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DESY 12-007IFUM-986-FTThreshold resummation in SCET vs. perturbative QCD:an analyti omparisonMaro Bonvini,1;2 � Stefano Forte,3 Margherita Ghezzi3;4� and Giovanni Ridol�11 Dipartimento di Fisia, Universit�a di Genova and INFN, Sezione di Genova,Via Dodeaneso 33, I-16146 Genova, Italy2 Deutshes Elektronen-Synhroton, DESY,Notkestra�e 85, D-22603 Hamburg, Germany3Dipartimento di Fisia, Universit�a di Milano and INFN, Sezione di Milano,Via Celoria 16, I-20133 Milano, Italy4Dipartimento di Fisia, Sapienza Universit�a di Roma and INFN, Sezione di Roma,Piazzale Aldo Moro 2, I-00185 Roma, ItalyAbstrat:We ompare threshold resummation in QCD, as performed using soft-ollinear e�e-tive theory (SCET) in the Beher-Neubert approah, to the standard perturbative QCDformalism based on fatorization and resummation of Mellin moments of partoni ross-setions. We onsider various forms of the SCET result, whih orrespond to di�erenthoies of the soft sale �s that haraterizes this approah. We derive a master formulathat relates the SCET resummation to the QCD result for any hoie of �s. We thenuse it �rst, to show that if SCET resummation is performed in N -Mellin moment spaeby suitable hoie of �s it is equivalent to the standard perturbative approah. Next, weshow that if SCET resummation is performed by hoosing for �s a partoni momentumvariable, the perturbative result for partoni resummed ross-setions is again reprodued,but like its standard perturbative ounterpart it is beset by divergent behaviour at theendpoint. Finally, using the master formula we show that when �s is hosen as a hadronimomentum variable the SCET and standard approah are related through a multipliative(onvolutive) fator, whih ontains the dependene on the Landau pole and assoiateddivergene. This fator depends on the luminosity in a non-universal way; it lowers byone power of log the auray of the resummed result, but it is otherwise subleading ifone assumes the luminosity not to ontain logarithmially enhaned terms. Therefore, theSCET approah an be turned into a presription to remove the Landau pole from theperturbative result, but the prie to pay for this is the redution by one logarithmi powerof the auray at eah order and the need to make assumptions on the parton luminosity.�Current address 1
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1 Threshold resummation and the Landau poleThe interest in the resummation of logarithmially enhaned ontributions due to softgluon radiation in perturbative QCD (threshold resummation, heneforth) has been re-ently revived due to its relevane for many LHC proesses, suh as Higgs [1℄ or top [2℄ pro-dution. Threshold resummation was originally performed (to next-to-leading logarithmiauray) by fatorizing the hadroni ross-setion in Mellin spae in terms of a luminosityand a partoni ross-setion, and then exponentiating logarithmially enhaned orretionsto the latter to all orders through eikonal [3℄ or fatorization [4℄ tehniques. Subsequentderivations and generalizations to all logarithmi orders were obtained, among others, froma suitable two-sale generalized fatorization theorem [5℄ and through renormalization-group improvement of the kinematis of the gluon radiation phase-spae [6℄, with anadditional hypothesis of fatorization of virtual orretions.In all these approahes, resummation is performed after Mellin transformation of thehadroni ross-setion, whih fatorizes it into the produt of a parton luminosity anda partoni ross-setion. More importantly, in Mellin spae the partoni ross-setion inthe soft limit an be obtained by exponentiating single-partile emission ross-setions,thanks to the fat that in Mellin spae the n-partile longitudinal phase spae fatorizes.The large logs whih are resummed are then logarithms of N , the variable whih is Mellinonjugate to � (a dimensionless ratio whih equals one at threshold), rather than theoriginal ln(1� �).More reently, fatorization and exponentiation were diretly performed at the levelof Feynman diagrams, without the need for a Mellin transformation, using path-integralmethods to separate o� soft gluon modes [7, 8℄. In the latter approah the standard re-summed results are readily reovered, but the way the terms whih dominate in the eikonallimit emerge order-by-order in perturbation theory (and the next-to-eikonal orretions tothem) is partiularly transparent. Indeed, an important use of resummed results is to pro-vide preditions for higher order terms whih an even be used to onstrut approximateexpressions for unknown �xed-order orretions (see e.g. Ref. [9℄).However, regardless of how resummation is proven, resummed expressions for partoniross-setions with a �xed logarithmi auray in momentum spae (i.e. nextk-to-leadingln(1 � z), where z is a partoni saling variable) turn out to be ill-de�ned: they leadto divergent hadroni ross-setions upon onvolution with a parton luminosity [6, 10℄.This behaviour is already present at the �xed-oupling level [10℄, and it persists whenthe oupling runs [6℄. It an be traed [10℄ to the fat that the trunation of resummedresults to any �nite logarithmi auray in momentum spae indues terms whih vio-late longitudinal momentum onservation, thereby leading to fatorial divergene of theperturbative expansion: the result is well-de�ned provided only the trunation to �nitelogarithmi auray is performed in Mellin spae (i.e., nextk-to-leading lnN , rather thannextk-to-leading ln(1�z)), and the Mellin transform is inverted exatly to power auray,i.e. retaining terms to all logarithmi orders in 1� z and only negleting terms whih aredown by powers of 1 � z [6℄. As a onsequene, perturbative QCD resummation, even ifderived using a momentum-spae argument, must be performed in Mellin spae (to �nitelogarithmi auray) if it is to respet momentum onservation, and to lead to �nitephysial (hadroni) ross-setions.At the running-oupling level, however, a new diÆulty arises: namely, it turns out1



that the nextk-to-leading lnN series of ontributions to the partoni ross-setion at any�nite logarithmi auray, viewed as a series in the strong oupling �s, orresponds,upon inverse Mellin transformation, to a divergent series of ontributions to the partoniross-setion. This divergene an be traed to the Landau pole in the strong oupling:as long known [11℄, resummed results orrespond to e�etively replaing the hard saleM2 at whih the strong oupling is evaluated with a sale M2(1� z)a related to the soft-gluon radiation proess (with a a proess-dependent exponent, e.g. a = 2 for Drell-Yan).Beause the hadroni observable is found by onvoluting the partoni ross-setion with aluminosity , the integration over parton momenta always interepts the region z ! 1 wherethe strong oupling blows up, and this manifests itself as a divergene of the expansion inpowers of �s(M2). This divergene, whih is of non-perturbative origin, an be removedby addition of subleading terms: within the ommonly used \minimal presription" ofRef. [10℄ this is done by hoosing a partiular integration path to perform the Mellininversion integral, whih orresponds to adding a term whih is more suppressed than anypower of 1=M2, while with the more reent \Borel presription" [12, 13℄ this is done byadding a higher twist term to make the divergent series Borel summable.An alternative approah to resummation an be based on the soft-ollinear e�etive�eld theory (SCET) [14{17℄, whih provides [18℄ an alternative derivation of QCD fa-torization: threshold resummation based on SCET was performed in Refs. [19{23℄. Thisapproah provides a powerful alternative way of determining resummed results for hadroniobservables, whih an then be used for phenomenology through the standard Mellin-spaeformalism of Ref. [10℄. However, it was pointed out in Ref. [23℄ that, thanks to the fatthat the e�etive theory deals with the hadroni degrees of freedom, in a SCET approahresummed expressions an be diretly derived in terms of the hadroni kinemati variable,i.e., in pratie, SCET allows one to perform the resummation of ln(1 � �), where � is ameasurable dimensionless kinemati ratio. The advantage is that the divergenes relatedto the need to integrate over the parton kinematis are no longer present: hene, in par-tiular, the diÆulties related to the Landau pole of the strong oupling disappear. Theapproah of Ref. [23℄ has been subsequently developed for phenomenology, and appliedto various physial proesses, suh as deep-inelasti sattering [24℄, Drell-Yan [25℄ andHiggs [26℄ prodution.Heneforth, for brevity, we will refer to the approah of Ref. [23℄ as SCET approah,and that of Refs. [3{6℄ as QCD approah. It should be observed, however, that whereasthe QCD implementation of resummation is unique to any �nite perturbative order, theaforementioned [19{23℄ alternative implementations of threshold resummation in SCET,to the best of our understanding, lead to results whih di�er (possibly by subleading terms)even when trunated to �nite perturbative order. Here we will onentrate on the SCETapproah of Ref. [23℄, whih has been widely used in partiular for phenomenologialappliations.However, results obtained in the approah of Ref. [23℄ are not easily ompared tothose obtained using the standard approah of Refs. [3{6℄, beause the diret onnetionto fatorization and resummation at the level of partoni ross-setions is lost. Indeed,as mentioned, the presene of the Landau pole implies that the expansion in powers of�s(M2) of the resummed partoni ross-setion diverges. Hene, if the resummed SCETresult of Ref. [23℄ is free of divergenes, its expansion to �xed order must neessarily di�erfrom that of the standard Mellin-spae resummation.2



