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o Bonvini,1;2 � Stefano Forte,3 Margherita Ghezzi3;4� and Giovanni Ridol�11 Dipartimento di Fisi
a, Universit�a di Genova and INFN, Sezione di Genova,Via Dode
aneso 33, I-16146 Genova, Italy2 Deuts
hes Elektronen-Syn
hroton, DESY,Notkestra�e 85, D-22603 Hamburg, Germany3Dipartimento di Fisi
a, Universit�a di Milano and INFN, Sezione di Milano,Via Celoria 16, I-20133 Milano, Italy4Dipartimento di Fisi
a, Sapienza Universit�a di Roma and INFN, Sezione di Roma,Piazzale Aldo Moro 2, I-00185 Roma, ItalyAbstra
t:We 
ompare threshold resummation in QCD, as performed using soft-
ollinear e�e
-tive theory (SCET) in the Be
her-Neubert approa
h, to the standard perturbative QCDformalism based on fa
torization and resummation of Mellin moments of partoni
 
ross-se
tions. We 
onsider various forms of the SCET result, whi
h 
orrespond to di�erent
hoi
es of the soft s
ale �s that 
hara
terizes this approa
h. We derive a master formulathat relates the SCET resummation to the QCD result for any 
hoi
e of �s. We thenuse it �rst, to show that if SCET resummation is performed in N -Mellin moment spa
eby suitable 
hoi
e of �s it is equivalent to the standard perturbative approa
h. Next, weshow that if SCET resummation is performed by 
hoosing for �s a partoni
 momentumvariable, the perturbative result for partoni
 resummed 
ross-se
tions is again reprodu
ed,but like its standard perturbative 
ounterpart it is beset by divergent behaviour at theendpoint. Finally, using the master formula we show that when �s is 
hosen as a hadroni
momentum variable the SCET and standard approa
h are related through a multipli
ative(
onvolutive) fa
tor, whi
h 
ontains the dependen
e on the Landau pole and asso
iateddivergen
e. This fa
tor depends on the luminosity in a non-universal way; it lowers byone power of log the a

ura
y of the resummed result, but it is otherwise subleading ifone assumes the luminosity not to 
ontain logarithmi
ally enhan
ed terms. Therefore, theSCET approa
h 
an be turned into a pres
ription to remove the Landau pole from theperturbative result, but the pri
e to pay for this is the redu
tion by one logarithmi
 powerof the a

ura
y at ea
h order and the need to make assumptions on the parton luminosity.�Current address 1
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1 Threshold resummation and the Landau poleThe interest in the resummation of logarithmi
ally enhan
ed 
ontributions due to softgluon radiation in perturbative QCD (threshold resummation, hen
eforth) has been re-
ently revived due to its relevan
e for many LHC pro
esses, su
h as Higgs [1℄ or top [2℄ pro-du
tion. Threshold resummation was originally performed (to next-to-leading logarithmi
a

ura
y) by fa
torizing the hadroni
 
ross-se
tion in Mellin spa
e in terms of a luminosityand a partoni
 
ross-se
tion, and then exponentiating logarithmi
ally enhan
ed 
orre
tionsto the latter to all orders through eikonal [3℄ or fa
torization [4℄ te
hniques. Subsequentderivations and generalizations to all logarithmi
 orders were obtained, among others, froma suitable two-s
ale generalized fa
torization theorem [5℄ and through renormalization-group improvement of the kinemati
s of the gluon radiation phase-spa
e [6℄, with anadditional hypothesis of fa
torization of virtual 
orre
tions.In all these approa
hes, resummation is performed after Mellin transformation of thehadroni
 
ross-se
tion, whi
h fa
torizes it into the produ
t of a parton luminosity anda partoni
 
ross-se
tion. More importantly, in Mellin spa
e the partoni
 
ross-se
tion inthe soft limit 
an be obtained by exponentiating single-parti
le emission 
ross-se
tions,thanks to the fa
t that in Mellin spa
e the n-parti
le longitudinal phase spa
e fa
torizes.The large logs whi
h are resummed are then logarithms of N , the variable whi
h is Mellin
onjugate to � (a dimensionless ratio whi
h equals one at threshold), rather than theoriginal ln(1� �).More re
ently, fa
torization and exponentiation were dire
tly performed at the levelof Feynman diagrams, without the need for a Mellin transformation, using path-integralmethods to separate o� soft gluon modes [7, 8℄. In the latter approa
h the standard re-summed results are readily re
overed, but the way the terms whi
h dominate in the eikonallimit emerge order-by-order in perturbation theory (and the next-to-eikonal 
orre
tions tothem) is parti
ularly transparent. Indeed, an important use of resummed results is to pro-vide predi
tions for higher order terms whi
h 
an even be used to 
onstru
t approximateexpressions for unknown �xed-order 
orre
tions (see e.g. Ref. [9℄).However, regardless of how resummation is proven, resummed expressions for partoni

ross-se
tions with a �xed logarithmi
 a

ura
y in momentum spa
e (i.e. nextk-to-leadingln(1 � z), where z is a partoni
 s
aling variable) turn out to be ill-de�ned: they leadto divergent hadroni
 
ross-se
tions upon 
onvolution with a parton luminosity [6, 10℄.This behaviour is already present at the �xed-
oupling level [10℄, and it persists whenthe 
oupling runs [6℄. It 
an be tra
ed [10℄ to the fa
t that the trun
ation of resummedresults to any �nite logarithmi
 a

ura
y in momentum spa
e indu
es terms whi
h vio-late longitudinal momentum 
onservation, thereby leading to fa
torial divergen
e of theperturbative expansion: the result is well-de�ned provided only the trun
ation to �nitelogarithmi
 a

ura
y is performed in Mellin spa
e (i.e., nextk-to-leading lnN , rather thannextk-to-leading ln(1�z)), and the Mellin transform is inverted exa
tly to power a

ura
y,i.e. retaining terms to all logarithmi
 orders in 1� z and only negle
ting terms whi
h aredown by powers of 1 � z [6℄. As a 
onsequen
e, perturbative QCD resummation, even ifderived using a momentum-spa
e argument, must be performed in Mellin spa
e (to �nitelogarithmi
 a

ura
y) if it is to respe
t momentum 
onservation, and to lead to �nitephysi
al (hadroni
) 
ross-se
tions.At the running-
oupling level, however, a new diÆ
ulty arises: namely, it turns out1



that the nextk-to-leading lnN series of 
ontributions to the partoni
 
ross-se
tion at any�nite logarithmi
 a

ura
y, viewed as a series in the strong 
oupling �s, 
orresponds,upon inverse Mellin transformation, to a divergent series of 
ontributions to the partoni

ross-se
tion. This divergen
e 
an be tra
ed to the Landau pole in the strong 
oupling:as long known [11℄, resummed results 
orrespond to e�e
tively repla
ing the hard s
aleM2 at whi
h the strong 
oupling is evaluated with a s
ale M2(1� z)a related to the soft-gluon radiation pro
ess (with a a pro
ess-dependent exponent, e.g. a = 2 for Drell-Yan).Be
ause the hadroni
 observable is found by 
onvoluting the partoni
 
