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Integrability for the Full Spetrum of Planar AdS/CFTNikolay Gromov,1 Vladimir Kazakov,2 and Pedro Vieira31DESY Theory, Hamburg, Germany & II. Institut f�ur Theoretishe Physik Universit�at, Hamburg, Germany &St.Petersburg INP, St.Petersburg, Russia2Eole Normale Superieure, LPT, 75231 Paris CEDEX-5, Frane & l'Universit�e Paris-VI, Paris, Frane;3Max-Plank-Institut f�ur Gravitationphysik, Albert-Einstein-Institut, 14476 Potsdam, Germany &Centro de F��sia do Porto, Fauldade de Ciênias da Universidade do Porto, 4169-007 Porto, PortugalWe present a set of funtional equations de�ning the anomalous dimensions of arbitrary loalsingle trae operators in planar N = 4 SYM theory. It takes the form of a Y-system based onthe integrability of the dual superstring �-model on the AdS5 � S5 bakground. This Y-systempasses some very important tests: it inorporates the full asymptoti Bethe ansatz at large lengthof operator L, inluding the dressing fator, and it on�rms all reently found wrapping orretions.The reently proposed AdS4=CFT3 duality is also treated in a similar fashion.PACS numbers:INTRODUCTIONIn the last few years, there has been an impres-sive progress in omputing the spetrum of anomalousdimensions of planar N = 4 supersymmetri Yang-Mills (SYM) theory. A great deal of this suess wasbased on Maldaena's AdS/CFT orrespondene betweenthis 4D theory and type IIB superstring theory on theAdS5 � S5 bakground [1℄, and on the integrability dis-overed and exploited on both sides of the orrespon-dene [2, 3, 4, 5, 6, 7, 8, 9, 10℄. As an outome, a sys-tem of asymptoti Bethe ansatz (ABA) equations wasformulated in [11℄ whih made possible the omputationof anomalous dimensions of single trae operators on-sisting of an asymptotially large number of elementary�elds of N = 4 SYM, at any value of the 'tHooft ou-pling � 16�2g2. This is a very important, though stilllimited, information on the non-perturbative behaviourof the theory.A far riher and instrutive set of quantities to evaluatewould be the anomalous dimensions of \short" operatorssuh as the famous Konishi operator. The Thermody-nami Bethe ansatz (TBA) approah to the superstringsigma model [12℄ has lead to a remarkable alulation ofwrapping e�ets at weak oupling. The 4-loop anomalousdimension of Konishi and similar operators have beenalulated [13℄, in omplete agreement with the diretperturbative omputations [15℄.Here we propose a set of equations, the so alled Y-system [16℄, de�ning the anomalous dimensions of anyphysial operator of planar N = 4 SYM at any ouplingg. Its integrability properties are those of the disretelassial Hirota dynamis.The derivation of this Y-system from the bound statesof the ABA will be given in a future publiation [18℄.Here we will demonstrate the ruial test of its selfon-sisteny: we will see that the Y-system inorporates theABA equations of [11℄, inluding the rossing relationonstraining the dressing fator S0 of the fatorized sat-
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Figure 1: T-shaped\fat hook" for Y- and T-systems [17℄. Themiddle double line separates the two subgroups with extendedSU(2j2)L and SU(2j2)R symmetries.tering. We also reprodue the L�usher formulae reentlyused to ompute the SYM leading wrapping orretions.In partiular we re-derive all known wrapping orretionsfor twist two operators at weak oupling and present anexpliit formula for suh orretions for a generi singletrae operator of planarN = 4. In the last setion we ap-ply our method to the study of the reently onjeturedAdS4=CFT3 duality [24℄ and �nd there a new wrappingorretion.Our Y-systems opens a way to the systemati study ofanomalous dimensions of all operators. An even betterformulation would be a DdV-like integral equation, in thespirit of the one found in [19℄ for the O(4) sigma model.This problem is urrently under investigation.Y-SYSTEM FOR ADS/CFTWe will now propose the Y-system whih yields theexat planar spetrum of AdS=CFT . The Y-system isa set of funtional equations for funtions Ya;s(u) of thespetral parameter u whose indies take values on thelattie represented in Fig.1. The equations take the usual