This di�erene has never been determined so far: its omputation is the goal of thispaper. Clearly, its knowledge is ruial in order to determine the theoretial and phe-nomenologial viability of the SCET resummation of Ref. [23℄. Some phenomenologialomparisons of resummed preditions for relevant physial proesses obtained using SCETto standard perturbative results have been performed in Refs. [24{26℄. Di�erenes arefound to be reasonably small: however, this does not shed light on their analyti form.But knowledge of this analyti form is neessary if we wish to know, �rst, whether up tothe stated auray the SCET and QCD approahes are equivalent, and seond, even ifthey are, what is the kind of subleading suppression of the terms introdued in the SCETapproah to tame the perturbative divergene, i.e. what is the auray of the SCETapproah (be it power or logarithmi).The answer to these questions is presented here in several steps. In Setion 2, aftersummarizing the known form of resummed results both in the perturbative QCD andSCET approah, we reall that the de�nition of nextk-to-leading log auray in the SCETapproah of Ref. [23℄ and in the standard perturbative QCD approah are di�erent, andonly agree at the leading log level. Beyond the leading log, SCET results are always lessaurate by one power of log than the perturbative ones: so NkLL in the perturbativease always inlude terms whih only appear in the Nk+1LL SCET result, and so forth. Inorder to proeed to a omparison, it is neessary to disuss the dependene of the SCETresummation on the soft sale: in Setion 3 we summarize how SCET results in Mellinspae, or in momentum spae, at either the partoni or hadroni level an be obtained bydi�erent hoies of soft sale. A omparison is then made possible through the derivationof a general relation between the SCET result and the standard result, by expressing thelatter in terms of the onvolution of the former with a funtion Cr whih depends onthe soft sale. We establish this result at next-to-next-to-leading logarithmi order (butwe onjeture it to hold to all orders): it provides a master formula whih enables a fullomparison of the QCD and SCET results, both from an analyti and a numerial pointof view.As a preliminary step, this master formula an be used to prove the fat that if SCETresummation is performed in Mellin spae it is ompletely equivalent to the standardapproah, and in partiular it has the same logarithmi auray at eah order. Thisresult was established already in Refs. [24, 25℄, but with the aforementioned lower logauray of the SCET results. This is done in Setion 4, where we also digress to showthat if SCET resummation is performed in momentum spae by hoosing a partoni salingvariable z, it oinides with the perturbative result up to power suppressed orretions,but, like the perturbative result, it diverges at the partoni endpoint z = 1. We anthen (in Setion 5) takle the omputation of the funtion Cr whih relates the SCETand perturbative resummation when the soft sale is hosen as a measurable hadronisale. In this ase, the SCET result is free of Landau pole, and thus the divergene isentirely ontained in the Cr funtion. This funtion depends on the PDF luminosity in anon-universal way, and thus whether or not it is subleading depends on the form of thePDF. In partiular, if one assumes that the luminosity does not ontain logarithmiallyenhaned terms, then we an show that this funtion is always logarithmially subleading,provided only the less aurate SCET de�nition of logarithmi auray is used. However,any logarithmially enhaned ontribution to the parton luminosity L(x) proportional tolnk(1 � x), with k � 1, will lead to ontributions to Cr whih are of the same order as3



those indued by perturbative resummation.Therefore, we onlude that it is only for a partiular lass of luminosities that SCETwith a hadroni hoie of soft sale reprodues the perturbative result, and an thusbe onsidered to be equivalent to the standard approah and to provide an alternativepresription to remove the divergene of the perturbative expansion. Even when thisis the ase, the momentum-spae SCET resummation presription of Ref. [23℄ requireslowering by one order (one power of log) the auray of the resummed result at eahlogarithmi order. Furthermore, in the SCET presription, terms whih are introdued inorder to remove the perturbative divergene are only logarithmially subleading, ratherthan being power suppressed (as in the Borel presription) or exponentially suppressed(as in the minimal presription), along with power suppressed terms. Finally, subleadingterms whih are indued by SCET resummation are suppressed by powers or logs of thehadroni sale: this feature of SCET resummation may also be a limitation, beause thepartoni and hadroni sales, though related, do not oinide, and in fat it may well bethat the former is lose to threshold while the latter is not [27℄.2 Threshold resummation at �xed logarithmi aurayFor de�niteness, we will onentrate on the prodution of Drell-Yan pairs at hadron ol-liders. This hoie does not entail loss of generality, and the extension to other proessesis straightforward. We will onsider in partiular the invariant mass distribution d�DYdM2 ,with M the invariant mass of the pair. We de�ne the hadroni saling variable� = M2s (2.1)where s is the hadroni enter-of-mass energy squared, so the threshold limit is � ! 1.Perturbative QCD fatorization takes the form�(�;M2) = Z 1� dzz C(z;M2)L��z� ; (2.2)where L is the parton luminosity, and �(�;M2) is a dimensionless ross-setion�(�;M2) = 1��0 d�DYdM2 (2.3)de�ned by requiring that at the Born level (i.e. at order �0s) C(z;M2) = Æ(1�z). Note thatEq. (2.2) is a shemati expression: in general, a sum over di�erent parton subproessesmust be inluded. In the sequel, without signi�ant loss of generality, we shall alwayshoose the renormalization and fatorization sales equal to eah other and to the physialhard sale �2F = �2R =M2.2.1 Perturbative QCD: resummation in N spaeAs disussed in Setion 1, standard QCD resummation is more onveniently performed bytaking a Mellin transform�(N;M2) = Z 10 d� �N�1�(�;M2) = C(N;M2)L(N) (2.4)4