ross-se
tion with aluminosity , the integration over parton momenta always inter
epts the region z ! 1 wherethe strong 
oupling blows up, and this manifests itself as a divergen
e of the expansion inpowers of �s(M2). This divergen
e, whi
h is of non-perturbative origin, 
an be removedby addition of subleading terms: within the 
ommonly used \minimal pres
ription" ofRef. [10℄ this is done by 
hoosing a parti
ular integration path to perform the Mellininversion integral, whi
h 
orresponds to adding a term whi
h is more suppressed than anypower of 1=M2, while with the more re
ent \Borel pres
ription" [12, 13℄ this is done byadding a higher twist term to make the divergent series Borel summable.An alternative approa
h to resummation 
an be based on the soft-
ollinear e�e
tive�eld theory (SCET) [14{17℄, whi
h provides [18℄ an alternative derivation of QCD fa
-torization: threshold resummation based on SCET was performed in Refs. [19{23℄. Thisapproa
h provides a powerful alternative way of determining resummed results for hadroni
observables, whi
h 
an then be used for phenomenology through the standard Mellin-spa
eformalism of Ref. [10℄. However, it was pointed out in Ref. [23℄ that, thanks to the fa
tthat the e�e
tive theory deals with the hadroni
 degrees of freedom, in a SCET approa
hresummed expressions 
an be dire
tly derived in terms of the hadroni
 kinemati
 variable,i.e., in pra
ti
e, SCET allows one to perform the resummation of ln(1 � �), where � is ameasurable dimensionless kinemati
 ratio. The advantage is that the divergen
es relatedto the need to integrate over the parton kinemati
s are no longer present: hen
e, in par-ti
ular, the diÆ
ulties related to the Landau pole of the strong 
oupling disappear. Theapproa
h of Ref. [23℄ has been subsequently developed for phenomenology, and appliedto various physi
al pro
esses, su
h as deep-inelasti
 s
attering [24℄, Drell-Yan [25℄ andHiggs [26℄ produ
tion.Hen
eforth, for brevity, we will refer to the approa
h of Ref. [23℄ as SCET approa
h,and that of Refs. [3{6℄ as QCD approa
h. It should be observed, however, that whereasthe QCD implementation of resummation is unique to any �nite perturbative order, theaforementioned [19{23℄ alternative implementations of threshold resummation in SCET,to the best of our understanding, lead to results whi
h di�er (possibly by subleading terms)even when trun
ated to �nite perturbative order. Here we will 
on
entrate on the SCETapproa
h of Ref. [23℄, whi
h has been widely used in parti
ular for phenomenologi
alappli
ations.However, results obtained in the approa
h of Ref. [23℄ are not easily 
ompared tothose obtained using the standard approa
h of Refs. [3{6℄, be
ause the dire
t 
onne
tionto fa
torization and resummation at the level of partoni
 
ross-se
tions is lost. Indeed,as mentioned, the presen
e of the Landau pole implies that the expansion in powers of�s(M2) of the resummed partoni
 
ross-se
tion diverges. Hen
e, if the resummed SCETresult of Ref. [23℄ is free of divergen
es, its expansion to �xed order must ne
essarily di�erfrom that of the standard Mellin-spa
e resummation.2



This di�eren
e has never been determined so far: its 
omputation is the goal of thispaper. Clearly, its knowledge is 
ru
ial in order to determine the theoreti
al and phe-nomenologi
al viability of the SCET resummation of Ref. [23℄. Some phenomenologi
al
omparisons of resummed predi
tions for relevant physi
al pro
esses obtained using SCETto standard perturbative results have been performed in Refs. [24{26℄. Di�eren
es arefound to be reasonably small: however, this does not shed light on their analyti
 form.But knowledge of this analyti
 form is ne
essary if we wish to know, �rst, whether up tothe stated a

ura
y the SCET and QCD approa
hes are equivalent, and se
ond, even ifthey are, what is the kind of subleading suppression of the terms introdu
ed in the SCETapproa
h to tame the perturbative divergen
e, i.e. what is the a

ura
y of the SCETapproa
h (be it power or logarithmi
).The answer to these questions is presented here in several steps. In Se
tion 2, aftersummarizing the known form of resummed results both in the perturbative QCD andSCET approa
h, we re
all that the de�nition of nextk-to-leading log a

ura
y in the SCETapproa
h of Ref. [23℄ and in the standard perturbative QCD approa
h are di�erent, andonly agree at the leading log level. Beyond the leading log, SCET results are always lessa

urate by one power of log than the perturbative ones: so NkLL in the perturbative
ase always in
lude terms whi
h only appear in the Nk+1LL SCET result, and so forth. Inorder to pro
eed to a 
omparison, it is ne
essary to dis
uss the dependen
e of the SCETresummation on the soft s
ale: in Se
tion 3 we summarize how SCET results in Mellinspa
e, or in momentum spa
e, at either the partoni
 or hadroni
 level 
an be obtained bydi�erent 
hoi
es of soft s
ale. A 
omparison is then made possible through the derivationof a general relation between the SCET result and the standard result, by expressing thelatter in terms of the 
onvolution of the former with a fun
tion Cr whi
h depends onthe soft s
ale. We establish this result at next-to-next-to-leading logarithmi
 order (butwe 
onje
ture it to hold to all orders): it provides a master formula whi
h enables a full
omparison of the QCD and SCET results, both from an analyti
 and a numeri
al pointof view.As a preliminary step, this master formula 
an be used to prove the fa
t that if SCETresummation is performed in Mellin spa
e it is 
ompletely equivalent to the standardapproa
h, and in parti
ular it has the same logarithmi
 a

ura
y at ea
h order. Thisresult was established already in Refs. [24, 25℄, but with the aforementioned lower loga

ura
y of the SCET results. This is done in Se
tion 4, where we also digress to showthat if SCET resummation is performed in momentum spa
e by 
hoosing a partoni
 s
alingvariable z, it 
oin
ides with the perturbative result up to power suppressed 
orre
tions,but, like the perturbative result, it diverges at the partoni
 endpoint z = 1. We 
anthen (in Se
tion 5) ta
kle the 
omputation of the fun
tion Cr whi
h relates the SCETand perturbative resummation when the soft s
ale is 
hosen as a measurable hadroni
s
ale. In this 
ase, the SCET result is free of Landau pole, and thus the divergen
e isentirely 
ontained in the Cr fun
tion. This fun
tion depends on the PDF luminosity in anon-universal way, and thus whether or not it is subleading depends on the form of thePDF. In parti
ular, if one assumes that the luminosity does not 
ontain logarithmi
allyenhan
ed terms, then we 
an show that this fun
tion is always logarithmi
ally subleading,provided only the less a

urate SCET de�nition of logarithmi
 a

ura
y is used. However,any logarithmi
ally enhan
ed 
ontribution to the parton luminosity L(x) proportional tolnk(1 � x), with k � 1, will lead to 
ontributions to Cr whi
h are of the same order as3



those indu
ed by perturbative resummation.Therefore, we 
on
lude that it is only for a parti
ular 
lass of luminosities that SCETwith a hadroni
 
hoi
e of soft s
ale reprodu
es the perturbative result, and 
an thusbe 
onsidered to be equivalent to the standard approa
h and to provide an alternativepres
ription to remove the divergen
e of the perturbative expansion. Even when thisis the 
ase, the momentum-spa
e SCET resummation pres
ription of Ref. [23℄ requireslowering by one order (one power of log) the a

ura
y of the resummed result at ea
hlogarithmi
 order. Furthermore, in the SCET pres
ription, terms whi
h are introdu
ed inorder to remove the perturbative divergen
e are only logarithmi
ally subleading, ratherthan being power suppressed (as in the Borel pres
ription) or exponentially suppressed(as in the minimal pres
ription), along with power suppressed terms. Finally, subleadingterms whi
h are indu
ed by SCET resummation are suppressed by powers or logs of thehadroni
 s
ale: this feature of SCET resummation may also be a limitation, be
ause thepartoni
 and hadroni
 s
ales, though related, do not 
oin
ide, and in fa
t it may well bethat the former is 
lose to threshold while the latter is not [27℄.2 Threshold resummation at �xed logarithmi
 a

ura
yFor de�niteness, we will 
on
entrate on the produ
tion of Drell-Yan pairs at hadron 
ol-liders. This 
hoi
e does not entail loss of generality, and the extension to other pro
essesis straightforward. We will 
onsider in parti
ular the invariant mass distribution d�DYdM2 ,with M the invariant mass of the pair. We de�ne the hadroni
 s
aling variable� = M2s (2.1)where s is the hadroni
 
enter-of-mass energy squared, so the threshold limit is � ! 1.Perturbative QCD fa
torization takes the form�(�;M2) = Z 1� dzz C(z;M2)L��z� ; (2.2)where L is the parton luminosity, and �(�;M2) is a dimensionless 
ross-se
tion�(�;M2) = 1��0 d�DYdM2 (2.3)de�ned by requiring that at the Born level (i.e. at order �0s) C(z;M2) = Æ(1�z). Note thatEq. (2.2) is a s
hemati
 expression: in general, a sum over di�erent parton subpro
essesmust be in
luded. In the sequel, without signi�
ant loss of generality, we shall always
hoose the renormalization and fa
torization s
ales equal to ea
h other and to the physi
alhard s
ale �2F = �2R =M2.2.1 Perturbative QCD: resummation in N spa
eAs dis
ussed in Se
tion 1, standard QCD resummation is more 
onveniently performed bytaking a Mellin transform�(N;M2) = Z 10 d� �N�1�(�;M2) = C(N;M2)L(N) (2.4)4



