

N N
Qf(sy) = Yo - [[ Gosfen 1), (Q (s ) ' =Y - ][ Gaslfn). (322

The operatol, satisfiesy' - f,, | -Y_ = fy,. Thisimplies

QM (s4) - (Q (s2) ™" = ] Gaslfan) - Y - Yoo - [ | Gaslfon-1) -

n=1

It remains to notice that ' - Y_., = U, to conclude the proof of(3.21).

3.4 Chiral Q-operators in the lattice KdV model

Note that the Q-operatof3!,,, andQy,, are indeed the direct massless limits@f ,(s|u) =
Q. (u) andQg, . (s|u) = Qg (u), respectively,
Q;dv(u) = (}Lm Q;G(S + 5|u + 6) )

' (3.23)
QI:dV(u) = (Slggo Q;]G(S + 6|u - 6) .

2The papers[[Ka00, Vo05] derive integral identities whicim ¢ rewritten in the form of the star-triangle
relation [BTO6/ BMS]. An elegant proof can be given by usinmguanents similar ta [Ba08] from the Yang-Baxter
equation satisfied by the corresponding R-matrix
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The Baxter equations relate the Q-operaiQfswith the T-operatord“. In the case of KdV
theory we had seen that" andT~ depend only on right- and left-moving degrees of freedom
w;r andw; , respectively. This suggests tfat andQ~ should have the same property. And
indeed, it can be checked that

[Q7(u), w, ] =0, [Q (u),w,] =0, (3.24)

making clear thaQ™ (u) andQ~ (u) depend on the right- and left-moving degrees of freedom
only. This property implies in particular that

[Q+(u)a po] =0, [Q_(u)a po] =0, (3.25)

which means tha@™* (u) andQ~(u) can be projected ont&," and 7", respectively. We will
use the notatio,; () andQ, (u) for the resulting operators acting withi#j~ and.F", respec-
tively.

4. Analytic properties of Q-operators

It turns out that the operatof¥ («) are hermitian up to a phase fore R, see Subsectidn 4.3
below for the precise statement. It follows that the T- arel@ioperators can be diagonalized
simultaneously. To each eigenstate of the evolution opetitwe therefore have a quadruple
of functions(¢* (u), ¢" (u),t (u),q~ (u)) related to each other by equations of Baxter type, as
written out explicitly in [4.12) below.

Understanding the analytic properties of the Q-operato(squivalently) of their eigenvalues
q“(u), e = + is a key step towards understanding the spectrum of theiéseior question: It
turns out that the analytic properties of the functighg:) following from their explicit con-
structions restrict the relevant class of solutions to the&t8 equations considerably. Let us
call a pair of solutions of the Baxter equatiohs (4.12) whiels all these analytic properties
admissible Being an admissible pair of solutions to the Baxter equiatis clearlynecessary
for functionsg“(u), e = + to represent eigenstatesldf The Separation of Variables Method of
Sklyanin, developed for the models of interest in the folloywsection, will then allow us to ac-
tually construct an eigenstate Gfto each pair of admissible solutions to the Baxter equations
Being admissible is therefore not only necessary, but alffcent for solutions to the Baxter
equations)‘, ¢ = + to represent eigenstatesldf
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4.1 Analyticity

The functions)(u) are meromorphic with poles contained in the sets

Ses U (—=Ses) for the Sinh-Gordon model,

(4.1)
Ses for Liouville and KdV theory,

where the sef; is defined as
Sy = s —i(n+bZ="+b7'22"). (4.2)

The proof is very similar to the one given in [BT06, Sectiorfat]the case of the Sinh-Gordon
model.

In the case of KdV theory we may furthermore discuss the dégere of the operatof@; (u)
with respect to the parametersit is meromorphic and analytic in the strip

S, = {peC; |m(p) < N2}. (4.3)

The proof becomes simple if one uses the alternative integerator representation (A.6) for
Q. (u) given in Appendix A.

4.2 Asymptotics

Probably the most important difference between the massidethe massless cases concern
the asymptotic properties of the Q-operators. Whereas wdicd exponential decay of the
Q-operator at both ends of the u-axis in the case of the Smiakéh model,

qShG(u) ~ 67riNs|u\677an\u| : (44)

|u|—o00
Im(u)=const

in the remaining cases we find exponential decay only at od@#tihe u-axis,

qe(u) ~ em’Ns\u|e—7rN77|u\ : (45)
Imzﬁt_}:E(?gnst

while we have oscillatory asymptotic behavior at the othet:eThere exists a real numbgr
and constantd’c, C¢(p) and D¢(p) such that
qe(u) ~ N€ 6_%Nu2 (Ce(p) 627ripu + De(p) 6—27ripu) . (46)
Imu(;;;(ezgist
Most of the properties above can be proven by straightfaheatensions of the arguments in
[BTO6]. This is not the case for the oscillatory asymptofi€8). We therefore give a sketch of
the proof in Appendix A.
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4.3 Hermiticity

Some of the properties of the Q-operators become most @egrspin terms of the modified
Q-operator®*(u) which are defined as

Q(u) = =(u) Q(u), (4.7)

with normalization factor&*(u) being chosen as

e F(u+es—in
=) =

N\ :
= Flu—es +n) for the Sinh-Gordon model,

N (4.8)
= (u) = Flu+es — i) for Liouville and KdV theory.
Fo(u — €s +in)
with F(v) = (Fy(v)) "' ®(v), whereFy(z) = (2% @ +2), ¢ = ¢ (") and
dt 6—2itx
O(z) = r” . 4.9
(v) = exp </R+io 8t sinh(bt) sinh(b='t) cosh((b + bl)t)) (4.9)

The function®(x) was introduced in [BM ﬁ where all properties relevant for us are listed in
the appendix.