whih fatorizes both the onvolution Eq. (2.2) and the gluon radiation phase spae. InEq. (2.4) by slight abuse of notation we denote with C(N;M2) and L(N) the Mellintransforms of C(z;M2) and L(z) respetively.The N -spae resummed oeÆient funtion has the formCQCD(N;M2) = �g0(�S) exp �S �M2; M2N2 � (2.5)where�S �M2; M2N2 � = Z 10 dz zN�1 " 11� z Z M2(1�z)2M2 d�2�2 2A ��S(�2)�+D ��S([1 � z℄2M2)�#+ :(2.6)The funtions �g0(�S), A(�S) and D(�S) are given as power series in �S, with �g0(0) = 1and A(0) = D(0) = 0; A(�S) is order by order the oeÆient of the soft singularity in theAltarelli-Parisi splitting funtion for the relevant partoni subproess, while the funtionsD(�S) and �g0(�S) are proess-dependent. Spei�ally, in the ase of Drell-Yan produtioninitiated by quark-antiquark ollisions, the relevant Altarelli-Parisi splitting funtion isPqq(�s; x) = A(�S)(1� x)+ [1 +O(1� x)℄ : (2.7)As a result, the resummed oeÆient funtion takes the form (using the notation ofRef. [10℄) CQCD(N;M2) = g0(�S) expS (��L; ��) ; (2.8)S(��L; ��) = 1��g1(��L) + g2(��L) + ��g3(��L) + ��2g4(��L) + : : : ; (2.9)�� � 2�S(M2)�0; L � ln 1N ; (2.10)where �0 is the �rst oeÆient of the QCD � funtion, de�ned as�2d�S(�2)d�2 = ��0�2S(�2) +O(�2S); �0 = 11CA � 2nf12� (2.11)and the funtions gi are of order g1(��L) = O(�2S) and gi(��L) = O(�S) for i > 1, and arestraightforwardly obtained performing the integrals in Eq. (2.6), and thus eah determinedby a �nite number of oeÆients in the expansion of the funtions A and D. Note that thefuntions g0 and S do not oinide with �g0 and �S of Eq. (2.5), beause, by de�nition, Sunlike �S does not ontain terms whih are not logarithmially enhaned, while g0 inludesnon-logarithmi ontributions both from �g0 itself, and from the integral Eq. (2.6).The standard perturbative QCD resummation predits orretly all ontributions tolnCQCD(N;M2) up to a given order: in other words, if ontributions up to gn are inludedin S(��L; ��) Eq. (2.9) then lnCQCD(N;M2) is determined up to subleading orretions oforder O(�k+(n�1)S Lk). This is standardly alled Nn�1LL resummation. However, onethe exponential is expanded out in order to obtain the oeÆient funtion CQCD(N;M2),at eah order in �S, only a restrited number of logarithmially enhaned terms is pre-dited orretly, and furthermore, inlusion of the prefator g0(�S) Eq. (2.8) (whih is not5



logarithmially enhaned) is mandatory in order to improve the auray beyond NLL.In fat its inlusion already at the NLL level inreases the number of ontributions tothe oeÆient funtion whih are predited orretly. In Tab. 1 we summarize the orderup to whih the expansion of the funtions Eq. (2.8,2.9) should be inluded to ahievea given logarithmi auray, and, in the last olumn, the order of the ontributions tothe resummed oeÆient funtion CQCD(N;M2) whih, as a onsequene, are preditedorretly. log approx. gi up to g0 up to order auray: �nSLkLL i = 1 (�S)0 k = 2nNLL i = 2 (�S)1 2n� 2 � k � 2nNNLL i = 3 (�S)2 2n� 4 � k � 2nTable 1: Orders of logarithmi approximations and auray of the predited logarithmsin perturbative QCD.2.2 The SCET approahResummation in SCET in the approah of Ref. [23℄, whih heneforth we will refer toas SCET resummation for short, is diretly given in the physial spae of momentumfrations. The relevant expression for Drell-Yan pair prodution has been omputed inRef. [25℄, and it is given byCSCET(z;M2; �2s) = H(M2)U(M2; �2s)S(z;M2; �2s) (2.12)where H(M2), the so-alled hard funtion, has an expansion in powers of �S omputed atthe hard sale M2;S(z;M2; �2s) = ~sDY�lnM2�2s + ��� ; �s� 11� z �1� zpz �2� e�2��(2�) ; (2.13)where � = Z �2sM2 d�2�2 �usp ��S(�2)� ; �usp(�S) = A(�S) (2.14)and ~sDY(L; �) has a perturbative expansion in powers of �S(�2). Note that the funtion�usp(�S) oinides with the funtion A(�S) of Eq. (2.6). Finally,U(M2; �2s) = exp(�Z �2sM2 d�2�2 ��usp ��S(�2)� ln �2M2 � W ��S(�2)��) (2.15)where W (�S) has a power expansion in �S. The resummed expression as given in Ref. [25℄atually depends on several energy sales, whih here for simpliity are all taken to be equalto the hard sale M2.Two important formal aspets haraterize the SCET resummed result. The �rst isthat it depends on a \soft sale" �s, and in fat the logs whih are being resummed in6



SCET are ln �sM . Hene, di�erent hoies of soft sale lead to di�erent forms of the SCETresummation, as we shall disuss in greater detail in the next Setion.The seond is related to the well-known fat that at the endpoint z = 1 the oeÆ-ient funtion CSCET(z;M2; �2s) is a distribution, rather than an ordinary funtion. Thisdistribution is usually expressed in terms of the so-alled plus distribution 1(1�z)+. Thedistributional nature of the SCET result emerges in the following way. The onvolutionprodut of CSCET(z;M2; �2s) with any well-behaved test funtion of z is well de�ned aslong as � is a �xed, positive number: the fator (1 � z)2� ats as a regulator of the softsingularity at z = 1. The result an then be analytially ontinued to negative values of �(whih is typially the ase in DY-like proesses) by means of the identityZ 10 dz (1� z)2��1f(z) = Z 10 dz (1� z)2��1[f(z)� f(1)℄ + 12� f(1): (2.16)Eq. (2.16) de�nes a distribution on a spae of test funtions f(z), regular in the range0 � z � 1, whih is usually written(1� z)2��1 = �(1� z)2��1�+ + 12� Æ(1 � z): (2.17)It is important to note that � is of order �S: therefore, the term proportional to Æ(1 � z)in Eq. (2.17) ombines with the fator 1=�(2�) = 2� + O(�2) in Eq. (2.12) to form anorder-�0S ontribution (with the orret kinemati struture).As in the perturbative ase, a given logarithmi auray is obtained by inluding a�nite number of terms in the perturbative expansion of the funtions whih determinethe resummed result, namely �usp, W , H and ~sDY. The auray whih, aording toRef. [25℄, is obtained by inluding in the SCET expression Eq. (2.12-2.15) oeÆients upto a given order, as well as the orresponding nomenlature, are summarized in Tab. 2. Asin the ase of Tab. 1, the last olumn gives the order of the ontributions to CSCET whihare predited exatly. As mentioned in Setion 1 and as is apparent omparing Tab. 1 toTab. 2, beyond LL the SCET results are always less aurate than the QCD results of thesame name: the QCD NLL inludes terms of order �ns lnk �sM with k � 2n � 2, but theSCET NLL only inludes terms with k � 2n� 1. This was already observed in Ref. [28℄.RG-impr. PT log. approx. �usp W H, ~sDY auray: �ns lnk �sM| LL 1-loop tree-level tree-level k = 2nLO NLL 2-loop 1-loop tree-level 2n� 1 � k � 2nNLO NNLL 3-loop 2-loop 1-loop 2n� 3 � k � 2nNNLO NNNLL 4-loop 3-loop 2-loop 2n� 5 � k � 2nTable 2: Di�erent approximation shemes for the evaluation of the resummed ross-setion formulae in the SCET approah.When omparing the two di�erent de�nitions of logarithmi auray, Tab. 1 andTab. 2, one should distinguish a purely terminologial issue and an issue of substane.The terminologial issue is how eah given auray is alled: this is learly immaterial.7