whi
h fa
torizes both the 
onvolution Eq. (2.2) and the gluon radiation phase spa
e. InEq. (2.4) by slight abuse of notation we denote with C(N;M2) and L(N) the Mellintransforms of C(z;M2) and L(z) respe
tively.The N -spa
e resummed 
oeÆ
ient fun
tion has the formCQCD(N;M2) = �g0(�S) exp �S �M2; M2N2 � (2.5)where�S �M2; M2N2 � = Z 10 dz zN�1 " 11� z Z M2(1�z)2M2 d�2�2 2A ��S(�2)�+D ��S([1 � z℄2M2)�#+ :(2.6)The fun
tions �g0(�S), A(�S) and D(�S) are given as power series in �S, with �g0(0) = 1and A(0) = D(0) = 0; A(�S) is order by order the 
oeÆ
ient of the soft singularity in theAltarelli-Parisi splitting fun
tion for the relevant partoni
 subpro
ess, while the fun
tionsD(�S) and �g0(�S) are pro
ess-dependent. Spe
i�
ally, in the 
ase of Drell-Yan produ
tioninitiated by quark-antiquark 
ollisions, the relevant Altarelli-Parisi splitting fun
tion isPqq(�s; x) = A(�S)(1� x)+ [1 +O(1� x)℄ : (2.7)As a result, the resummed 
oeÆ
ient fun
tion takes the form (using the notation ofRef. [10℄) CQCD(N;M2) = g0(�S) expS (��L; ��) ; (2.8)S(��L; ��) = 1��g1(��L) + g2(��L) + ��g3(��L) + ��2g4(��L) + : : : ; (2.9)�� � 2�S(M2)�0; L � ln 1N ; (2.10)where �0 is the �rst 
oeÆ
ient of the QCD � fun
tion, de�ned as�2d�S(�2)d�2 = ��0�2S(�2) +O(�2S); �0 = 11CA � 2nf12� (2.11)and the fun
tions gi are of order g1(��L) = O(�2S) and gi(��L) = O(�S) for i > 1, and arestraightforwardly obtained performing the integrals in Eq. (2.6), and thus ea
h determinedby a �nite number of 
oeÆ
ients in the expansion of the fun
tions A and D. Note that thefun
tions g0 and S do not 
oin
ide with �g0 and �S of Eq. (2.5), be
ause, by de�nition, Sunlike �S does not 
ontain terms whi
h are not logarithmi
ally enhan
ed, while g0 in
ludesnon-logarithmi
 
ontributions both from �g0 itself, and from the integral Eq. (2.6).The standard perturbative QCD resummation predi
ts 
orre
tly all 
ontributions tolnCQCD(N;M2) up to a given order: in other words, if 
ontributions up to gn are in
ludedin S(��L; ��) Eq. (2.9) then lnCQCD(N;M2) is determined up to subleading 
orre
tions oforder O(�k+(n�1)S Lk). This is standardly 
alled Nn�1LL resummation. However, on
ethe exponential is expanded out in order to obtain the 
oeÆ
ient fun
tion CQCD(N;M2),at ea
h order in �S, only a restri
ted number of logarithmi
ally enhan
ed terms is pre-di
ted 
orre
tly, and furthermore, in
lusion of the prefa
tor g0(�S) Eq. (2.8) (whi
h is not5



logarithmi
ally enhan
ed) is mandatory in order to improve the a

ura
y beyond NLL.In fa
t its in
lusion already at the NLL level in
reases the number of 
ontributions tothe 
oeÆ
ient fun
tion whi
h are predi
ted 
orre
tly. In Tab. 1 we summarize the orderup to whi
h the expansion of the fun
tions Eq. (2.8,2.9) should be in
luded to a
hievea given logarithmi
 a

ura
y, and, in the last 
olumn, the order of the 
ontributions tothe resummed 
oeÆ
ient fun
tion CQCD(N;M2) whi
h, as a 
onsequen
e, are predi
ted
orre
tly. log approx. gi up to g0 up to order a

ura
y: �nSLkLL i = 1 (�S)0 k = 2nNLL i = 2 (�S)1 2n� 2 � k � 2nNNLL i = 3 (�S)2 2n� 4 � k � 2nTable 1: Orders of logarithmi
 approximations and a

ura
y of the predi
ted logarithmsin perturbative QCD.2.2 The SCET approa
hResummation in SCET in the approa
h of Ref. [23℄, whi
h hen
eforth we will refer toas SCET resummation for short, is dire
tly given in the physi
al spa
e of momentumfra
tions. The relevant expression for Drell-Yan pair produ
tion has been 
omputed inRef. [25℄, and it is given byCSCET(z;M2; �2s) = H(M2)U(M2; �2s)S(z;M2; �2s) (2.12)where H(M2), the so-
alled hard fun
tion, has an expansion in powers of �S 
omputed atthe hard s
ale M2;S(z;M2; �2s) = ~sDY�lnM2�2s + ��� ; �s� 11� z �1� zpz �2� e�2
��(2�) ; (2.13)where � = Z �2sM2 d�2�2 �
usp ��S(�2)� ; �
usp(�S) = A(�S) (2.14)and ~sDY(L; �) has a perturbative expansion in powers of �S(�2). Note that the fun
tion�
usp(�S) 
oin
ides with the fun
tion A(�S) of Eq. (2.6). Finally,U(M2; �2s) = exp(�Z �2sM2 d�2�2 ��
usp ��S(�2)� ln �2M2 � 
W ��S(�2)��) (2.15)where 
W (�S) has a power expansion in �S. The resummed expression as given in Ref. [25℄a
tually depends on several energy s
ales, whi
h here for simpli
ity are all taken to be equalto the hard s
ale M2.Two important formal aspe
ts 
hara
terize the SCET resummed result. The �rst isthat it depends on a \soft s
ale" �s, and in fa
t the logs whi
h are being resummed in6



SCET are ln �sM . Hen
e, di�erent 
hoi
es of soft s
ale lead to di�erent forms of the SCETresummation, as we shall dis
uss in greater detail in the next Se
tion.The se
ond is related to the well-known fa
t that at the endpoint z = 1 the 
oeÆ-
ient fun
tion CSCET(z;M2; �2s) is a distribution, rather than an ordinary fun
tion. Thisdistribution is usually expressed in terms of the so-
alled plus distribution 1(1�z)+. Thedistributional nature of the SCET result emerges in the following way. The 
onvolutionprodu
t of CSCET(z;M2; �2s) with any well-behaved test fun
tion of z is well de�ned aslong as � is a �xed, positive number: the fa
tor (1 � z)2� a
ts as a regulator of the softsingularity at z = 1. The result 
an then be analyti
ally 
ontinued to negative values of �(whi
h is typi
ally the 
ase in DY-like pro
esses) by means of the identityZ 10 dz (1� z)2��1f(z) = Z 10 dz (1� z)2��1[f(z)� f(1)℄ + 12� f(1): (2.16)Eq. (2.16) de�nes a distribution on a spa
e of test fun
tions f(z), regular in the range0 � z � 1, whi
h is usually written(1� z)2��1 = �(1� z)2��1�+ + 12� Æ(1 � z): (2.17)It is important to note that � is of order �S: therefore, the term proportional to Æ(1 � z)in Eq. (2.17) 
ombines with the fa
tor 1=�(2�) = 2� + O(�2) in Eq. (2.12) to form anorder-�0S 
ontribution (with the 
orre
t kinemati
 stru
ture).As in the perturbative 
ase, a given logarithmi
 a

ura
y is obtained by in
luding a�nite number of terms in the perturbative expansion of the fun
tions whi
h determinethe resummed result, namely �
usp, 
W , H and ~sDY. The a

ura
y whi
h, a

ording toRef. [25℄, is obtained by in
luding in the SCET expression Eq. (2.12-2.15) 
oeÆ
ients upto a given order, as well as the 
orresponding nomen
lature, are summarized in Tab. 2. Asin the 
ase of Tab. 1, the last 
olumn gives the order of the 
ontributions to CSCET whi
hare predi
ted exa
tly. As mentioned in Se
tion 1 and as is apparent 
omparing Tab. 1 toTab. 2, beyond LL the SCET results are always less a

urate than the QCD results of thesame name: the QCD NLL in
ludes terms of order �ns lnk �sM with k � 2n � 2, but theSCET NLL only in
ludes terms with k � 2n� 1. This was already observed in Ref. [28℄.RG-impr. PT log. approx. �
usp 
W H, ~sDY a