We then find that the operato@§«) are hermitian for alt, € R,
Q)" = Q)  VueR. (4.10)

This can be verified by using the integral identity (A.31) BITDE], taking into account the
functional relation?' (z + in) F'(z — in) = (wy(z))~" [BMS].

This property implies in particular that the coefficietyp) and D(p) that appear i (416) are
complex conjugate to each othét;“(p))* = D<(p). Of particular interest will be the so-called
reflection amplitudelefined by

R(p) = (C(p))*/ C(p). (4.11)

This quantity will play an important role later.

4.4 Functional relations
4.4.1 Baxter equations

TheQ-operators all satisfy Baxter-type finite difference equad of the general form

T(u)Q(u) = A(u)Q(u — ib) + D(u)Q(u + ib) . (4.12)

3A relative had previously appeared n [LZ97]
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The coefficient functionsi(u) and D(u) are model-dependent. In the massive case (Sinh-
Gordon model) we find

A+(u) = Ai(u,) — efﬂbN(uf%b) (1 _'_6727rb(57u+%b))N
D+(u) = Df(u) = 6+7rbN(u+%b)(1+6727rb(s+u+%b))N

)

(4.13)

Y

whereas we have for the massless cases (Liouville theoly,rKoldel) the expressions

A*(u) _ 677rbN(uféb)(1 + 6727rb(sfu+éb))N D+(u) _ 67rbN(u+§b)
. , , 4.14
Af(u) — e*TFbN(’U.*%b) D*(u) — e7rbN(u+%b)(1 + 6727rb(s+u+%b))N. ( )

The proof of the Baxter equations given(in [BT06] for the cakthe Sinh-Gordon model which
is similar to the methods af [Ba73, BS90, PG92, De99] carlyebsiextended to the other cases.

4.4.2 Quantum Wronskian relations

The following bilinear functional relation is particulgniseful:

~ ~ ~ ~

Qv+i0,) Qv —idy) — Qv +id_) Qv —id_) = 1. (4.15)
This relation is often called the quantum Wronskian retatibhe proof of[(4.15) in the case of
the Sinh-Gordon model [BT06] can easily be extended to theratases.
It is worth noting that the quantum Wronskian relation fixes absolute value of the coefficient
C<(p) which appears ir.(416) to be
|C(p)|> = (4sinh(27bp) sinh(27b~'p))~". (4.16)

The quantity|C¢(p)|~2 will later be identified as a natural spectral measure.

4.5 Scale invariance

It is worth observing that the dependence@f_ (s|u) = Qf, . (u), ¢ = + w.rt. the scale

parameter can (up to unitary equivalence) be absorbed into a shiit, of
QL (slu) = 67 QL (Olu —s) - G,

(4.17)
Quiou(8]u) = G- Qp,, (Olu +5) - G,

whereG is the unitary operato6 = H}Ll u,«_%. A similar (even simpler) property holds for
¢ (u). This reflects the scale invariance of these theories.

Equation [(4.1]7) implies in particular that in the masslesses one may represent the eigen-
values ofQ*(u) and Q™ (u) by functionsq™ (u — s) and¢~ (u + s) which do not carry any
dependence onother than the one implied by the form of the arguments, cady.
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5. Separation of variables

The construction of the Q-operator allowed us to deduce afsginditions that are necessary
for functionsq(u) to represent an eigenvalue @Qf(«). It remains to show that these condi-
tions are also sufficient, i.e. that to each solution of tleeselitions there exists an eigenvector
U, € H such thatQ¢(u)¥, = ¢ (u)¥,. We will now show how to construct such an eigen-
vector with the help of the separation of variables methd@55 Sk92| Sk95]. The upshot is
to show existence of a representatiin,, for A in which statesl are represented by wave-
functions¥(y), y = (v1,...,yx) such that eigenstates of tk¥(«) can be represented in a

fully factorized form
N

U(y) = [Ta™w), (5.1)

k=1
for a certain choice of(k). The wave functionsl'(y) have to be normalizable w.r.t. to the
measurely(y) which represents the scalar productin,,. The main issue is to show that the
conditions ony“(u) found above ensure the normalizability w.dp(y).

In the case of the Sinh-Gordon model [BT06] the represemiadi.. is simply the spectral
representation for the commutative family of opera®(s) defined as the off-diagonal element
of the monodromy matrid/ (u) = (2] o) ). We will now briefly discuss how to adapt this

method to the remaining cases.