The issue of substane is whether at (say) NLL the SCET expression Eq. (2.12-2.15) maybe upgraded to the higher auray of the NLL QCD expression Eq. (2.5-2.6) (withouthaving to resort to the yet more aurate NNLL SCET expression), and likewise at allsubsequent logarithmi orders. We will show that the answer to this question depends onthe hoie of soft sale �s.13 Choie of the soft sale and SCET-QCD omparisonIn the standard perturbative QCD approah to soft resummation, the energy sale whihharaterizes soft gluon emission is of the order of M(1 � z): when the observed �nalstate arries away a fration z of the available partoni energy, the energy available forunobserved radiation isM(1�z), whih is muh smaller thanM if z is lose to 1. The fatthat the sale involved is partoni has phenomenologial impliations: beause the partonienter-of-mass energy is always smaller than the hadroni one, threshold resummation maybe relevant even for proesses whih are relatively far from hadroni threshold, providedthe parton luminosity is peaked for small values of the momentum fration [27℄. Thisindeeds is known to happen for Higgs prodution in gluon fusion at the LHC. [30, 31℄In SCET resummation, however, one resums logs of the large ratio M=�s of the hardsale M to the soft sale �s, and various hoies for the soft sale �s are possible: inpartiular, the hoie whih has been advoated in Refs. [23{26℄, and whih removes theproblem of the Landau pole, onsists of hoosing for �s a sale whih haraterizes the(hadroni) physial proess.If �s is hosen as a funtion of the partoni saling variable z, then the resummedSCET partoni ross-setion CSCET(z;M2; �2s) Eq. (2.12) an be diretly ompared to themomentum-spae perturbative QCD expression, whih may be obtained by determiningthe inverse Mellin transform CQCD(z;M2) of the resummed N -spae expression Eq. (2.5).We will study this ase in detail in the next Setion. However, if �s is hosen as a funtionof the hadroni saling variable � , the SCET and perturbative QCD resummed results mustbe ompared at the level of physial ross-setions �QCD(�;M2) and �SCET(�;M2), whihare respetively obtained substituting CQCD(z;M2) or CSCET(z;M2; �2s) in the fatorizedexpression Eq. (2.2), with some partiular hoie of soft sale �s.It is important to understand that these di�erent hoies of soft sale lead to resummedpreditions with di�erent analyti struture. To see this, note that if the soft sale onlydepends on the parton momentum fration z, then Eq. (2.2) is a onvolution, in the sensethat upon Mellin transformation it fatorizes aording to Eq. (2.4). This fatorization isof ourse a neessary and suÆient ondition for parton radiation to respet longitudinalmomentum onservation. But if in Eq. (2.2) the oeÆient funtion depends on � throughthe soft sale, then the onvolution struture is destroyed. This means that with thispartiular hoie of soft sale, upon Mellin transformation the ross-setion no longerfatorizes, thereby violating longitudinal momentum onservation. This also violates theQCD fatorization theorem, beause the short-distane partoni ross setion depends onlong-distane physis through the hadroni variable � . The possibility of making this1In other ontexts, suh as for example the resummation of jet veto logs [29℄, SCET results whihorrespond either of two di�erent auraies, respetively akin to Tab. 2 or Tab. 1, may be ahieved bysuitable hoies of terms to be inluded in the resummed expression.8



hoie of soft sale, and indeed the very possibility of making alternative hoies of softsale, some of whih preserve fatorization and some of whih do not, appears puzzlingin a standard perturbative QCD approah. We will not attempt to address the issue ofpriniple of understanding this apparent strutural disrepany between SCET and QCDresults. Rather, we will take the SCET and QCD expressions at fae value: our aim willbe to determine how they are related to eah other.We will now derive a master formula whih relates the SCET resummed expressionfor generi hoie of the soft sale to the standard perturbative QCD expression. For def-initeness, we speialize to the next-to-next-to-leading log ase, but all relevant struturesare already present at this order so generalization to higher logarithmi orders is straight-forward. First, we give the expliit expression of the QCD result Eq. (2.5) to this order.Then, we give the SCET expression Eq. (2.12-2.15) to the same order, and we performits (exat) Mellin transform in order to allow for a omparison with the QCD expression,whih is given in N spae. Finally, by omparing the two expressions we derive a masterformula whih relates them, as a funtion of the soft sale �s, through a suitable fator(in Mellin spae) or a onvolutive funtion (in momentum spae).3.1 Perturbative QCD resummation to NNLLThe NNLL resummed expression in perturbative QCD is given by Eq. (2.5) with [9, 32℄(see also Ref. [27℄)A(�S) = A14 �S + A216 �2S + A364 �3S +O(�4S); (3.1)A1 = 4CF� ; (3.2)D(�S) = D1�S +D2�2S +O(�3S); (3.3)D1 = 0; D2 = CF16�2 �CA��161627 + 889 �2 + 56�3�+�22427 � 169 �2�nf� : (3.4)We an perform the z integral in Eq. (2.5) using Eq. (A.4):�SQCD�M2; M2�N2 � = Z M2= �N2M2 d�2�2 �A ��S(�2)��ln 1�N2 � ln �2M2�+ 12D ��S(�2)��+ �212 d2dL2 Z M2=N2M2 d�2�2 �A ��S(�2)��ln 1N2 � ln �2M2�+ 12D ��S(�2)��= Z M2= �N2M2 d�2�2 �A ��S(�2)��ln 1�N2 � ln �2M2�+ 12D ��S(�2)��+ CF�3 �S�M2�N2 � ; (3.5)where (as per Eq. (A.5)) �N = Ne . We have negleted subleading (N3LL) terms (inludingthe replaement N ! �N in the argument of �S in the last term) and we have brought allintegrals to a ommon form usingZ 1�1=N0 dz1� z 2Z M2(1�z)2M2 d�2�2 A ��S(�2)� = �Z M2=N2M2 d�2�2 Z �2M2 d�2�2 A ��S(�2)�9



= �Z M2=N2M2 d�2�2 A ��S(�2)��ln 1N2 � ln �2M2�(3.6)Z 1�1=N0 dz1� z D ��S(M2(1� z)2� = �12 Z M2=N2M2 d�2�2 D ��S(�2)� : (3.7)In order to ease the subsequent omparison to the SCET result, we separate o� thenon-logarithmi onstant from the last term in Eq. (3.5):�SQCD�M2; M2�N2 � = Z M2= �N2M2 d�2�2 �A ��S(�2)��ln 1�N2 � ln �2M2�+ D̂2�2S(�2)�+ CF�3 �S(M2) (3.8)where D̂2 = D22 � CF�3 �0 = CF16�2 �CA��80827 + 28�3�+ 11227 nf� : (3.9)We an thus write CQCD(N;M2) = ĝ0(�S(M2)) exp ŜQCD�M2; M2�N2 � ; (3.10)whereĝ0(�S) = 1 + ĝ01�S +O(�2S); (3.11)ŜQCD�M2; M2�N2 � = Z M2= �N2M2 d�2�2 �A ��S(�2)��ln 1�N2 � ln �2M2�+ D̂2�2S(�2)� : (3.12)Note that ĝ0 and Ŝ annot be identi�ed with g0 and S in Eq. (2.5), beause the integralin Eq. (3.12) does ontain some terms whih are not logarithmially enhaned:A14 Z M2= �N2M2 d�2�2 �S(�2)�ln 1�N2 � ln �2M2� = 2CF� 2�S(M2)+logarithms+O(�2S); (3.13)so that ĝ01 = g01 � 2CF� 2: (3.14)However, the form Eq. (3.12) of the exponent in the QCD result is espeially suited foromparison to the SCET result, as we now show.3.2 SCET resummation to NNLLWe turn to the SCET expression, whih is given by Eq. (2.12) with, to NNLLW (�S) = (2)W �2S16�2 +O(�3S); (3.15)(2)W = CFCA��80827 + 11�29 + 28�3�+ CFTFnf �22427 � 4�29 � : (3.16)10