ura
y: �ns lnk �sM| LL 1-loop tree-level tree-level k = 2nLO NLL 2-loop 1-loop tree-level 2n� 1 � k � 2nNLO NNLL 3-loop 2-loop 1-loop 2n� 3 � k � 2nNNLO NNNLL 4-loop 3-loop 2-loop 2n� 5 � k � 2nTable 2: Di�erent approximation s
hemes for the evaluation of the resummed 
ross-se
tion formulae in the SCET approa
h.When 
omparing the two di�erent de�nitions of logarithmi
 a

ura
y, Tab. 1 andTab. 2, one should distinguish a purely terminologi
al issue and an issue of substan
e.The terminologi
al issue is how ea
h given a

ura
y is 
alled: this is 
learly immaterial.7



The issue of substan
e is whether at (say) NLL the SCET expression Eq. (2.12-2.15) maybe upgraded to the higher a

ura
y of the NLL QCD expression Eq. (2.5-2.6) (withouthaving to resort to the yet more a

urate NNLL SCET expression), and likewise at allsubsequent logarithmi
 orders. We will show that the answer to this question depends onthe 
hoi
e of soft s
ale �s.13 Choi
e of the soft s
ale and SCET-QCD 
omparisonIn the standard perturbative QCD approa
h to soft resummation, the energy s
ale whi
h
hara
terizes soft gluon emission is of the order of M(1 � z): when the observed �nalstate 
arries away a fra
tion z of the available partoni
 energy, the energy available forunobserved radiation isM(1�z), whi
h is mu
h smaller thanM if z is 
lose to 1. The fa
tthat the s
ale involved is partoni
 has phenomenologi
al impli
ations: be
ause the partoni

enter-of-mass energy is always smaller than the hadroni
 one, threshold resummation maybe relevant even for pro
esses whi
h are relatively far from hadroni
 threshold, providedthe parton luminosity is peaked for small values of the momentum fra
tion [27℄. Thisindeeds is known to happen for Higgs produ
tion in gluon fusion at the LHC. [30, 31℄In SCET resummation, however, one resums logs of the large ratio M=�s of the hards
ale M to the soft s
ale �s, and various 
hoi
es for the soft s
ale �s are possible: inparti
ular, the 
hoi
e whi
h has been advo
ated in Refs. [23{26℄, and whi
h removes theproblem of the Landau pole, 
onsists of 
hoosing for �s a s
ale whi
h 
hara
terizes the(hadroni
) physi
al pro
ess.If �s is 
hosen as a fun
tion of the partoni
 s
aling variable z, then the resummedSCET partoni
 
ross-se
tion CSCET(z;M2; �2s) Eq. (2.12) 
an be dire
tly 
ompared to themomentum-spa
e perturbative QCD expression, whi
h may be obtained by determiningthe inverse Mellin transform CQCD(z;M2) of the resummed N -spa
e expression Eq. (2.5).We will study this 
ase in detail in the next Se
tion. However, if �s is 
hosen as a fun
tionof the hadroni
 s
aling variable � , the SCET and perturbative QCD resummed results mustbe 
ompared at the level of physi
al 
ross-se
tions �QCD(�;M2) and �SCET(�;M2), whi
hare respe
tively obtained substituting CQCD(z;M2) or CSCET(z;M2; �2s) in the fa
torizedexpression Eq. (2.2), with some parti
ular 
hoi
e of soft s
ale �s.It is important to understand that these di�erent 
hoi
es of soft s
ale lead to resummedpredi
tions with di�erent analyti
 stru
ture. To see this, note that if the soft s
ale onlydepends on the parton momentum fra
tion z, then Eq. (2.2) is a 
onvolution, in the sensethat upon Mellin transformation it fa
torizes a

ording to Eq. (2.4). This fa
torization isof 
ourse a ne
essary and suÆ
ient 
ondition for parton radiation to respe
t longitudinalmomentum 
onservation. But if in Eq. (2.2) the 
oeÆ
ient fun
tion depends on � throughthe soft s
ale, then the 
onvolution stru
ture is destroyed. This means that with thisparti
ular 
hoi
e of soft s
ale, upon Mellin transformation the 
ross-se
tion no longerfa
torizes, thereby violating longitudinal momentum 
onservation. This also violates theQCD fa
torization theorem, be
ause the short-distan
e partoni
 
ross se
tion depends onlong-distan
e physi
s through the hadroni
 variable � . The possibility of making this1In other 
ontexts, su
h as for example the resummation of jet veto logs [29℄, SCET results whi
h
orrespond either of two di�erent a

ura
ies, respe
tively akin to Tab. 2 or Tab. 1, may be a
hieved bysuitable 
hoi
es of terms to be in
luded in the resummed expression.8




hoi
e of soft s
ale, and indeed the very possibility of making alternative 
hoi
es of softs
ale, some of whi
h preserve fa
torization and some of whi
h do not, appears puzzlingin a standard perturbative QCD approa
h. We will not attempt to address the issue ofprin
iple of understanding this apparent stru
tural dis
repan
y between SCET and QCDresults. Rather, we will take the SCET and QCD expressions at fa
e value: our aim willbe to determine how they are related to ea
h other.We will now derive a master formula whi
h relates the SCET resummed expressionfor generi
 
hoi
e of the soft s
ale to the standard perturbative QCD expression. For def-initeness, we spe
ialize to the next-to-next-to-leading log 
ase, but all relevant stru
turesare already present at this order so generalization to higher logarithmi
 orders is straight-forward. First, we give the expli
it expression of the QCD result Eq. (2.5) to this order.Then, we give the SCET expression Eq. (2.12-2.15) to the same order, and we performits (exa
t) Mellin transform in order to allow for a 
omparison with the QCD expression,whi
h is given in N spa
e. Finally, by 
omparing the two expressions we derive a masterformula whi
h relates them, as a fun
tion of the soft s
ale �s, through a suitable fa
tor(in Mellin spa
e) or a 
onvolutive fun
tion (in momentum spa
e).3.1 Perturbative QCD resummation to NNLLThe NNLL resummed expression in perturbative QCD is given by Eq. (2.5) with [9, 32℄(see also Ref. [27℄)A(�S) = A14 �S + A216 �2S + A364 �3S +O(�4S); (3.1)A1 = 4CF� ; (3.2)D(�S) = D1�S +D2�2S +O(�3S); (3.3)D1 = 0; D2 = CF16�2 �CA��161627 + 889 �2 + 56�3�+�22427 � 169 �2�nf� : (3.4)We 
an perform the z integral in Eq. (2.5) using Eq. (A.4):�SQCD�M2; M2�N2 � = Z M2= �N2M2 d�2�2 �A ��S(�2)��ln 1�N2 � ln �2M2�+ 12D ��S(�2)��+ �212 d2dL2 Z M2=N2M2 d�2�2 �A ��S(�2)��ln 1N2 � ln �2M2�+ 12D ��S(�2)��= Z M2= �N2M2 d�2�2 �A ��S(�2)��ln 1�N2 � ln �2M2�+ 12D ��S(�2)��+ CF�3 �S�M2�N2 � ; (3.5)where (as per Eq. (A.5)) �N = Ne
 . We have negle
ted subleading (N3LL) terms (in
ludingthe repla
ement N ! �N in the argument of �S in the last term) and we have brought allintegrals to a 
ommon form usingZ 1�1=N0 dz1� z 2Z M2(1�z)2M2 d�2�2 A ��S(�2)� = �Z M2=N2M2 d�2�2 Z �2M2 d�2�2 A ��S(�2)�9



= �Z M2=N2M2 d�2�2 A ��S(�2)��ln 1N2 � ln �2M2�(3.6)Z 1�1=N0 dz1� z D ��S(M2(1� z)2� = �12 Z M2=N2M2 d�2�2 D ��S(�2)� : (3.7)In order to ease the subsequent 
omparison to the SCET result, we separate o� thenon-logarithmi
 
onstant from the last term in Eq. (3.5):�SQCD�M2; M2�N2 � = Z M2= �N2M2 d�2�2 �A ��S(�2)��ln 1�N2 � ln �2M2�+ D̂2�2S(�2)�+ CF�3 �S(M2) (3.8)where D̂2 = D22 � CF�3 �0 = CF16�2 �CA��80827 + 28�3�+ 11227 nf� : (3.9)We 
an thus write CQCD(N;M2) = ĝ0(�S(M2)) exp ŜQCD�M2; M2�N2 � ; (3.10)whereĝ0(�S) = 1 + ĝ01�S +O(�2S); (3.11)ŜQCD�M2; M2�N2 � = Z M2= �N2M2 d�2�2 �A ��S(�2)��ln 1�N2 � ln �2M2�+ D̂2�2S(�2)� : (3.12)Note that ĝ0 and Ŝ 
annot be identi�ed with g0 and S in Eq. (2.5), be
ause the integralin Eq. (3.12) does 
ontain some terms whi
h are not logarithmi
ally enhan
ed:A14 Z M2= �N2M2 d�2�2 �S(�2)�ln 1�N2 � ln �2M2� = 2CF� 
2�S(M2)+logarithms+O(�2S); (3.13)so that ĝ01 = g01 � 2CF� 
2: (3.14)However, the form Eq. (3.12) of the exponent in the QCD result is espe
ially suited for
omparison to the SCET result, as we now show.3.2 SCET resummation to NNLLWe turn to the SCET expression, whi
h is given by Eq. (2.12) with, to NNLL
W (�S) = 
(2)W �2S16�2 +O(�3S); (3.15)
(2)W = CFCA��80827 + 11�29 + 28�3�+ CFTFnf �22427 � 4�29 � : (3.16)10