5.1 Separation of variables for the Liouville and quantum KaV theories
The elements of the monodromy matrice$(u), e = +, satisfy the relations

Ryy(u —v) Mi(u) M3(v) = Ms(v) Mi(u) Ryy(u —v), (5.2)
Riy(u—v) My (u) My (v) = My (v) M (u) Rjy(u — v), (5.3)

whereR},(u) = diag(q, 1,1, ¢) for KdV theory, while for Liouville theory

omb(u-+ib)

ewbu 0

Thu ’

Riy(u) = o (5.4)
isinwb® e
67rb(u+ib)

Let us use the notatioh“(u) = (¢-(1) p-(s) ) The relations[(5]2) imply in particular that

B(u)B (v) = B (v)B(u),

! !

€, ==+ (5.5)
C(u)C(v) = C (v)C(u),
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Note furthermore thaB“(u), C¢(u) are positive self-adjoint for all. € R + i/2b. We may
therefore simultaneously diagonalize either one of thectiramutative families of operators
B¢(u), e = £ or C*(u), e = +. The main idea of the Separation of Variables method is td&wor
within the spectral representation for one of these fasilie

Let us consider the spectral representation for the opsrBtou), ¢ = +. It will be called the
B-representation. One may parameterize the correspoedjegvalues as

bt ( — ﬂbub H +27rbu ya)), ; ;
— H eﬂby[f H 677rby; ) (56)
b*( — nbub H 727rb (v—Ya )) : a=1 a=0

The spectral representation for the opera®i:), ¢ = + is therefore equivalent to a repre-
sentation in terms of wave-functions(y), wherey = (y{",...,v7; vo,v1,---,y;). Letus
define operatorg; such thay¢ - U(y) = y U (y).

Considering the operatofs(u), e = + instead yields what will be called the C-representation
in terms of variable§g = (§;, ..., 775 Uo 01 -+, U1 )-

5.2 The Baxter equations
5.2.1 Liouville theory

Let us define operatorsc(y¢), D¢(y:) by the prescription to order the operatgfsto the left
of the operators which appear in the expansioAf:) in powers ofe™*. It is an easy conse-
quence of the algebraic relatiofs (5.2) that these operatdron wave-functiong (y) as finite
difference operators of the form

Aya) - U(y) = Ay) 0,-U(y),  D(ya) - ¥(y) = D(va) 6, ¥(y).  (B.7)
whered; . are defined as
Os (oo, ys, ) = U(o ys +ib,...).
The coefficientsA®(u), D(u) are constrained by the quantum determinant condition
A“(u) = A (u)D(u— ib) — B (u)C(u— ib) = (14 e 23N = (58)
As anticipated by the notation we shall adopt the chaicefi4dr the coefficientst®(u), D¢(u).

The condition that¥'(y) represents an eigenstate of the transfer matii¢és), e = +, with
eigenvalues‘(u) becomes equivalent to the equations

t(ya) U(y) = A%(ys) 6a_V(y) + D(y;) 65, ¥(y), e==. (5.9)
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The eigenfunctions fof “(u) can therefore be constructed in the following form

L L

Vo(y) = [Jawd [[a" ). (5.10)

a=1 a=0

wheregs(u), e = + are solutions to the Baxter equations
t(u) ¢“(u) = A(u)q (u —ib) + D (u)q (u + ib) . (5.11)

Classifying eigenstates df (u), e = 4 thereby becomes equivalent to finding the proper set of
solutions of the Baxter equatioris (5.11).

5.2.2 KdV theory

Itis instructive to notice that the limit — oo which yields the lattice KdV model from Liouville
theory forces one of the variablgs, by convention chosen to be the variable = v,, to
diverge. The resulting parametrization for the eigenvafue ) is

L
b (u) = —ie™"boe TV H (1- e”””(“*yi)) :

L L
azl by = Heﬂbyi H efﬂbyg . (512)
b (u) = —ie™boe e T (1 — e7mtlvmwe)y) | a=1 e
a=1

The equationg (517) degenerate dot o into

A(Yo)¥(y) = A%(yo)do-¥(y),  Dyo)¥(y) = D°(yo)dos ¥(y),

whereA®(u) = e ™N(u—30) Do (y) = ¢+ N3 respectively, so thaf(3.9) far= o becomes

to U(y) = A°(Yo)do-V¥(y) + D°(y0)001+ ¥(y) (5.13)
wheret, = t*(—o0) =t~ (c0). We accordingly need to modifi (5110) as
Vo(y) = [Ja ) o wo) [T " () - (5.14)

The equation[{5.13) is solved by the exponential functigh{g,) = e~ *"e2mver, with p
being related te, ast, = 2 cosh(27bp). We will see thap can take arbitrary real values.

5.3 The Sklyanin measure

Adopting the parametrization (5.6) for the eigenvaluesefdperator8(u), e = + one needs
to find the set of aly € CN which parameterize a point in the spectrunB6fu) via (5.8). We
shall adopt the following conjecture:
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Conjecture 1. All points in the spectrum @&¢(u), e = 4+ can be parameterized by real values
ofy,...,y; andyy,..., ;.