In order to ompare it to the perturbative QCD result, we perform a Mellin transformwith respet to z. This is easy to do, beause the z dependene is all ontained in the softfuntion S(z;M2; �2s), whose Mellin transform isM �S(z;M2; �2s)� = ~sDY�lnM2�2s + ��� ; �s� �(N � �)�(2�)�(N + �) e�2��(2�)= �1 + CF2� �S(�2s)�ln2 M2�2s �N2 + �26 �� �N�2� +O� 1N� : (3.17)It follows that the Mellin transform of the oeÆient funtion Eq. (2.12) isCSCET(N;M2; �2s) = H(M2) �1 + CF�12 �S(�2s) + CF2� �S(�2s) ln2 M2�2s �N2�� expZ �2sM2 d�2�2 "�usp ��S(�2)��ln 1�N2 � ln �2M2�+ (2)W16�2�2S(�2)#+O� 1N� :(3.18)It is very important to observe that the Mellin transform has been omputed at �xed�s. This means that �rstly, Eq. (3.18) is not the Mellin transform of the SCET expressionwhen �s depends on z (whih we will disuss in the next Setion): in that ase the Mellintransform would also at on the z dependene through �s. And seond, that if �s dependson � the ross-setion �SCET(�;M2) omputed using Eq. (2.2) does not fatorize into theprodut of CSCET(N;M2; �2s) Eq. (3.18) times a parton luminosity L(N) upon Mellintransformation: the Mellin integral over � would also at on the � dependene through �swhih, as already noted, does not have the form of a onvolution integral.Equation (3.18) an be brought in a form whih is suitable for omparison to the QCDexpression by separating o� the onstant as in Eq. (3.8), thus leading toCSCET(N;M2; �2s) = Ĥ(M2)E(N;M2; �2s) exp ŜSCET(M2; �2s); (3.19)withĤ(M2) = H(M2) exp �CF�12 �S(M2)� = 1 + �S(M2)�H1 + CF�12 �+O(�2S); (3.20)ŜSCET(M2; �2s) = Z �2sM2 d�2�2 ��usp ��S(�2)��ln 1�N2 � ln �2M2�+ ̂(2)W �2S(�2)� ; (3.21)̂(2)W = (2)W16�2 � CF�12 �0 = CF16�2 �CA��80827 + 28�3�+ 11227 nf� ; (3.22)E(N;M2; �2s) = 1 + CF2� �S(�2s)�ln 1�N2 � ln �2sM2�2 : (3.23)3.3 The master formulaThe QCD expression Eqs. (3.10-3.12) and the SCET expression Eqs. (3.19-3.23) are easilyrelated, by noting that, beause �usp(�S) = A(�S) and D̂2 = ̂(2)W , the integrands inEqs. (3.12) and (3.21) oinide, soŜSCET(M2; Q2) = ŜQCD(M2; Q2) � Ŝ(M2; Q2): (3.24)11



It follows that, splitting the integral as RM2= �N2M2 d�2�2 = R �2sM2 d�2�2 + RM2= �N2�2s d�2�2 , we getCQCD(N;M2) = Cr(N;M2; �2s)CSCET(N;M2; �2s) (3.25)where Cr(N;M2; �2s) = ĝ0(�S(M2))Ĥ(M2) exp Ŝ ��2s; M2�N2 �E(N;M2; �2s) : (3.26)The non-logarithmi terms in fat anel to the auray of our omputation. Indeed,by substituting the value [32℄ g01 = CF� �4�2 � 4 + 22� (3.27)in Eq. (3.14), and the value [25℄ H1 = CF� �72�2 � 4� (3.28)in Eq. (3.20) we get ĝ0(�S(M2))Ĥ(M2) = 1 +O(�2S); (3.29)so deviations from unity are of the same order as the �rst ontribution whih, at NNLLauray, is not inluded in H(M2) (aording to Tab. 2). The expression of Cr an befurther simpli�ed by inluding the funtion E(N;M2; �2s) Eq. (3.23) in the funtion Ŝ:indeedE(N;M2; �2s) = exp"A18 �S(�2s)�ln 1�N2 � ln �2sM2�2#+O(�2S)= expZ M2= �N2�2s d�2�2 "A14 �S(�2)�ln 1�N2 � ln �2M2�� A18 �(�S(�2))�ln 1�N2 � ln �2M2�2 #:(3.30)Using Eq. (3.30) in the de�nition of Cr(N;M2; �2s) we obtain our �nal expressionCr(N;M2; �2s) = exp Ŝr ��2s; M2�N2 � ; (3.31)with Ŝr ��2s; M2�N2 � = Z M2= �N2�2s d�2�2 "�A(�S(�2))� A1�S(�2)4 ��ln 1�N2 � ln �2M2�+ A18 �(�S(�2))�ln 1�N2 � ln �2M2�2 + D̂2�2S(�2)#: (3.32)Equation (3.25) together with the expliit expression Eqs. (3.31-3.32) of the funtion Crprovides the master formula whih relates SCET and perturbative QCD resummation. It12



is the main result of this paper. We note that no term of order �S appears in the integrandof Eq. (3.32): indeed, the inlusion of the term E(N;M2; �2s) has the e�et of removing theterm proportional to A1�s (see Eq. (3.1)). The remaining ontributions to the integrandin Eq. (3.32) start at O(�2S).It is important to observe that while CQCD(N;M2) does not admit a Mellin inverse,beause it has a ut in the omplex N plane starting at the value NL at whih thestrong oupling blows up, CSCET(N;M2; �2s) does admit a Mellin inverse as long as �sis kept �xed, beause the argument of the strong oupling in the SCET expression doesnot depend on N . This means that if Eq. (3.25) is expanded in powers of �s(M2), andthen the expansion is Mellin-inverted term by term, the expansion of the left-hand side isdivergent, while on the right-side the Mellin inverse of the expansion of CSCET(N;M2; �2s)onverges to CSCET(z;M2; �2s) Eq. (2.12). Therefore, the divergene has been isolated inthe Mellin inverse of the expansion of the funtion Cr(N;M2; �2s) Eq. (3.26).If the perturbative expansion of both sides of Eq. (3.25) in powers of �s(M2) is trun-ated to any �nite order, then the Mellin inverse of both sides exists, and one gets themomentum-spae relationCQCD(z;M2) = Z 1z dyy Cr �yz ;M2; �2s�CSCET �y;M2; �2s� ; (3.33)where CSCET(z;M2; �2s) is given by Eq. (2.12) (expanded out to the given order), whileboth CQCD(z;M2) and Cr �z;M2; �2s� should be understood as the trunation to the givenorder of the Mellin inverse of the expansion of the orresponding N{spae quantities.Equation (3.33) is then the momentum-spae version of the master formula.The master formula Eqs. (3.25,3.33) has been established at next-to-next-to-leadinglogarithmi order, de�ned aording to Tab. 2. Note, however, that the auray is up-graded to the higher one of Tab. 1 if non-logarithmi terms anel to O(�3S), i.e. if thefuntion Ĥ(M2) in the SCET oeÆient funtion Eq. (3.19) is replaed by a funtion�H(M2) suh that ĝ0(�S(M2))�H(M2) = 1 +O(�3S): (3.34)Of ourse, this an always be ahieved by letting �H(M2) = Ĥ(M2) + �H2�2S(M2) andsuitably hoosing the value of �H2, while inluding the O(�2S) to g0(�S(M2)), as per Tab. 1.(Whether �H(M2) oinides with the O(�2S) expression of Ĥ(M2) as obtained using SCETis an issue that we will not address here). We onlude that the master formula holds upto NNLL auray, de�ned as in Tab. 1. It is easy to onvine oneself that this argumentshould hold to all logarithmi orders.4 Perturbative QCD vs. SCET: partoni ross-setionsThe master formula Eqs. (3.25-3.33) shows how SCET resummation an be used to repro-due standard results. Indeed, it immediately implies that if we �x the soft sale in termsof the Mellin-spae variable, �s = M�N ; (4.1)13