In order to 
ompare it to the perturbative QCD result, we perform a Mellin transformwith respe
t to z. This is easy to do, be
ause the z dependen
e is all 
ontained in the softfun
tion S(z;M2; �2s), whose Mellin transform isM �S(z;M2; �2s)� = ~sDY�lnM2�2s + ��� ; �s� �(N � �)�(2�)�(N + �) e�2
��(2�)= �1 + CF2� �S(�2s)�ln2 M2�2s �N2 + �26 �� �N�2� +O� 1N� : (3.17)It follows that the Mellin transform of the 
oeÆ
ient fun
tion Eq. (2.12) isCSCET(N;M2; �2s) = H(M2) �1 + CF�12 �S(�2s) + CF2� �S(�2s) ln2 M2�2s �N2�� expZ �2sM2 d�2�2 "�
usp ��S(�2)��ln 1�N2 � ln �2M2�+ 
(2)W16�2�2S(�2)#+O� 1N� :(3.18)It is very important to observe that the Mellin transform has been 
omputed at �xed�s. This means that �rstly, Eq. (3.18) is not the Mellin transform of the SCET expressionwhen �s depends on z (whi
h we will dis
uss in the next Se
tion): in that 
ase the Mellintransform would also a
t on the z dependen
e through �s. And se
ond, that if �s dependson � the 
ross-se
tion �SCET(�;M2) 
omputed using Eq. (2.2) does not fa
torize into theprodu
t of CSCET(N;M2; �2s) Eq. (3.18) times a parton luminosity L(N) upon Mellintransformation: the Mellin integral over � would also a
t on the � dependen
e through �swhi
h, as already noted, does not have the form of a 
onvolution integral.Equation (3.18) 
an be brought in a form whi
h is suitable for 
omparison to the QCDexpression by separating o� the 
onstant as in Eq. (3.8), thus leading toCSCET(N;M2; �2s) = Ĥ(M2)E(N;M2; �2s) exp ŜSCET(M2; �2s); (3.19)withĤ(M2) = H(M2) exp �CF�12 �S(M2)� = 1 + �S(M2)�H1 + CF�12 �+O(�2S); (3.20)ŜSCET(M2; �2s) = Z �2sM2 d�2�2 ��
usp ��S(�2)��ln 1�N2 � ln �2M2�+ 
̂(2)W �2S(�2)� ; (3.21)
̂(2)W = 
(2)W16�2 � CF�12 �0 = CF16�2 �CA��80827 + 28�3�+ 11227 nf� ; (3.22)E(N;M2; �2s) = 1 + CF2� �S(�2s)�ln 1�N2 � ln �2sM2�2 : (3.23)3.3 The master formulaThe QCD expression Eqs. (3.10-3.12) and the SCET expression Eqs. (3.19-3.23) are easilyrelated, by noting that, be
ause �
usp(�S) = A(�S) and D̂2 = 
̂(2)W , the integrands inEqs. (3.12) and (3.21) 
oin
ide, soŜSCET(M2; Q2) = ŜQCD(M2; Q2) � Ŝ(M2; Q2): (3.24)11



It follows that, splitting the integral as RM2= �N2M2 d�2�2 = R �2sM2 d�2�2 + RM2= �N2�2s d�2�2 , we getCQCD(N;M2) = Cr(N;M2; �2s)CSCET(N;M2; �2s) (3.25)where Cr(N;M2; �2s) = ĝ0(�S(M2))Ĥ(M2) exp Ŝ ��2s; M2�N2 �E(N;M2; �2s) : (3.26)The non-logarithmi
 terms in fa
t 
an
el to the a

ura
y of our 
omputation. Indeed,by substituting the value [32℄ g01 = CF� �4�2 � 4 + 2
2� (3.27)in Eq. (3.14), and the value [25℄ H1 = CF� �72�2 � 4� (3.28)in Eq. (3.20) we get ĝ0(�S(M2))Ĥ(M2) = 1 +O(�2S); (3.29)so deviations from unity are of the same order as the �rst 
ontribution whi
h, at NNLLa

ura
y, is not in
luded in H(M2) (a

ording to Tab. 2). The expression of Cr 
an befurther simpli�ed by in
luding the fun
tion E(N;M2; �2s) Eq. (3.23) in the fun
tion Ŝ:indeedE(N;M2; �2s) = exp"A18 �S(�2s)�ln 1�N2 � ln �2sM2�2#+O(�2S)= expZ M2= �N2�2s d�2�2 "A14 �S(�2)�ln 1�N2 � ln �2M2�� A18 �(�S(�2))�ln 1�N2 � ln �2M2�2 #:(3.30)Using Eq. (3.30) in the de�nition of Cr(N;M2; �2s) we obtain our �nal expressionCr(N;M2; �2s) = exp Ŝr ��2s; M2�N2 � ; (3.31)with Ŝr ��2s; M2�N2 � = Z M2= �N2�2s d�2�2 "�A(�S(�2))� A1�S(�2)4 ��ln 1�N2 � ln �2M2�+ A18 �(�S(�2))�ln 1�N2 � ln �2M2�2 + D̂2�2S(�2)#: (3.32)Equation (3.25) together with the expli
it expression Eqs. (3.31-3.32) of the fun
tion Crprovides the master formula whi
h relates SCET and perturbative QCD resummation. It12



is the main result of this paper. We note that no term of order �S appears in the integrandof Eq. (3.32): indeed, the in
lusion of the term E(N;M2; �2s) has the e�e
t of removing theterm proportional to A1�s (see Eq. (3.1)). The remaining 
ontributions to the integrandin Eq. (3.32) start at O(�2S).It is important to observe that while CQCD(N;M2) does not admit a Mellin inverse,be
ause it has a 
ut in the 
omplex N plane starting at the value NL at whi
h thestrong 
oupling blows up, CSCET(N;M2; �2s) does admit a Mellin inverse as long as �sis kept �xed, be
ause the argument of the strong 
oupling in the SCET expression doesnot depend on N . This means that if Eq. (3.25) is expanded in powers of �s(M2), andthen the expansion is Mellin-inverted term by term, the expansion of the left-hand side isdivergent, while on the right-side the Mellin inverse of the expansion of CSCET(N;M2; �2s)
onverges to CSCET(z;M2; �2s) Eq. (2.12). Therefore, the divergen
e has been isolated inthe Mellin inverse of the expansion of the fun
tion Cr(N;M2; �2s) Eq. (3.26).If the perturbative expansion of both sides of Eq. (3.25) in powers of �s(M2) is trun-
ated to any �nite order, then the Mellin inverse of both sides exists, and one gets themomentum-spa
e relationCQCD(z;M2) = Z 1z dyy Cr �yz ;M2; �2s�CSCET �y;M2; �2s� ; (3.33)where CSCET(z;M2; �2s) is given by Eq. (2.12) (expanded out to the given order), whileboth CQCD(z;M2) and Cr �z;M2; �2s� should be understood as the trun
ation to the givenorder of the Mellin inverse of the expansion of the 
orresponding N{spa
e quantities.Equation (3.33) is then the momentum-spa
e version of the master formula.The master formula Eqs. (3.25,3.33) has been established at next-to-next-to-leadinglogarithmi
 order, de�ned a