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2universal formY +a;sY �a;sYa+1;sYa�1;s = (1 + Ya;s+1)(1 + Ya;s�1)(1 + Ya+1;s)(1 + Ya�1;s) : (1)Throughout the paper we denote f� = f(u � i=2) andf [a℄ = f(u + ia=2). At the boundaries of the fat-hookwe have Y0;s = 1, Y2;jsj>2 = 1 and Ya>2;�2 = 0. Theprodut Y23Y32 should be �nite so that Y2;�2 are �nite.The anomalous dimension of a partiular operator (orthe energy of a string state in the AdS ontext) is de�nedthrough the orresponding solution of the Y-system andis given by the formula (E = �� J)E =Xj �1(u4;j) + 1Xa=1 Z 1�1 du2�i ���a�u log �1 + Y �a;0(u)� :(2)In terms of x(u) de�ned by u=g = x + 1=x, the energydispersion relation reads �a(u) = a+ 2igx[+a℄ � 2igx[�a℄ , evalu-ated in the physial kinematis i.e. for jx[�a℄j > 1, while��a(u) is given by the same expression evaluated in themirror kinematis where jx[s℄j > 1 for a � s � �a + 1and jx[�a℄j < 1 [13℄. Similarly the asterisk in Y �a;0 indi-ates that this funtion should also be evaluated in mirrorkinematis. Finally, the Bethe roots are de�ned by the�nite L Bethe equationsY1;0(u4;j) = �1 ; (3)where this expression is evaluated at physial kinematis.The Y-system is equivalent to an integrable disretedynamis on a T-shaped \fat hook" drawn in Fig.1 givenby Hirota equation [17℄T+a;sT�a;s = Ta+1;sTa�1;s + Ta;s+1Ta;s�1 ; (4)where Ya;s = Ta;s+1Ta;s�1Ta+1;sTa�1;s : (5)The non-zero Ta;s are represented by all visible irles inFig.1. Hirota equation is invariant w.r.t. the gauge trans-formations Ta;s ! g[a+s℄1 g[a�s℄2 g[s�a℄3 g[�a�s℄4 Ta;s. Choos-ing an appropriate gauge we an impose T0;s = 1.Both the Y and the T systems are in�nite sets of fun-tional equations whih must still be supplied by ertainboundary onditions and analytiity properties. Alter-natively, we an identify the proper large L solutions tothese equations and �nd T and Y funtions at �nite Lby ontinuously deforming from this limit [19℄. Hopefullythis deformation is unique, as in [19℄. Suh a numerisan be done by means of an integral DdV-like equationor by some sort of trunation of the Y-system equations.LARGE L SOLUTIONS AND ABAWe expet the Y-funtions to be smooth and regularat large u: Ya;s6=0(u ! 1) ! onst, whereas for the

blak, momentum arrying nodes in Fig.1, we impose theasymptotis Y �a�1;0 � �x[�a℄x[+a℄�L (6)for large L or u. As we will now show these asymptotisare onsistent with the Y-system (1). Indeed, when L islarge Ya;0 goes to zero and we an drop the denominatorin the r.h.s. of (1) at s = 0. Using 1+Ya;s = T+a;sT�a;sTa+1;sTa�1;sfollowing from (4)-(5), we haveY +a;0Y �a;0Ya�1;0Ya+1;0 '  T+a;1T�a;1Ta�1;1Ta+1;1! T+a;�1T�a;�1Ta�1;�1Ta+1;�1! ;(7)where in the equation for a = 1 one should replae Y0;0by 1 as an be seen from (1). From our study of the O(4)�-model [19℄ we expet that Ta;s�0 and Ta;s�0 annot besimultaneously �nite as L ! 