then Cr(N;M2; �2s) = 1, i.e.CQCD(N;M2) = CSCET�N;M2; M2�N2 � ; (4.2)so the standard QCD result is reprodued: with this hoie, SCET resummation is per-formed at the level of Mellin-spae partoni ross-setions. Notie that beause with thishoie the SCET and QCD expressions oinide, they also have the same auray. Sowith this hoie the SCET results atually has the auray of Tab. 1, rather than thelower auray of Tab. 2. The equivalene of Mellin-spae SCET resummation to the QCDexpressions was already established in Ref. [33℄; it was also pointed out in Ref. [25℄, butwith the lower auray of Tab. 2.Alternatively, one may try to use SCET resummation for partoni ross-setions, butusing the momentum-spae SCET formula Eq. (2.12), with �s �xed as a momentum-spaepartoni sale, namely �s =M(1� z): (4.3)This hoie for instane was adopted reently in Ref. [34℄ to perform threshold resumma-tion for top prodution. This hoie also provides another way of re-deriving the standardperturbative resummation from SCET. Indeed, it an be shown that, away from the end-point z = 1, all logarithmially enhaned terms lnp(1�z)1�z in the partoni ross-setion arereprodued order by order with this hoie.This is very easily seen at the leading-log, �xed-oupling level. Indeed, in this limitone has � = �SA12 ln(1� z); (1� z)2� = exp ��SA1 ln2(1� z)� ; (4.4)so thatCSCET(z;M2;M2(1� z)2) = exp"�A1�S4 Z M2(1�z)2M2 d�2�2 ln �2M2# (1� z)2�1� z 1�(2�)= exp ��A1�S2 ln2(1� z)� (1� z)2�1� z 1�(2�) : (4.5)But to leading log order one may expand 1=�(2�) to �rst order in �S, soCSCET(z;M2;M2(1� z)2) = �SA1 ln(1� z)1� z exp �A1�S2 ln2(1� z)�+NLL; z 6= 1: (4.6)On the other hand, the perturbative result in the same approximation is the inverse Mellintransform of CQCD(N;M2) = exp ��SA12 ln2 1N �+NLL; (4.7)i.e., using the results of Appendix B,CQCD(z;M2) = 11� z exp��SA12 �2��2� (1� z)��(�) �����=0 +NLL; z 6= 1: (4.8)Expanding the exponential and keeping only leading log terms this is seen to oinide withEq. (4.6). 14



However, as pointed out in Ref. [10℄ and disussed in Setion 1, CQCD(z;M2) (de-�ned as the leading-log trunation of the inverse Mellin of Eq. (4.7)) is ill-de�ned at theendpoint z = 1: it behaves as a distribution whih leads to a divergent integral upononvolution with any reasonably behaved luminosity, and, if expanded order by order in�s, it diverges fatorially. The SCET expression, either in the form of Eq. (4.5) or ofEq. (4.6), is also ill-de�ned as z ! 1. Indeed, beause now � depends on z (see Eq. (4.4)),it is no longer possible to use Eq. (2.17) to regulate the behaviour of CSCET(z;M2; �s).Note that Eq. (2.17) also had the e�et of generating the required O(�0S) ontribution toCSCET(z;M2;M2(1� z)2) proportional to Æ(1 � z). Furthermore, as z ! 1 the oeÆientfuntion Eq. (4.5) osillates with a fatorially-growing amplitude, beause of the fator1�(2�) . The fat that the SCET resummed expression diverges at the partoni endpointwas already notied in Ref. [34℄. Beause of these diÆulties, we will not pursue furtherthe hoie Eq. (4.3) of soft sale.5 Perturbative QCD vs. SCET in momentum spae: hadroniross-setionsWe now turn �nally to the hoie of soft sale whih is reommended in Refs. [23{26℄,spei�ally as a solution to the problem of the Landau pole, namely, a soft sale �xed interms of the hadroni momentum sale2�s =M(1� �): (5.1)With this hoie of soft sale, the SCET and perturbative QCD results an only be om-pared at the level of hadroni ross-setions�QCD(�;M2) = Z 1� dzz CQCD(z;M2)L��z� ; (5.2)�SCET(�;M2) = Z 1� dzz CSCET(z;M2; �2s)L��z� : (5.3)Indeed, with the hoie of soft sale Eq. (5.1) the resummed SCET ross-setion Eq. (5.3)is no longer in the form of a onvolution produt, beause the integrand depends on� expliitly in the lower integration bound and in the argument of L, but also impliitlythrough �2s. As a onsequene, uponMellin transformation with respet to � , �SCET(�;M2),unlike the standard QCD result, does not fatorize into a parton luminosity and a partoniross-setion.Therefore, the omparison must be arried out diretly at the level of hadroni ross-setions Eqs. (5.2-5.3), using the momentum-spae form Eq. (3.33) of the master formula(always understood as a trunation to arbitrary but �nite order in �s, as disussed inthe end of Setion 3.3). This is somewhat problemati, beause the power ounting ofTabs. 1-2 was de�ned at the level of oeÆient funtions and thus neessarily at the level2In Refs. [23{26℄ a slightly more general hoie of soft sale is onsidered: namely, the soft sale Eq. (5.1)is generally resaled by a funtion of � whih does not vanish at � = 1, and is hosen in suh a way thatthe �nite-order perturbative expansion of ~sDY is reliable. Beause this modi�ation does not introdueany extra logarithmi enhanement, it does not a�et our disussion, and we will not onsider it.15



of a partoni ross-setion. Of ourse, it is possible to de�ne a given logarithmi orderat the level of SCET oeÆient funtions, then use this expression to ompute the ross-setion �SCET(�;M2) using Eq. (5.3). However, beause this expression is not fatorized,the question whether �SCET(�;M2) and �QCD(�;M2) agree at any given order an onlybe answered by omparing them diretly, and ounting logs of the hadroni sale 1 � � .The result will then inevitably depend on the hoie of parton distributions. The onlyalternative is to simply onlude that the SCET result with this hoie annot be omparedto the perturbative one, and annot be endowed with a perturbative meaning [35℄.We will perform this omparison by omputing the di�erene between �SCET(�;M2)and �QCD(�;M2) up to O(�2S(M2)) and using the master formula to relate results. We willthen disuss the struture of the result to all orders.5.1 Fixed-order omparisonsWe start by omputing the funtion Cr(N;M2; �2s) Eq. (3.31) expliitly. Up to order �2Swe �ndCr(N;M2; �2s) = 1 + �2S(M2)��A13 �0 ln3 N + A28 ln2 N + 2D̂2 ln N�+O(�3S) (5.4)where  = Me��s : (5.5)The orresponding momentum-spae expression is readily obtained by performing theinverse Mellin transform of Eq. (5.4) with the help of Eq. (A.9):Cr(z;M2; �2s) = Æ(1� z)+ �2S(M2)��A13 �0 �3��3 + A28 �2��2 + 2D̂2 ���� �K(z; �)�����=0 +O(�3S);(5.6)where the funtion K(z; �) = �(�) ln��1 1z (5.7)plays the role of a generating funtion.The di�erene between the resummed physial ross-setions in the QCD and SCETformalisms is now found substituting the expliit expression of Cr Eq. (5.6) in the masterformula Eq. (3.33):�QCD(�;M2) = �SCET(�;M2) + �2S(M2) ��A13 �0 �3��3 + A28 �2��2 + 2D̂2 ���� ��(�; �)�����=0(5.8)where �(�; �) = Z 1� dzz K(z; �)�SCET ��z ;M2�= (1� �)��(�) 1Xn=0 1n+ � 1n! (1� �)n�(n)SCET(�;M2); (5.9)16