Validity of the conjecture above isot crucial for the discussion below, we adopt it here to
simplify the exposition. However, we are rather confideat this correct. It can be checked in
certain limits and special cases. The conjecture impligsttte B-representation can be realized
on a Hilbert space of the form

Moy = L2((RL/SL) x (R /Sp4) ;s dHB) :

Elements ofH , are represented by wave-functioligy) that are normalizable w.r.tdug
and totally symmetric under permutations among the setswébes{y;« = 1,... L} and
{y.,;a=0,...L}, respectively. The C-representation can similarly beizedlon

HSou = L2((RM/Sp4n) x (RF/SL) ;5 dpc)

Elements ofHS ., are represented by wave-functiolrgy) that are normalizable w.r.tdpc
and totally symmetric under permutations among the setswébes{j";« = 0,... L} and
{g.;a=1,...L}, respectively.

The Sklyanin measuréug can be found by the same method as used in [BT06] from the
requirement thad“(v) andD¢(v) are positive self-adjoint. We have

dug(y) = dug(y™) dug(y™), (5.15)
where
LV dps ( H dy;F em QA [ 2sinhwb(y + ;)2 sinhwb™" (7 — 3) .
b<a
(L+ 1)l dug(y H dyg e T 2sinhab(y; — y;)2sinh7b™ (u7 —u;)

b<a

We have a very similar expression fdyi(y).

In the case of the lattice KdV theory we get the following nfmditions:

dpg(y) = dpg(y™*) dys dug (y ™), (5.16)

wheredyg (y ™) is unchanged, butug (y™) is now given as

Lldug (y H dy; e™ QU+ H 2sinh b(y, — y; )2sinh b~ (v, — ;) -

b<a

It is worth observing that the small asymmetry between tloeitille-variablesy andy; dis-
appears in the limit giving quantum KdV theory.
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6. The spectra

6.1 The spectrum of quantum KdV theory

The fact that the dynamics generated Uy, is "trivial” in the sense that it decouples into
right- and left motions (2.14) o/f/,jjt andw,, respectively, does not mean that the lattice model
characterized by the T-operators,,, € = =+, is trivial as an integrable model. As in classical
(m)KdV theory one may define alternative and much less trexialutions from the families of
operatorsTe ., or Q5. The diagonalization of these operators is interestingsiown right.

Kdv

6.1.1 The spectrum of the chiral free field

Let us first study the chiral free field theories with HilbgsaseF; and Q-operatof;,(u) for
fixed values ok € {£} andp € R. The spectral theorem for the commutative family of self-
adjoint operatorQ;(u) implies that the eigenstatgs € F, of these operators formizasisfor
F,. This is the case for arbitrary real values of the variabléet ¢;(u) be the eigenvalue of
the operatoRQ;,(u) on fs. It must be element of the s, the set of all functiong;(u) that
possess all the analytic and asymptotic properties imgdiedur explicit construction of the
Q-operators as discussed in Secfibn 4.

On the other hand let let us note that the SOV representatigalized on the Hilbert spaces

Hgo\/ = LZ(RL;d/”LEB)symm " (6'1)
For a given element;(u) € Q define
L
i(y) = [[asws) - (6.2)
a=1

It follows from the asymptotic properties gf(u) that¥: (y*) is normalizable w.r.tdug. There

is a corresponding eigenstafte ¢ F; of Q;(u) which has as its eigenvalue the functigu)
we had used in[(612). We conclude that there is a one-to-omespmndence between the
elements oy, and the eigenstates Qf, (u) within 7. The fact that the wave-functiob are
all normalizable implies in particular that the spectrun@yfu) is purely discrete

6.1.2 The zero mode spectrum of quantum KdV theory

To each tripleg = (g, (u),q9(u),q, (v)) of solutions to the Baxter equatioris (5.9) we may
associate a wave-function of the form

Vo, ) = [[9 ) o) [ g (v (6.3)
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The asymptotic behaviol_(4.5), (4.6) ensures the (planesjvaormalizability of¥,(y). We
need to identify the set of solutions of the zero mode equd&al3) which yields @omplete
set ofQ¢ , -eigenstates in this way.

By means of induction it is easy to prove tfgthas the following form:
Ty = 2coshwbp,, (6.4)

wheree?™ = []'_, u,. It easily follows from this observation that the vectdrg(y) con-
structed from the choiceg(u) = e~ = e?™#, p € R, all represent linearly independent basis
vectors for# in the sense of generalized functions.

6.2 The spectrum of Liouville theory

We are now going to analyze the spectrum of Liouville theoraisimilar manner. To each
eigenstatel of the Q-operatorQ* (u) andQ (u) there exists a complex numbegiand a cor-
responding pair of elemenis = (¢, ,¢,) € @ x Q,, given by the eigenvalues @ (u) on
W. Conversely, for a given value gfand each paig, = (¢, ,q,) € Q,; x Q, of admissible
solutions to the Baxter equations one may construct an sigtnof the Q-operato$* (u) and
Q (u) as

U, (y) = [[a W) [T ) (6.5)
a=0 b=1

With the help of our explicit formulae for the Sklyanin meesand the formulaé (4.5), (4.6)
for the asymptotic behavior of the functiogigu) it is possible to check that the states (6.5) are
plane-wave normalizable if € R. More precisely one may show that

o(p—p)
v, U = . 6.6
(o, , T, ) 4 sinh(27bp) sinh(27b='p) (6.:6)
This means thatp 4 sinh(27bp) sinh (276~ 'p) is the natural spectral measure for the integration

overp in the spectral representation.