1. However, in this limitthe full T-system splits into two independent SU(2j2)R;Lsubsystems and, notiing that eah fator in the r.h.s.is gauge invariant, we an always hoose �nite solutionsTRa;s�0 and TLa;s�0 and interpret them as one solution ofthe full T-system in two di�erent gauges (see [19℄ for moredetails). These are the transfer matries assoiated to theretangular representations of SU(2j2)R;L, desribed indetail in the next setion and in the appendix.The general solution of this disrete 2D Poisson equa-tion in z and a is thenYa;0(u) ' �x[�a℄x[+a℄�L �[�a℄�[+a℄ TLa;�1TRa;1 (8)where the �rst two fators in the r.h.s. represent a zeromode of the disrete Laplae equation A+aA�aAa�1Aa+1 = 1 :Thus we obtained all Ya;0, desribing for a > 1 theAdS/CFT bound states [25℄, in terms of TL;Ra;s up to asingle, yet to be �xed, funtion �. We pulled out the�rst fator in (8) from the zero mode to expliitly maththe asymptotis (6). The seond fator will beome theprodut of fused AdS/CFT dressing fators [6, 9, 11℄ aswe shall see below.ASYMPTOTIC TRANSFER MATRICESIn the large L limit Ya;0 are small and the whole Y -system splits into two SU(2j2)L;R fat hooks on Fig.1.The Hirota equation (4) also splits into two indepen-dent subsystems. For eah of these subsystems therealready exists a solution ompatible with the group the-oretial interpretation of Y and T-systems: TLa;�1 �TL1;�s�and TRa;1 �TR1;s� are the transfer matrix eigenvalues ofanti-symmetri (symmetri) irreps of the SU(2j2)L andSU(2j2)R subgroups of the full PSU(2; 2j4) symmetry.It is known [20, 21℄ that these transfer-matries an be



3easily generated by the usual fusion proedure. Expliitexpressions for Ta;s are given in the Appendix. E.g.,T1;1=R�(+)R�(�)�Q��2 Q+3Q2Q�3 �R�(�)Q+3R�(+)Q�3 +Q++2 Q�1Q2Q+1 �B+(+)Q�1B+(�)Q+1 �(9)where Ql(u) =QJlj=1(u� ul;j) = �Rl(u)Bl(u) andR(�)l (u) � KlYj=1 x(u)� x�l;j(x�l;j)1=2 ; B(�)l (u) � KlYj=1 1x(u) � x�l;j(x�l;j)1=2 :The index l = 1; 2; 3 orresponds to the rootsx1;j ; x2;j ; x3;j (x7;j ; x6;j ; x5;j) for TL1;1 (TR1;1) in the nota-tions of [7℄. R(�) and B(�) with no subsript l orrespondto the roots x4;j of the middle node and Rl; Bl withoutsuperript (+) or (�) are de�ned with x�j replaed byxj . The hoie (9) is ditated by the ondition that theasymptoti BAE's ought to be reprodued from the ana-lytiity of T1;1 at the zeroes u1;j ; u2;j ; u3;j of the denom-inators. For Q-funtions of the left and right wings theABA's read:1=Q+2 B(�)Q�2 B(+) ����u1;k;�1=Q��2 Q+1 Q+3Q++2 Q�1 Q�3 ����u2;k;1=Q+2 R(�)Q�2 R(+) ����u3;k:(10)One the unknown funtion � is �xed to be���+ = S2B+(+)R�(�)B�(�)R+(+) B+1LB�3LB�1LB+3L B+1RB�3RB�1RB+3R (11)the Bethe equation (3) yields the middle node equationfor the full AdS/CFT ABA of [7℄ at u = u4;k�1=�x�x+�L�Q++4Q��4 B�1LR�3LB+1LR+3L B�1RR�3RB+1RR+3R���B+(+)B�(�)�1��S2;(12)where � = �1 in the present ase and the dressing fatoris S(u) = Qj �(x(u); x4;j ). The subsripts L;R refer tothe wings. We will see in the next setion that with thefator (11) Ya0 exhibits rossing invariane and that thishoie of the fator allows to reprodue all known resultsfor the �rst wrapping orretion of various operators.SCALAR FACTOR FROM CROSSINGWe will nowsee that the Y -system onstrains the dress-ing fator by the rossing invariane ondition of [9℄. TheS-matrix Ŝ(1; 2) of Beisert [8℄ admits Janik's rossing re-lation whih relates the S-matrix with one argument re-plaed by x� ! 1=x� (partile!anti-partile) to the ini-tial one. Sine the transfer matries an be onstrutedas a trae of the produt of S-matries we expet Ya;0to respet this symmetry. Indeed, we notie that underthe transformation x� ! 1=x� (denoted by ?) and om-plex onjugation, T1;1 transforms as T ?1;1 = Q+1 Q�3Q�1 Q+3 	T1;1,