�(n)SCET(�;M2) = �n��n�SCET(�;M2); (5.10)up to orretions suppressed by powers of 1� � , as shown in Appendix B.Equation (5.8) provides the sought-for expliit omparison of the QCD and SCETresults at the level of hadroni ross-setions. Note that the non-onvolutive nature of theSCET result implies that the generating funtion for the orretion term is now given bythe funtion �(�; �), whih depends on the parton luminosity, rather than by the universalfuntion K(z; �) Eq. (5.7).In order to understand the orretion term in Eq. (5.8), we note that, with the hoieof �s Eq. (5.1), we get��(�; �) = e���(�) 1Xn=0 1n+ � 1n! (1� �)n�(n)SCET(�;M2); (5.11)so the dependene on (1� �)� anels. It follows that � derivatives ating on ��(�; �) donot indue any extra logarithmi enhanement, other than that of �SCET(�;M2) itself:�QCD(�;M2) = �SCET(�;M2) + �2S(M2) 1Xn=0 Cnn! (1� �)n�(n)SCET(�;M2); (5.12)where the onstants Cn are � -independent:Cn = ��A13 �0 �3��3 + A28 �2��2 + 2D̂2 ���� e���(�)n+ � �����=0 ; (5.13)C0 = �23�3A1�0 � �248A2; (5.14)Cn = A1�0n ��26 � 2n2�� A24n2 + 2D̂2n ; n > 0: (5.15)Therefore, up to order �2S, the orretion term is just �2S(M2) times a linear ombinationof derivatives of �SCET with respet to ln(1 � �). It follows that the orretion term is atmost of order�2S � �kS ln2k(1� �)� lnp(1� �) = �hS ln2h+p�4(1� �); h � k + 2; (5.16)where terms of order �kS ln2k(1 � �) are due to the oeÆient funtions, while terms oforder lnp(1� �) are due to the parton luminosity.In other words, at order �nS , terms lnk(1 � �) in the SCET and QCD result oinideif 2n � 3 + p � k � 2n. There are now various possibilities. If we simply neglet alllogarithmi enhanements from the parton luminosity, i.e. if we set p = 0, then we onludethat the SCET and QCD results di�er by terms whih are NNLL aording to the QCDounting Tab. 1, but N3LL orretion aording to the SCET ounting Tab. 2. Hene weonlude that, negleting logarithmi enhanements from the luminosity, the SCET resultdoes reprodue the QCD result to NNLL auray, albeit with the less aurate SCETde�nition of what is meant by NNLL. However, if a logarithmi enhanement from theluminosity is present, this is no longer the ase, and the disrepany an beome arbitrarily17



large (i.e. even at the leading log level) by just inreasing the value of p. Note that thisin partiular means that with this hoie of soft sale it is not possible to upgrade theauray of the SCET expression, as given in Tab. 2, to that of the QCD expression, asgiven in Tab. 1, beause at eah logarithmi order the SCET expression di�ers from theperturbative QCD results by terms whih, though onsistent with the auray of Tab. 2,spoil the higher logarithmi auray of Tab. 1.One may then ask whether logarithmi enhanements due to the PDF are expetedto be present, and whether they should be ounted. Beause the Pqq and Pgg splittingfuntions behave as P � 1(1�x)+ as x ! 1, ontributions to all parton distributions f(x)whih are enhaned by ln(1� x) terms will always be indued by perturbative evolution.In a parton distribution evaluated at some referene sale Q0 these terms will be aom-panied by powers of �s(Q20), whih is not small if the referene sale is taken as some low\initial" sale. Hene, in general, one does expet logarithmially enhaned ontributionsto PDFs, unless one wishes to make some �ne-tuned assumption about the PDF itself,whih an only hold at one single sale. The seond question is whether these terms shouldbe inluded or not in the power ounting Eq. (5.16). This is a question whih annot beanswered on the basis of �rst priniples. Two relevant observations here are the following.First, one one substitutes any expliit expression of the parton luminosity in the expres-sion Eq. (5.8) for the di�erene between the SCET and QCD result, there is no way toseparate what omes from the luminosity and what omes from the oeÆient funtion,beause the SCET expression is not fatorizable. Hene, in order to disard the luminositylogs from the power ounting ones has to invoke the expliit SCET expression Eq. (2.12):in other words, one must argue that the SCET expression ontains more information thanthat whih is ontained in the order-by-order perturbative result. The seond observationis that in pratie these orretion terms may be parametrially large in realisti situ-ations, and they may lead to signi�ant disrepanies between the preditions obtainedusing �SCET(�;M2) or �QCD(�;M2).5.2 All ordersThe �xed O(�2S) omputation of Setion 5.1 an be easily generalized to all orders. Firstof all, we note that the argument is based on the observation that to O(�2S) the orretionterm Eq. (5.8) an be expressed as a series of derivatives of the funtion ��(�; �) withrespet to � , but these do not lead to an extra logarithmi enhanement beyond that whihis already present in �(�; �). The argument of Setion 5.1 would thus hold, to NNLL butto all orders in �s, provided only the orretion term in Eq. (5.8) was a series of series ofderivatives of the funtion ��(�; �) with respet to � to all orders in �s. This is true ifand only if Ŝr depends on �s only through powers of ln N , with  given by Eq. (5.5).Now, we observe that the generi term in Ŝr, Eq. (3.32), has the formZ M2= �N2�2s d�2�2 �nS (�2)�ln 1�N2 � ln �2M2�m = Z 2=N21 dtt �nS (t�2s)�ln 2N2 � ln t�m ; (5.17)with n � 2 and m = 0; 1; 2. This is not a funtion of ln N only, beause of the dependeneof �S on �s. In order to generalize the argument to all orders we must thus study this18



dependene. Note that beause�nS (t�2s) = �nS (M2)� n�0�n+1S (M2) ln t�2sM2 +O(�n+2S ) (5.18)terms in Ŝr whih are not a funtion of ln N only �rst appear at order �3S(M2).Furthermore,�n+1S (M2) ln �2sM2 Z 2=N21 dtt �ln 2N2 � ln t�m = 1m+ 1�n+1S (M2) ln �2sM2 lnm+1 2N2 :(5.19)For n = 2, this term ontributes to Eq. (5.8) an order-�3S orretion. This gives a seriesof extra ontributions to the orretion term, on top of those whose order was given inEq. (5.16), whih are at most of order�3S ln(1� �)� �kS ln2k(1� �)� lnp(1� �) = �hS ln2h�5+p(1� �); h � k + 3 (5.20)while higher-order terms are even more suppressed.The power ounting whih ensues from Eq. (5.20) is the same as that of Setion 5.1:negleting logarithmi enhanements from the luminosity (i.e. if p = 0), the SCET resultdoes reprodue the QCD result to NNLL auray, but with the less aurate SCETde�nition of what is meant by NNLL. If a logarithmi enhanement from the luminosityis inluded, the QCD and SCET results di�er, with the disrepany appearing at anydesired logarithmi order (inluding leading log) if the enhanement of the luminosity issuÆiently strong.It is interesting to observe that a di�erent power ounting might be appopriate in thephenomenologially relevant ase in whih the hadroni � is atually far from threshold,yet threshold resummation e�ets are non-negligible beause the partoni enter-of-massenergy is lower than the hadroni one, as disussed in the beginning of Setion 3. In thisase, it might be appropriate to simply take �s as some numerial onstant, and omparediretly the SCET and QCD expressions of the oeÆient funtionCSCET and CQCD throughthe master formula Eq. (3.33). But if � is far from threshold, then �s Eq. (5.1) is of thesame order as the hard sale M . As a onsequene, in this ase Cr(N;M2; �2s) Eq. (3.31)manifestly starts at NLL order, as on�rmed by inspetion of Eq. (5.4), whih givesCr(N;M2; �2s) = 1 +O��2S(M2) ln3 1N� : (5.21)One must therefore onlude that this lass of NLL terms are resummed, through theleading-log funtion g1 in Eq. (2.9), by the QCD result CQCD(z;M2) but are not resummedat all in CSCET(z;M2; �2s). This problem may be alleviated through generalizations of thehoie Eq. (5.1) suh as those proposed in Ref. [25℄ (and mentioned above at the beginningof Setion 5), whereby one resales �s Eq. (5.1) by a fator (determined for instane usingsale-optimization methods), beause they lead to smaller values of �s. These hoies,however, do not a�et the ounting of logs, and it is therefore impossible to assess theirimpat in a omparison with standard QCD results, other than by numerial methods.19