ording to Tab. 2. Note, however, that the a

ura
y is up-graded to the higher one of Tab. 1 if non-logarithmi
 terms 
an
el to O(�3S), i.e. if thefun
tion Ĥ(M2) in the SCET 
oeÆ
ient fun
tion Eq. (3.19) is repla
ed by a fun
tion�H(M2) su
h that ĝ0(�S(M2))�H(M2) = 1 +O(�3S): (3.34)Of 
ourse, this 
an always be a
hieved by letting �H(M2) = Ĥ(M2) + �H2�2S(M2) andsuitably 
hoosing the value of �H2, while in
luding the O(�2S) to g0(�S(M2)), as per Tab. 1.(Whether �H(M2) 
oin
ides with the O(�2S) expression of Ĥ(M2) as obtained using SCETis an issue that we will not address here). We 
on
lude that the master formula holds upto NNLL a

ura
y, de�ned as in Tab. 1. It is easy to 
onvin
e oneself that this argumentshould hold to all logarithmi
 orders.4 Perturbative QCD vs. SCET: partoni
 
ross-se
tionsThe master formula Eqs. (3.25-3.33) shows how SCET resummation 
an be used to repro-du
e standard results. Indeed, it immediately implies that if we �x the soft s
ale in termsof the Mellin-spa
e variable, �s = M�N ; (4.1)13



then Cr(N;M2; �2s) = 1, i.e.CQCD(N;M2) = CSCET�N;M2; M2�N2 � ; (4.2)so the standard QCD result is reprodu
ed: with this 
hoi
e, SCET resummation is per-formed at the level of Mellin-spa
e partoni
 
ross-se
tions. Noti
e that be
ause with this
hoi
e the SCET and QCD expressions 
oin
ide, they also have the same a

ura
y. Sowith this 
hoi
e the SCET results a
tually has the a

ura
y of Tab. 1, rather than thelower a

ura
y of Tab. 2. The equivalen
e of Mellin-spa
e SCET resummation to the QCDexpressions was already established in Ref. [33℄; it was also pointed out in Ref. [25℄, butwith the lower a

ura
y of Tab. 2.Alternatively, one may try to use SCET resummation for partoni
 
ross-se
tions, butusing the momentum-spa
e SCET formula Eq. (2.12), with �s �xed as a momentum-spa
epartoni
 s
ale, namely �s =M(1� z): (4.3)This 
hoi
e for instan
e was adopted re
ently in Ref. [34℄ to perform threshold resumma-tion for top produ
tion. This 
hoi
e also provides another way of re-deriving the standardperturbative resummation from SCET. Indeed, it 
an be shown that, away from the end-point z = 1, all logarithmi
ally enhan
ed terms lnp(1�z)1�z in the partoni
 
ross-se
tion arereprodu
ed order by order with this 
hoi
e.This is very easily seen at the leading-log, �xed-
oupling level. Indeed, in this limitone has � = �SA12 ln(1� z); (1� z)2� = exp ��SA1 ln2(1� z)� ; (4.4)so thatCSCET(z;M2;M2(1� z)2) = exp"�A1�S4 Z M2(1�z)2M2 d�2�2 ln �2M2# (1� z)2�1� z 1�(2�)= exp ��A1�S2 ln2(1� z)� (1� z)2�1� z 1�(2�) : (4.5)But to leading log order one may expand 1=�(2�) to �rst order in �S, soCSCET(z;M2;M2(1� z)2) = �SA1 ln(1� z)1� z exp �A1�S2 ln2(1� z)�+NLL; z 6= 1: (4.6)On the other hand, the perturbative result in the same approximation is the inverse Mellintransform of CQCD(N;M2) = exp ��SA12 ln2 1N �+NLL; (4.7)i.e., using the results of Appendix B,CQCD(z;M2) = 11� z exp��SA12 �2��2� (1� z)��(�) �����=0 +NLL; z 6= 1: (4.8)Expanding the exponential and keeping only leading log terms this is seen to 
oin
ide withEq. (4.6). 14



However, as pointed out in Ref. [10℄ and dis
ussed in Se
tion 1, CQCD(z;M2) (de-�ned as the leading-log trun
ation of the inverse Mellin of Eq. (4.7)) is ill-de�ned at theendpoint z = 1: it behaves as a distribution whi
h leads to a divergent integral upon
onvolution with any reasonably behaved luminosity, and, if expanded order by order in�s, it diverges fa
torially. The SCET expression, either in the form of Eq. (4.5) or ofEq. (4.6), is also ill-de�ned as z ! 1. Indeed, be
ause now � depends on z (see Eq. (4.4)),it is no longer possible to use Eq. (2.17) to regulate the behaviour of CSCET(z;M2; �s).Note that Eq. (2.17) also had the e�e
t of generating the required O(�0S) 
ontribution toCSCET(z;M2;M2(1� z)2) proportional to Æ(1 � z). Furthermore, as z ! 1 the 
oeÆ
ientfun
tion Eq. (4.5) os
illates with a fa
torially-growing amplitude, be
ause of the fa
tor1�(2�) . The fa
t that the SCET resummed expression diverges at the partoni
 endpointwas already noti
ed in Ref. [34℄. Be
ause of these diÆ
ulties, we will not pursue furtherthe 
hoi
e Eq. (4.3) of soft s
ale.5 Perturbative QCD vs. SCET in momentum spa
e: hadroni

ross-se
tionsWe now turn �nally to the 
hoi
e of soft s
ale whi
h is re
ommended in Refs. [23{26℄,spe
i�
ally as a solution to the problem of the Landau pole, namely, a soft s
ale �xed interms of the hadroni
 momentum s
ale2�s =M(1� �): (5.1)With this 
hoi
e of soft s
ale, the SCET and perturbative QCD results 
an only be 
om-pared at the level of hadroni
 
ross-se
tions�QCD(�;M2) = Z 1� dzz CQCD(z;M2)L��z� ; (5.2)�SCET(�;M2) = Z 1� dzz CSCET(z;M2; �2s)L��z� : (5.3)Indeed, with the 
hoi
e of soft s
ale Eq. (5.1) the resummed SCET 
ross-se
tion Eq. (5.3)is no longer in the form of a 
onvolution produ
t, be
ause the integrand depends on� expli
itly in the lower integration bound and in the argument of L, but also impli
itlythrough �2s. As a 
onsequen
e, uponMellin transformation with respe
t to � , �SCET(�;M2),unlike the standard QCD result, does not fa
torize into a parton luminosity and a partoni

ross-se
tion.Therefore, the 
omparison must be 
arried out dire
tly at the level of hadroni
 
ross-se
tions Eqs. (5.2-5.3), using the momentum-spa
e form Eq. (3.33) of the master formula(always understood as a trun
ation to arbitrary but �nite order in �s, as dis
ussed inthe end of Se
tion 3.3). This is somewhat problemati
, be
ause the power 
ounting ofTabs. 1-2 was de�ned at the level of 
oeÆ
ient fun
tions and thus ne
essarily at the level2In Refs. [23{26℄ a slightly more general 
hoi
e of soft s
ale is 
onsidered: namely, the soft s
ale Eq. (5.1)is generally res
aled by a fun
tion of � whi
h does not vanish at � = 1, and is 
hosen in su
h a way thatthe �nite-order perturbative expansion of ~sDY is reliable. Be
ause this modi�
ation does not introdu
eany extra logarithmi
 enhan
ement, it does not a�e
t our dis
ussion, and we will not 
onsider it.15



of a partoni
 
ross-se
tion. Of 
ourse, it is possible to de�ne a given logarithmi
 orderat the level of SCET 
oeÆ
ient fun
tions, then use this expression to 
ompute the 
ross-se
tion �SCET(�;M2) using Eq. (5.3). However, be
ause this expression is not fa
torized,the question whether �SCET(�;M2) and �QCD(�;M2) agree at any given order 
an onlybe answered by 
omparing them dire
tly, and 
ounting logs of the hadroni
 s
ale 1 � � .The result will then inevitably depend on the 
hoi
e of parton distributions. The onlyalternative is to simply 
on
lude that the SCET result with this 
hoi
e 
annot be 
omparedto the perturbative one, and 
annot be endowed with a perturbative meaning [35℄.We will perform this 
omparison by 
omputing the di�eren
e between �SCET(�;M2)and �QCD(�;M2) up to O(�2S(M2)) and using the master formula to relate results. We willthen dis
uss the stru
ture of the result to all orders.5.1 Fixed-order 
omparisonsWe start by 
omputing the fun
tion Cr(N;M2; �2s) Eq. (3.31) expli
itly. Up to order �2Swe �ndCr(N;M2; �2s) = 1 + �2S(M2)��A13 �0 ln3 
N + A28 ln2 
N + 2D̂2 ln 
N�+O(�3S) (5.4)where 
 = Me�
�s : (5.5)The 
orresponding momentum-spa
e expression is readily obtained by performing theinverse Mellin transform of Eq. (5.4) with the help of Eq. (A.9):Cr(z;M2; �2s) = Æ(1� z)+ �2S(M2)��A13 �0 �3��3 + A28 �2��2 + 2D̂2 ���� 
�K(z; �)�����=0 +O(�3S);(5.6)where the fun
tion K(z; �) = �(�) ln��1 1z (5.7)plays the role of a generating fun
tion.The di�eren
e between the resummed physi
al 
ross-se
tions in the QCD and SCETformalisms is now found substituting the expli
it expression of Cr Eq. (5.6) in the masterformula Eq. (3.33):�QCD(�;M2) = �SCET(�;M2) + �2S(M2) ��A13 �0 �3��3 + A28 �2��2 + 2D̂2 ���� 
��(�; �)�����=0(5.8)where �(�; �) = Z 1� dzz K(z; �)�SCET ��z ;M2�= (1� �)��(�) 1Xn=0 1n+ � 1n! (1� �)n�(n)SCET(�;M2); (5.9)16