One should note that the spectrum of the zero madeeal andourely continuousThis follows
from the works[[Ka00, FK02], one of the main results of whiemde stated as

Spec(UT) = {e 2 tm/N. 0y e R, ,m € Z/NZ}, (6.7)

where )
A = 62_4 + 52, c=1-+24n*. (6.8)

It is an important difference to the case of KdV theory tha ¢égenstate¥,, and¥,_ are
not independent. Indeed, it follows easily from (A.6) thee 4;(u) are symmetric w.r.tp, i.e.
g5 (u) = ¢, (u). It follows that

U, (y) = ¥, (y)- (6.9)
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We conclude that there is a one-to-one correspondence &etweles; = (p, g, q, ), p € R,
(¢f,q,) € QF x Q; and the elements of a basis fHrconsisting of generalized eigenstates of
the Q-operators.

7. The relation between quantum Liouville- and KdV-theory

7.1 The Backlund transformations

The key point for us to observe is the fact that the ¥f®f admissible solutions of the Baxter
equations are the same for Liouville theory and the quantaticé KdV model. We may
therefore construct operatdfé, which send the eigenstaie, of Q¢ .(u), e = £ associated to
atripleq = (¢; g5 , g, ) to the eigenstate, of Q. (u), ¢ = £, which in theB,,-representation
is represented by the wave-function

L L
e, = Wy, qu va) as(wo) [ [ 4 (v @S (yo) = ™2 Voo (7.10)
b=1

The prefactonV,, is required to satisfyiV, |> = 4 sinh(27bp) sinh(27b'p) while its phase
e?Xa = =W, /Wy, isleftarbitrary for the moment. The operatdts clearly satisfy

W Qilou( ) = Qidv(u) 'Wx (7.11)

and they define unitary operatdi, from 7 to the subspac# , of # on which the zero mode
momentunp, is positive. The operatoM/, can be seen as representatives for (generalizations
of the) quantum Backlund transformations which map theratting dynamics of Liouville
theory to the free field dynamics. They make the decouplirigfofand right-moving degrees

of freedom in Liouville theory manifest.

7.2 Relation with scattering theory

All what is nontrivial about Liouville theory is hidden in¢hway the decoupling between left-
and right-movers is disguised when studying its dynamidgims of the original degrees of
freedomm,, ¢,. The operator$V, which trivialize the dynamics are rather nontrivial obgect
for which we do not have an explicit representation at the EBTOIHI In the following we shall
propose an interpretation of one of these operators retatéloe asymptotic behavior of the
time evolution.

4Finding a more explicit representation would become ptssibce we had an explicit representation for the
transformation from the original to the separated varisble
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7.2.1 Wave- and scattering operators

One should note that the operat@s_ (u) and Q. («) coincide in the limit where the zero
modeg, tends to infinity,

lim (W, QG (u)®,) = lim (W, Qe (u)®, ). (7.12)
for any wave-packe®, that has support localized around = p. We have, in particular, a
similar statement for the evolution operatdr It then follows from standard arguments that
wave-packets for time — +oo are always pushed into the asymptotic regign— oo where
the dynamics becomes the free field dynamics. We may thereffine natural analogs of the
wave operators from quantum mechanical scattering theory a

MR}

W+oo = Tlgglo (UKdV)_% : (ULiou)+ , Wiep = Tlgglo (UKdV)—i—% : (ULiou)_% . (7-13)
The operator$V_.,, are easily seen to represent a particular case of the Batkiansforma-
tions introduced in Subsection¥.1 above.

The scattering operatérwhich maps the asymptotic shape of a wave packet fe¥ —oo to
the one forr — oo can then be defined &= W_, - W_1.. It can be described in terms of its
eigenvaluess,, in the spectral representation.

7.2.2 Relation to space asymptotics of wave-functions

In quantum mechanical scattering theory there exist wadiwn results relating the scattering
operatorS to the (target-) space asymptotics of eigenfunctions otthreesponding Hamilto-
nian. It seems fairly clear that similar relations will haidthe present context, as now to be
formulated more explicitly. We'd like to analyze the remetation of eigenstatel, in the zero
mode Schrodinger representation where they are repessbgtwave-functiond ,(¢,) taking
values in]—";; ® F;.. It follows from (7.12) that the asymptotic behavior foy — oo of the
wave-functions?l,(¢,) can be expanded into the eigenstateQof, (),

\I’qp(gbo) tbo:oo Np [e%imo 4 que—%ipd)o} (f;_ ® fq_ ), (7_14)
whereN, is a normalization factor anff" ® f,~ € F,7®F, is an eigenstate of bo®;,, () and
Qv (u) With eigenvalueg; (u) andg; (u), respectively. We claim that the so-called reflection
amplitudesS,, which appear in the asymptotic behavibr (7.14) are indeeceipenvalues of
the scattering operat&rdefined above.
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7.3 Relation between the reflection amplitudes of Liouvillend of KdV theory

Let us finally note that there is a remarkable relationshivben the scattering amplitudg,
of Liouville theory and the reflection phas&s(p) of KdV-theory introduced in[(4.11),

Sy, = Ry R if qp = (g, (u),q, (u)). (7.15)

We have used the notatidy,, ¢ = =+ for the ratioR<(p) = (C*(p))*/C*(p) of the coefficients
which appear in the asymptotic behaviorggfu) for u — —eoo according tol(4.6).