6 SummaryWe have analyzed in detail the relation between the approah to threshold resummationbased on perturbative fatorization of Refs. [3{6℄, and the SCET approah of Refs. [23{26℄,with the main goal of exploring the viability, both theoretial and phenomenologial, ofthe SCET presription to treat the divergent nature of the perturbative QCD expansionin the soft limit. By deriving a master formula whih onnets resummed results in thesetwo approahes, we have shown that the way they are related depends on the hoie ofsoft sale in the SCET expression. We have expliitly performed alulations up to next-to-next-to-leading logarithmi auray, though it is easy to onvine oneself that thestruture of our master formula holds to any logarithmi order.We have shown that if SCET resummation is performed in Mellin spae, then it oin-ides with the standard perturbative result. The SCET and QCD results then have thesame auray, and are both beset by the problem of the divergene of the perturbativeexpansion. With this (partoni) hoie of soft sale SCET and QCD provide alternativeways of deriving the same resummed result.If SCET resummation is performed in momentum spae, as advoated in Ref. [23℄,the SCET and QCD results di�er by a non-universal term, whih depends on the partonluminosity (expliitly given up to O(�2s) in Eq. (5.4)): the SCET approah separateso� the series of divergent ontributions whih is then ontained in this term, with theSCET resummed result now given by a onvergent perturbative expansion. The prie topay for this is fourfold. First, beause the di�erene term is non-universal, it may spoilthe logarithmi auray of the resummed result depending on the parton luminosity. Inpartiular, if the parton luminosity ontains logarithmially enhaned ontributions (as itgenerally will, based on its behaviour upon QCD evolution), the di�erene term may enterat any logarithmi auray (inluding at the leading-log level), unless one deides thatlogarithms oming from the luminosity should not be inluded in the power ounting. Notehowever that, beause this orretion term is not fatorized, there is no way of atuallyisolating the logs that ome from the luminosity, other than to assume that the luminositydoes not ontain any.If this problem of non-universality is negleted, the SCET and QCD results are equiv-alent, however only by rede�ning the logarithmi auray to be always by one powerlower, aording to the ounting of Tab. 2 rather than the more aurate perturbativeQCD ounting Tab. 1. Hene the seond prie to pay is that the logarithmi aurayof the SCET result in this ase is always lower by one power of log, to all orders in �s.Third, while perturbative QCD resummation presriptions suh as the minimal [10℄ orBorel [12,13℄ presription introdue orretions to the perturbative result whih are powersuppressed or more, the SCET presription introdues a deviation whih is only logarith-mially suppressed. And �nally, the power ounting and suppression in the SCET resultmust be done at the level of the hadroni sale 1� � , while in QCD it is done at the levelof the partoni sale 1 � z. In many ases of physial interest [27℄ it may turn out thatthe latter is small even when the former isn't: in these ases the QCD ounting will bemore aurate.It will be interesting to investigate the phenomenologial impliations of this state ofa�airs. Our result enables suh an investigation, by providing a losed-form expression forthe di�erene between the SCET and QCD results.20
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A Mellin transformsWe ollet here some useful results on Mellin transforms, while referring to Setion 2 ofRef. [6℄ and the appendies of Refs. [13, 27℄ for a fuller treatment.The Mellin transform whih are neessary for the omputation of resummed terms,suh as the exponent of Eq. (2.5), an be performed usingZ 10 dz zN�1 � lnp(1� z)1� z �+ = � p+1Xk=0 �(k)(1)k! dkdLk Z 1�1=N0 dz lnp(1� z)1� z +O� 1N� (A.1)where L = ln 1N Eq. (2.10).At NNLLZ 10 dz zN�1 �F (ln(1� z))1� z �+= � �1�  ddL + 12 �2 + �26 � d2dL2� Z 1�1=N0 dz F (ln(1� z))1� z +N3LL +O� 1N� ;(A.2)(where  = ��0(1) is the Euler onstant) for any funtion F (`) whih admits a Taylorexpansion around ` = 0. Now,�1�  ddL + 22 d2dL2�Lp = Lp � pLp�1 + p(p� 1)2 2Lp�2= (L� )p +O(Lp�3): (A.3)Hene, to NNLL auray, Eq. (A.1) an be written in the equivalent formZ 10 dz zN�1 �F (ln(1� z))1� z �+= �Z 1�1= �N0 dz F (ln(1� z))1� z � �212 d2dL2 Z 1�1=N0 dz F (ln(1� z))1� z (A.4)where �N = Ne ; ln 1�N = L� : (A.5)An essential ingredient in the disussion of Setion 5 is the inverse Mellin transform oflnn N (A.6)where  is a onstant. In order to ompute it, we start from the identitylnn 1N = dnd�n�(�)Z 10 dz zN�1 ln��1 1z �����=0 ; (A.7)where �(�) = 1�(�) . Eq. (A.7) should be (and usually is) written in the formlnn 1N = dnd�n�(�)Z 10 dz zN�1 �ln��1 1z�+�����=0 + Æn0; (A.8)22



so that the integral is well de�ned even when the derivatives and the limit � ! 0 aretaken under the integral sign. This is not neessary for our present purposes. RewritingEq. (A.7) with N replaed by N= we obtainlnn N = dnd�n�(�)Z 10 dz zN �1 ln��1 1z �����=0= dnd�n ��(�)Z 10 dz zN�1 ln��1 1z �����=0 (A.9)after resaling the integration variable z ! z. The inverse Mellin transform of lnn N annow be immediately read o� Eq. (A.9).B ConvolutionsIn this Appendix we ompute the integral�(�; �) = �(�)Z 1� dzz � ��z� ln��1 1z ; (B.1)where �(�) � �SCET(�;M2) for simpliity, up to terms suppressed by powers of 1 � � .Using ln 1z = 1� z +O((1� z)2) (B.2)we �nd �(�; �) = �(�)Z 1� dzz (1� z)��1� ��z�= �(�) 1Xn=0 �(n)(�)n! �n Z 1� dz (1� z)��1 (1� z)nzn+1 : (B.3)Expanding 1=zn+1 in powers of 1�z we see that the integral is a sum of terms proportionalto (1� �)�+m; m � n: (B.4)Hene, the derivatives �(n)(�) appear in �(�; �) multiplied by (1� �)m, with m � n. Now(1� �)�(1)(�) = � d�(�)d ln(1� �)(1� �)2�(2)(�) = � d�(�)d ln(1� �) + d2�(�)d ln2(1� �): : : (B.5)whih means that (1��)m�(n)(�) withm > n is power-suppressed, and an be we negletedin Eq. (B.3) sine we are only interested in logarithmially-enhaned ontributions to�(�; �). Hene�(�; �) = �(�)(1 � �)� 1Xn=0 (1� �)n�(n)(�)n!(n+ �) + power-suppressed terms: (B.6)23
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