�(n)SCET(�;M2) = �n��n�SCET(�;M2); (5.10)up to 
orre
tions suppressed by powers of 1� � , as shown in Appendix B.Equation (5.8) provides the sought-for expli
it 
omparison of the QCD and SCETresults at the level of hadroni
 
ross-se
tions. Note that the non-
onvolutive nature of theSCET result implies that the generating fun
tion for the 
orre
tion term is now given bythe fun
tion �(�; �), whi
h depends on the parton luminosity, rather than by the universalfun
tion K(z; �) Eq. (5.7).In order to understand the 
orre
tion term in Eq. (5.8), we note that, with the 
hoi
eof �s Eq. (5.1), we get
��(�; �) = e�
��(�) 1Xn=0 1n+ � 1n! (1� �)n�(n)SCET(�;M2); (5.11)so the dependen
e on (1� �)� 
an
els. It follows that � derivatives a
ting on 
��(�; �) donot indu
e any extra logarithmi
 enhan
ement, other than that of �SCET(�;M2) itself:�QCD(�;M2) = �SCET(�;M2) + �2S(M2) 1Xn=0 Cnn! (1� �)n�(n)SCET(�;M2); (5.12)where the 
onstants Cn are � -independent:Cn = ��A13 �0 �3��3 + A28 �2��2 + 2D̂2 ���� e�
��(�)n+ � �����=0 ; (5.13)C0 = �23�3A1�0 � �248A2; (5.14)Cn = A1�0n ��26 � 2n2�� A24n2 + 2D̂2n ; n > 0: (5.15)Therefore, up to order �2S, the 
orre
tion term is just �2S(M2) times a linear 
ombinationof derivatives of �SCET with respe
t to ln(1 � �). It follows that the 
orre
tion term is atmost of order�2S � �kS ln2k(1� �)� lnp(1� �) = �hS ln2h+p�4(1� �); h � k + 2; (5.16)where terms of order �kS ln2k(1 � �) are due to the 
oeÆ
ient fun
tions, while terms oforder lnp(1� �) are due to the parton luminosity.In other words, at order �nS , terms lnk(1 � �) in the SCET and QCD result 
oin
ideif 2n � 3 + p � k � 2n. There are now various possibilities. If we simply negle
t alllogarithmi
 enhan
ements from the parton luminosity, i.e. if we set p = 0, then we 
on
ludethat the SCET and QCD results di�er by terms whi
h are NNLL a

ording to the QCD
ounting Tab. 1, but N3LL 
orre
tion a

ording to the SCET 
ounting Tab. 2. Hen
e we
on
lude that, negle
ting logarithmi
 enhan
ements from the luminosity, the SCET resultdoes reprodu
e the QCD result to NNLL a

ura
y, albeit with the less a

urate SCETde�nition of what is meant by NNLL. However, if a logarithmi
 enhan
ement from theluminosity is present, this is no longer the 
ase, and the dis
repan
y 
an be
ome arbitrarily17



large (i.e. even at the leading log level) by just in
reasing the value of p. Note that thisin parti
ular means that with this 
hoi
e of soft s
ale it is not possible to upgrade thea

ura
y of the SCET expression, as given in Tab. 2, to that of the QCD expression, asgiven in Tab. 1, be
ause at ea
h logarithmi
 order the SCET expression di�ers from theperturbative QCD results by terms whi
h, though 
onsistent with the a

ura
y of Tab. 2,spoil the higher logarithmi
 a

ura
y of Tab. 1.One may then ask whether logarithmi
 enhan
ements due to the PDF are expe
tedto be present, and whether they should be 
ounted. Be
ause the Pqq and Pgg splittingfun
tions behave as P � 1(1�x)+ as x ! 1, 
ontributions to all parton distributions f(x)whi
h are enhan
ed by ln(1� x) terms will always be indu
ed by perturbative evolution.In a parton distribution evaluated at some referen
e s
ale Q0 these terms will be a

om-panied by powers of �s(Q20), whi
h is not small if the referen
e s
ale is taken as some low\initial" s
ale. Hen
e, in general, one does expe
t logarithmi
ally enhan
ed 
ontributionsto PDFs, unless one wishes to make some �ne-tuned assumption about the PDF itself,whi
h 
an only hold at one single s
ale. The se
ond question is whether these terms shouldbe in
luded or not in the power 
ounting Eq. (5.16). This is a question whi
h 
annot beanswered on the basis of �rst prin
iples. Two relevant observations here are the following.First, on
e one substitutes any expli
it expression of the parton luminosity in the expres-sion Eq. (5.8) for the di�eren
e between the SCET and QCD result, there is no way toseparate what 
omes from the luminosity and what 
omes from the 
oeÆ
ient fun
tion,be
ause the SCET expression is not fa
torizable. Hen
e, in order to dis
ard the luminositylogs from the power 
ounting ones has to invoke the expli
it SCET expression Eq. (2.12):in other words, one must argue that the SCET expression 
ontains more information thanthat whi
h is 
ontained in the order-by-order perturbative result. The se
ond observationis that in pra
ti
e these 
orre
tion terms may be parametri
ally large in realisti
 situ-ations, and they may lead to signi�
ant dis
repan
ies between the predi
tions obtainedusing �SCET(�;M2) or �QCD(�;M2).5.2 All ordersThe �xed O(�2S) 
omputation of Se
tion 5.1 
an be easily generalized to all orders. Firstof all, we note that the argument is based on the observation that to O(�2S) the 
orre
tionterm Eq. (5.8) 
an be expressed as a series of derivatives of the fun
tion 
��(�; �) withrespe
t to � , but these do not lead to an extra logarithmi
 enhan
ement beyond that whi
his already present in �(�; �). The argument of Se
tion 5.1 would thus hold, to NNLL butto all orders in �s, provided only the 
orre
tion term in Eq. (5.8) was a series of series ofderivatives of the fun
tion 
��(�; �) with respe
t to � to all orders in �s. This is true ifand only if Ŝr depends on �s only through powers of ln 
N , with 
 given by Eq. (5.5).Now, we observe that the generi
 term in Ŝr, Eq. (3.32), has the formZ M2= �N2�2s d�2�2 �nS (�2)�ln 1�N2 � ln �2M2�m = Z 
2=N21 dtt �nS (t�2s)�ln 
2N2 � ln t�m ; (5.17)with n � 2 and m = 0; 1; 2. This is not a fun
tion of ln 
N only, be
ause of the dependen
eof �S on �s. In order to generalize the argument to all orders we must thus study this18



dependen
e. Note that be
ause�nS (t�2s) = �nS (M2)� n�0�n+1S (M2) ln t�2sM2 +O(�n+2S ) (5.18)terms in Ŝr whi
h are not a fun
tion of ln 
N only �rst appear at order �3S(M2).Furthermore,�n+1S (M2) ln �2sM2 Z 
2=N21 dtt �ln 
2N2 � ln t�m = 1m+ 1�n+1S (M2) ln �2sM2 lnm+1 
2N2 :(5.19)For n = 2, this term 
ontributes to Eq. (5.8) an order-�3S 
orre
tion. This gives a seriesof extra 
ontributions to the 
orre
tion term, on top of those whose order was given inEq. (5.16), whi
h are at most of order�3S ln(1� �)� �kS ln2k(1� �)� lnp(1� �) = �hS ln2h�5+p(1� �); h � k + 3 (5.20)while higher-order terms are even more suppressed.The power 
ounting whi
h ensues from Eq. (5.20) is the same as that of Se
tion 5.1:negle
ting logarithmi
 enhan
ements from the luminosity (i.e. if p = 0), the SCET resultdoes reprodu
e the QCD result to NNLL a