The relationship(7.15) allows one to calculate the sdatjerperatos from the asymptotics of
the operatorf¢ . (u) as determined in the Appendix. We do not go further into tivisation
for the case of the lattice models as we did not yet find a saffity nice formula foiS. The
situation becomes better in the continuum limit whére (Y Wil be a key ingredient in our
calculation of the Liouville reflection amplitude.

7.3.1 Derivation of equation(7.15)

Equation [7.1b) can be verified by means of arguments whietsianilar to those in_ [T08a].
One may analyze the massless limit> oo in two different ways.

Let us, on the one hand, consider an eigenskgt the Sinh-Gordon model represented in the
Schrodinger representation by a wave-functigiig,) € ]-";; ® Fj,- Note that the limit giving
Liouville theory from the Sinh-Gordon model combines thaitis — oo with ¢, — —oo. It
follows that the limit of the operatd®,(u) for s — oo can also be regarded as the asymptotic
behavior ofQ¢,  (u) for ¢, — co. Arguing as in Subsectian 7.2.2 we conclude that the leading
behavior of¥,(¢,) for s — oo can be described in terms of eigenfunctionQof (u) as

Uy(ho) = (C, €% +Cp 7™ ) (fF & fr), (7.16)

wherefF ® f € F ® F, is an eigenstate of bot®;;,, (u) andQ,, () with eigenvalues

g (u) andgq, (u), respectively. The eigenstalg, is either even or odd under parity. In order
to evaluate this condition note thaig S, = —2argC,, = p,(p) — 4mps, wherep,(p) is
independent ok. For s — oo one gets the quantization condition to leading order as the
condition that there exists an integesuch that allowed values, of the variablep satisfy

ATs Py — py(pn) = 0. (7.17)

One may, on the other hand, note that the limit oo of the Q-operatorQ¢, . (u) for s — oo
may according td_(3.23) be described either as the asyroptotiheQ; ., (u) for u — —oo or,

KdVv
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equivalently as the asymptotics Qf . (u) for u — +oo. This implies for the eigenvalues of
Q5. (u) that we have, on the one hand

q‘(u) ~ Ny,cos (2mp(u — s) + 6, (p)) (7.18)

whereN,, = (sinh(27bp) sinh(27b~'p))~2, and on the other hand
¢“(u) ~ Ny,cos (2mp(u+s) — 6, (p)) - (7.19)
The compatibility between these two equations requirestiiegie exists an integersuch that
Ampas — 0, (pu) — 0 (pu) = 0. (7.20)

The equivalence of (7.17) and (7120) yields our cldim (I7.15)

7.3.2 Interpretation of equatiof (7.115)

It seems natural to interprdi (7]15) in the following way: the same way as we used the
evolution operatol) to define the scattering opera®in Subsection 7.211 above, we may use
the light-cone evolution operatot¥ to define light-cone scattering operatéfsfor ¢ = +,
respectively. It is clear that the eigenvalues of the opes&i™ in a state defined by a pair
¢ = (q;, q;) will not depend ory,, and similarly for the eigenvalues 6f . It seems natural
to conjecture that the eigenvaluessofare precisely the phaség. defined from the asymptotic
behavior [(4.5) ofy;,. This would mean that our relationshlp (7.15) is equivater§ = S*S-
which trivially follows from the factorization) = U*U~ observed in[(3.21) above.

8. Continuum limit

Following arguments which are very similar to those used®8g] we may now reformulate
the conditions for the g-functions in terms of nonlineaegral equations which generalize the
equations coming from the thermodynamic Bethe ansatz [YaB(. Za06] to arbitrary excited
states. As shown in [T08a], one gets a characterizationeotgectrum which isompletely
equivalent to the one derived above. On the level of the neali integral equations it turns
out to be straightforward to pass to the continuum limit. Tihet is taken in such a way that
N — o0, s — oo such that

_b?
1+
is kept constant. As the necessary arguments are very sitmithose in[[T08a] we will only
briefly describe the resulting description of the g-funesidor the continuum theories and some
of the most important consequences for the spectrum of theseies.

mR = 4 sinty Ne ™ Yo (8.1)
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8.1 Reformulation in terms of integral equations

As advertised earlier, one may express the eigenvalueg @+bperators in terms of the solu-
tions of certain nonlinear integral equations. These egusitare best formulated in terms of
the functions