where 	 � R�(�)B+(�)R�(+)B+(+) . By demanding the ombinationST1;1B+1 B�3B�1 B+3 to be invariant under that transformation weget S? = S	 . This renders, using R�(+)B+(�) = R+(�)B�(+) , the re-lation SS? = R�(+)B�(�)R+(+)B+(�) whih is in fat nothing but therossing relation for the salar fator [9℄�12��12 = x�2x+2 x�1 � x�2x+1 � x�2 1=x�1 � x+21=x+1 � x+2 : (13)Note that rossing does not simply mean x� ! 1=x�,but it is also aompanied by an analytial ontinuation,so one should be areful with the way the ontinuation isdone beause the dressing fator is a multi-valued fun-tion of (x�1 ; x�2 ). Thus we see that the invariane of Y1;0imposes the rossing transformation rule of the dressingfator. The same invariane property holds for all Ya;0.We onlude that Janik's rossing relation �ts nielywith our Y-system. The dressing fator is enoded in theY-system, as for relativisti models (see [19℄).WEAK COUPLING WRAPPING CORRECTIONSHere we will reprodue from our Y-system the resultsof [13, 15℄ in a rather eÆient way and explain how togeneralize them to any operator of N = 4 SYM. No-tie that the large L solution is now ompletely �xed by(8),(11) with the transfer matries for eah SU(2j2) winggenerated from W as explained in the Appendix.To ompute the leading wrapping orretions assoi-ated to any single trae operator it suÆes to plug theBethe roots obtained from the ABA into Ya;0 [23℄. Nextwe expand this expression for g ! 0 and substitute it intothe sum (2). This ought to be ontrasted with the om-putations in [13℄,[14℄ whih relied on the expliit form ofthe S-matrix elements and whih are therefore very hardto generalize to generi states.For example, for the ase of two roots u4;1 = �u4;2 andL = 2, satisfying the SL(2) ABA (u4;1 = 12p3 +O(g2)),we �ndY �a;0 = g8�3 27 3a3 + 12au2 � 4a(a2 + 4u2)2 �2 1ya(u)y�a(u) (14)where ya(u) = 9a4 � 36a3 + 72u2a2 + 60a2 � 144u2a �48a + 144u4 + 48u2 + 16. Plugging this expression into(2) we obtain (324 + 864�3 � 1440�5)g8, oiniding withthe wrapping orretion to the anomalous dimension ofKonishi operator tr(ZD2Z �DZDZ) of [13, 15℄.The Konishi state ould also be represented as theoperator tr [Z;X ℄2 in SU(2) setor. To get the ABAequations for the SU(2) grading we make the follow-ing replaement T su(2)a;s = T sl(2)s;a . The salar fator (11)beomes ���+ = S2 Q++4Q��4 B�1LB+3LB+1LB�3L B�1RB+3RB+1RB�3R as we an see by



4
Figure 2: \Fat hook" for AdS4=CFT3. The OSp(2; 2j6) sym-metry of the ABJM theory, with two momentum arryingnodes, and the SU(2j2) subgroup is manifest in the diagram.mathing with the ABA equations (12) for � = 1. Re-peating the same omputation for two magnons, nowwith L = 4, we �nd preisely the same result for wrap-ping orretion. This is yet another important onsis-teny hek of our Y-system.Another important set of operators are the so alledtwist two operators for whih L = 2 (in the SL(2) grad-ing) and the Bethe roots are in a symmetri on�gura-tion, u4;2j�1 = �u4;2j with j = 1; : : : ;M=2. Pluggingsuh on�guration into the transfer matries in the ap-pendix and onstruting the orresponding Ya;0 from (8)we �nd a perfet math with the results of [14℄.AdS4=CFT3 CORRESPONDENCEThe reently onjetured [24℄ AdS4=CFT3 orrespon-dene with the ABA formulated in [26℄, following [27,28℄, an be treated similarly to the AdS5=CFT4 ase.The orresponding Y-system is represented in Fig.2.There are now two sequenes of momentum arryingbound-states and the orresponding Y -funtions are de-noted by Y 4a;0 and Y �4a;0. At large L we �nd Y 4a;0 '�x[�a℄x[+a℄�L �[�a℄4�[+a℄4 T su(2)a;1 , Y �4a;0 ' �x[�a℄x[+a℄ �L �[�a℄�4�[+a℄�4 T su(2)a;1 where��4�+4 = �S4S�4 Q++4Q��4 B�1 B+3B+1 B�3 and ��4 is given by the sameexpression with Q4 ! Q�4. Ta;1 an be found fromthe generating funtional W in the appendix replaingR(+)!R(+)4 R(+)�4 et. Finally �a(u) = a2 + ihx[+a℄ � ihx[�a℄ ,and in all formulae we should replae g by the interpo-lating funtion h(�) = � + O(�2). The energy is thenomputed from an expression analogous to (2) whih toleading order at small � yieldsE =Xj �1(u4;j)+Xj �1(u�4;j)� 1Xa=1Z 1�1 du2� �Y 4�a;0 + Y �4�a;0�Thus, as before we an very easily ompute the leadingwrapping orretions to any operator of the theory. E.g.,for the simplest unproteted length four operator (L = 2)
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