Ype(%u) = qy(u+id)qy(u —id), (8.2)
where2d = b1 — b. It suffices to consider the case thes purely imaginary which is related
the case of regh by means of analytic continuation. Assume tht:) has M« real zeros at

positionsy;, a = 1, ..., M. The functionsy;(u) can then be recovered from
mRe’ M 1
Oylogq, (220) = —e g+ - s
2 sin 9, — sinh (9 — 9¢) (8.3)
d’ 1
— ——————— 0y 1 1+ Y
+/R 4m cosh( — o) 7 og (1+Y7(7)),
The nonlinear integral equations in question have an alonagersal form,
MG
log Y;5(¥) = —mRe” +> "log S(9 — 05, — i%) 8
a=1 .
dy’ .
+ /R - (¥ —9")log(1 + Y) (),
where
d 4 sin ¥y cosh ¥

o(¥) = @S( ) = cosh 209 — cos 219,

It is possible to prove that for arbitrary given input détta= (95 . . ., 95, ), ¥ € R the nonlinear
integral equation$ (8.4) have a unique solufigia(<)) which grows for) — —eoco as2meip 19@
The equationg (8l4) have to be supplemented by the set ofieqsia

ME

2re ki = emRes +) " arg S(V5 — )

b=1 (8.5)

o i

+/ — 7(95 — 9) log(1 + Y. (),
R 47T D,
where 4 sin O sinh
sin Yy sin . )

9 = = i Ty, 8.6
() cosh 29 + cos 29, (¥ +15) (8.6)

The equationg (8l5) represent strong constraints on tleeqmers©. The fact that these param-
eters can only be real can be proven by means of an argumaldrdiothe one of[[YY/ T08a]
using the fact that the function$ (<) have to be real. This in turn follows from the hermiticity
of the Q-operators observed above. In the following we sh@dipt the basic conjecture that
there exists a unique solution to the equatidng (8.5) forgawsn tuplesk® = (kf, ..., kS ). If
S0, we can conclude that eigenstates are uniquely labelipdibd the tupleke.

5Bear in mind that we assumec iR.
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8.2 Analytic properties of the g-functions for the continuum theories

The integral equations characterizing the g-functionsefdontinuum theories are equivalent
to either of the following two functional equations,

t(u)q(u) = ¢ (u+1ib) + ¢“(u —ib), (8.7)
¢ (v+in)g (v —1in) — ¢ (v +1i0)¢ (v —id) = 1. (8.8)

We observe no difference between the massive and the nmsakess.

The analytic properties of the g-functions also simplifghe continuum limit. We find:

(i) The g-functions are entire analyticinfor each of the cases considered. 8.9)
(ii) The g-functionsy; (u) are entire analytic ip for Liouville and KdV theory. '

Important differences appear on the level of the asymppotiperties, as we shall now discuss.

In the massive case we find [T08a] rapid decay;@f:) at both ends of the real axis, more

precisely,
mR

~ - |ul
Re(u)—4oo  28in v

o
e2n

log ¢“(u) for |Im(u)| <n. (8.10)

The decay of*(u) implies that the spectrum of the Sinh-Gordon field theoryisefy discrete.

As in the case of the lattice theory, the main difference ®rtlassless case is the appearance
of oscillatory asymptotics at one end of the real axis, whitemains rapidly decaying at the
other end,

cos(2mpu + €6,(p))

q;(U) Nf ; : 1
Re(u)=+ <00 \/sinh(2bp) sinh(27b~"p) for |Im(u)| < n. (8.11)
) MRz
loggy(u) —~ = e

Re(u)—reco 2sin 190

One may formulate the above statements about the asyngptitihe g-functions;®(u) for
u — eco more precisely by saying that there exists an asymptotiaresipn of the form

0
log g, (u) ~ —co ezl — Z cn IS e~z 2Dl (8.12)
n=1

For the classical continuum field theories it is well-knowattthe coefficient§;, represent the
local conserved quantitites of the model in question. The coefitsi{ correspond to the light-
cone Hamiltonians which are proportional to the generaigrs., of the Virasoro algebra in
the massless cases. For these cases it can be shown [TG8a¢ thave the following formula
for the expectation values ®f in a state characterized byc R and tuplesk*:

2 1
I$ = = P2— — k). 8.13

acK



28

We clearly identify the zero-mode contributionp? and integer-valued oscillator contributions
k<. We therefore reproduced already a good part of the expsttecture of the spectrum of
the continuum Liouville theory [CT82].

8.3 Explicit calculation of the reflection amplitude

The reflection amplitude,, introduced in Subsectidn 7.2.1 represents an importace pé
data characterizing Liouville theory. We are now going tplai how to calculate this quan-
tity for the class of states related to the primary statehefitiouville conformal field theory.
The key observation underlying this calculation is equa{it.15) which relates the reflection
amplitude to the asymptotics of the functiopjsof KdV theory. These asymptotics were found
in [TO8&] based on [FLO6]. To round off the picture, we wilMnbriefly recall how this works.

Let us first observe, as can be seen e.g. from forniulal(8.48),the states witli/¢ = 0,

€ = =+, correspond to the Fock-vacua in the sectors labelled B\ccording to [(7.15), we may
calculater, = S, if we know the asymptotic behavior of the g-functiayi$u) corresponding

to the Fock-vacua. These g-functiogfgu) can be characterized as the unique solutions of
the functional equation$ (8.7}, (8.8) which have the aimalytoperties[(8.9), the asymptotic
behavior [(8.111), and the additional property to be nonsking within the strigS,. It was
shown in [FLO6] that a solution to this set of conditions igegi by the Wronskian of certain
solutions to the ordinary differential equation

d’ 4 2 2(,.2 —2x/b%
—03 P + K (e* +e )| U =0. (8.14)

This generalizes similar results for other models which gokito [DT99, BLZ3]. In order to
getg;(u), consider the solutiond . to (8.14) which have the asymptotic behavior

]_ xr 2
U, ~ ——exp [ — — kb2 /" for r— —c0,
+ /2K P <2b2 ) (8 15)
] L e ( L /iex) for * — +o00 |
-~ —exXp|—= — ,
V2K P
respectively. The functiong («) are then simply given as
n o _ d d
qp (U) = qp (—U) = \If_i_%\:[]_ — \D_%\I]_F, (816)
provided that we identify the respective parameters ae\m@
R =, 2
= g e Ry = - . v — (8.17)
SN Uy F(—m)r(l—m)

8Concerning the comparison with [FLI06] note that the parametised there is related t3 vian = 2/b%.
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The characterizatio (8.1.6) of («) in terms of the ODE[(8.14) allowed the authors[of [FL0G]
to determine the asymptotics gf(u). The explicit expression faf, = €*’(®) which follows
from formula (177) in[[FLOB] is

< T'(1 + 2ibp)[(1 + 2ib~!
(1 — 2ibp)T'(1 — 2ib—1p)

N

in which we have used the abbreviation

R m 1 b?
M op r(1 . 8.19
P = orayr <2+2b2) <+2+252> (8.19)

We recover the expression proposed._in [ZZ96], for which bdativation was given in [T04].
We'd like to stress how different the present derivationhe teflection amplitude — based on
the integrable structure of Liouville theory — is comparedhte one in[[ZZ96, T04], which was
based on the conformal symmetry. It would be very intergsimther elucidate the interplay
between the integrable and the conformal structure of Lillautheory.

A. Asymptotic behavior of Q-operators

Let us first note that the Q-operators for Liouville theorgdor the KdV model have the same
asymptotic behavior. To this aim let us consider the eigeievaquation in the form

(q]QLou(u) [1) = “(u) (q|t), (A.1)

where( ¢ | is a generalized eigenstate@f,, (v) with eigenvalueg(u), and| ¢ ) is a test function
from a suitable dense subspatef H like those defined in [BT06]. The left hand sidelof (A.1)
can be represented as

/ dxdx (¢ [ x') (x| Ye,, () | x) (A.2)

where(q' | = (q|YZ!. Following [BT06, Section 4.2.] it is not hard to see that bk of the
domain of integration ovet’, x gives contributions which decay exponentially wheh— oc.
One may observe, however, that the integration ovemay receive contributions from the
region in the integration ovet’ wherex, = 3. — 6, § — oo. This is due to the fact that the
wave-function( ¢’ | x') has plane-wave like behavior w.r.t. the zero magle= 3°°_ ,, in this
limit. A look at the formulal(A.4) for the kern€lx’ | Y¢,  (u) | x ) then reveals that it becomes

Liou

equal to the kerngx’ | Y¢ ., (u) | x) for larged. This observation reduces the problem to find

KdV
the asymptotic behavior @¥¢, (u) to the corresponding problem fax ., (u).

To solve this problem, an alternative integral operatoresgntation will be useful. In order to
find it, let us consider a variant of the Q-operators defined as

Qf(u) = Q" (s:))™ - Q (w),  Q(u) = (Q7(s-)™" - Q (w). (A.3)
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One advantage of the Q-operat@3%(u) andQ (u) is the fact that the kernels representing
these operators can be written in an even more explicit form,

N

<X, | Q+(U) | X> = H WQ;—{—in ('x;l, + ‘II’JTH»I)WU,*s (:U;L - Zvr)szJrs (:E’,I'L*l + :Un) ) (A4)
n=1
~ N _
<X, | Qi(u) | X> = H szfs(w;,fl + xn)Wqus(x:z - xn)Wi;;—Qs (ZL’n + ZL’n+1) ’ (A5)
n=1

Let (t|, t = (t1,...,tx) Now be the generalized eigenstates of the operatpisuch that
(t]u, = (t|e™=. By means of straightforward computations it is possiblsttow that

(4 Qi (W) [£) =0(p— ) By 3507 e -2mnt

N
X / dx e*™P” H ow+z+m)e(w—c—m1,), (A.6)
R

n=1

whereF; is a constant, and we have used the notajor= 3" | ¢, andr, = S7_1(#, —t,).

We are now in the position to prove that
Qia(u) o~ Bem 3N (2mPelmIAL 4 e iiA ), (A7)

U——00
Im(u)=const

whereAZ are operators represented by the kernels

N
(¢IAL]) =dp—p)e = [ayer o [[oFntin), (A8
R r=1
respectively. Indeed, it is easy to see that the dominartribations to the asymptotics —
oo come from the region in the integration overwhere|x| ~ u. In order to isolate the
contributions fromz + v = O(1), respectively, let us change the variable of integration to
y© = “5° F x. Taking into account thap(z) ~ 1 for 2 — oo it becomes easy to verify our
claim.
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