ura
y, but with the less a

urate SCETde�nition of what is meant by NNLL. If a logarithmi
 enhan
ement from the luminosityis in
luded, the QCD and SCET results di�er, with the dis
repan
y appearing at anydesired logarithmi
 order (in
luding leading log) if the enhan
ement of the luminosity issuÆ
iently strong.It is interesting to observe that a di�erent power 
ounting might be appopriate in thephenomenologi
ally relevant 
ase in whi
h the hadroni
 � is a
tually far from threshold,yet threshold resummation e�e
ts are non-negligible be
ause the partoni
 
enter-of-massenergy is lower than the hadroni
 one, as dis
ussed in the beginning of Se
tion 3. In this
ase, it might be appropriate to simply take �s as some numeri
al 
onstant, and 
omparedire
tly the SCET and QCD expressions of the 
oeÆ
ient fun
tionCSCET and CQCD throughthe master formula Eq. (3.33). But if � is far from threshold, then �s Eq. (5.1) is of thesame order as the hard s
ale M . As a 
onsequen
e, in this 
ase Cr(N;M2; �2s) Eq. (3.31)manifestly starts at NLL order, as 
on�rmed by inspe
tion of Eq. (5.4), whi
h givesCr(N;M2; �2s) = 1 +O��2S(M2) ln3 1N� : (5.21)One must therefore 
on
lude that this 
lass of NLL terms are resummed, through theleading-log fun
tion g1 in Eq. (2.9), by the QCD result CQCD(z;M2) but are not resummedat all in CSCET(z;M2; �2s). This problem may be alleviated through generalizations of the
hoi
e Eq. (5.1) su
h as those proposed in Ref. [25℄ (and mentioned above at the beginningof Se
tion 5), whereby one res
ales �s Eq. (5.1) by a fa
tor (determined for instan
e usings
ale-optimization methods), be
ause they lead to smaller values of �s. These 
hoi
es,however, do not a�e
t the 
ounting of logs, and it is therefore impossible to assess theirimpa
t in a 
omparison with standard QCD results, other than by numeri
al methods.19



6 SummaryWe have analyzed in detail the relation between the approa
h to threshold resummationbased on perturbative fa
torization of Refs. [3{6℄, and the SCET approa
h of Refs. [23{26℄,with the main goal of exploring the viability, both theoreti
al and phenomenologi
al, ofthe SCET pres
ription to treat the divergent nature of the perturbative QCD expansionin the soft limit. By deriving a master formula whi
h 
onne
ts resummed results in thesetwo approa
hes, we have shown that the way they are related depends on the 
hoi
e ofsoft s
ale in the SCET expression. We have expli
itly performed 
al
ulations up to next-to-next-to-leading logarithmi
 a

ura
y, though it is easy to 
onvin
e oneself that thestru
ture of our master formula holds to any logarithmi
 order.We have shown that if SCET resummation is performed in Mellin spa
e, then it 
oin-
ides with the standard perturbative result. The SCET and QCD results then have thesame a

ura
y, and are both beset by the problem of the divergen
e of the perturbativeexpansion. With this (partoni
) 
hoi
e of soft s
ale SCET and QCD provide alternativeways of deriving the same resummed result.If SCET resummation is performed in momentum spa
e, as advo
ated in Ref. [23℄,the SCET and QCD results di�er by a non-universal term, whi
h depends on the partonluminosity (expli
itly given up to O(�2s) in Eq. (5.4)): the SCET approa
h separateso� the series of divergent 
ontributions whi
h is then 
ontained in this term, with theSCET resummed result now given by a 
onvergent perturbative expansion. The pri
e topay for this is fourfold. First, be
ause the di�eren
e term is non-universal, it may spoilthe logarithmi
 a

ura
y of the resummed result depending on the parton luminosity. Inparti
ular, if the parton luminosity 
ontains logarithmi
ally enhan
ed 
ontributions (as itgenerally will, based on its behaviour upon QCD evolution), the di�eren
e term may enterat any logarithmi
 a

ura
y (in
luding at the leading-log level), unless one de
ides thatlogarithms 
oming from the luminosity should not be in
luded in the power 
ounting. Notehowever that, be
ause this 
orre
tion term is not fa
torized, there is no way of a
tuallyisolating the logs that 
ome from the luminosity, other than to assume that the luminositydoes not 
ontain any.If this problem of non-universality is negle
ted, the SCET and QCD results are equiv-alent, however only by rede�ning the logarithmi
 a

ura
y to be always by one powerlower, a

ording to the 
ounting of Tab. 2 rather than the more a

urate perturbativeQCD 
ounting Tab. 1. Hen
e the se
ond pri
e to pay is that the logarithmi
 a

ura
yof the SCET result in this 
ase is always lower by one power of log, to all orders in �s.Third, while perturbative QCD resummation pres
riptions su
h as the minimal [10℄ orBorel [12,13℄ pres
ription introdu
e 
orre
tions to the perturbative result whi
h are powersuppressed or more, the SCET pres
ription introdu
es a deviation whi
h is only logarith-mi
ally suppressed. And �nally, the power 
ounting and suppression in the SCET resultmust be done at the level of the hadroni
 s
ale 1� � , while in QCD it is done at the levelof the partoni
 s
ale 1 � z. In many 
ases of physi
al interest [27℄ it may turn out thatthe latter is small even when the former isn't: in these 
ases the QCD 
ounting will bemore a

urate.It will be interesting to investigate the phenomenologi
al impli
ations of this state ofa�airs. Our result enables su
h an investigation, by providing a 
losed-form expression forthe di�eren
e between the SCET and QCD results.20



A
knowledgements SF and GR are grateful to Stefano Catani for long and fruitful
onversations. GR thanks Martin Beneke for useful dis
ussions. MB thanks the CERNTheory Unit for hospitality while 
ompleting this work, and Frank Ta
kmann for 
ommentson a preliminary version of this paper. Part of this work was performed during the GGIWorkshop \High-energy QCD after the start of the LHC", Floren
e (Italy), September5-21, 2011.

21



A Mellin transformsWe 
olle
t here some useful results on Mellin transforms, while referring to Se
tion 2 ofRef. [6℄ and the appendi
es of Refs. [13, 27℄ for a fuller treatment.The Mellin transform whi
h are ne
essary for the 
omputation of resummed terms,su
h as the exponent of Eq. (2.5), 
an be performed usingZ 10 dz zN�1 � lnp(1� z)1� z �+ = � p+1Xk=0 �(k)(1)k! dkdLk Z 1�1=N0 dz lnp(1� z)1� z +O� 1N� (A.1)where L = ln 1N Eq. (2.10).At NNLLZ 10 dz zN�1 �F (ln(1� z))1� z �+= � �1� 
 ddL + 12 �
2 + �26 � d2dL2� Z 1�1=N0 dz F (ln(1� z))1� z +N3LL +O� 1N� ;(A.2)(where 
 = ��0(1) is the Euler 
onstant) for any fun
tion F (`) whi
h admits a Taylorexpansion around ` = 0. Now,�1� 
 ddL + 
22 d2dL2�Lp = Lp � 
pLp�1 + p(p� 1)2 
2Lp�2= (L� 
)p +O(Lp�3): (A.3)Hen
e, to NNLL a

ura
y, Eq. (A.1) 
an be written in the equivalent formZ 10 dz zN�1 �F (ln(1� z))1� z �+= �Z 1�1= �N0 dz F (ln(1� z))1� z � �212 d2dL2 Z 1�1=N0 dz F (ln(1� z))1� z (A.4)where �N = Ne
 ; ln 1�N = L� 
: (A.5)An essential ingredient in the dis
ussion of Se
tion 5 is the inverse Mellin transform oflnn 
N (A.6)where 
 is a 
onstant. In order to 
ompute it, we start from the identitylnn 1N = dnd�n�(�)Z 10 dz zN�1 ln��1 1z �����=0 ; (A.7)where �(�) = 1�(�) . Eq. (A.7) should be (and usually is) written in the formlnn 1N = dnd�n�(�)Z 10 dz zN�1 �ln��1 1z�+�����=0 + Æn0; (A.8)22



so that the integral is well de�ned even when the derivatives and the limit � ! 0 aretaken under the integral sign. This is not ne
essary for our present purposes. RewritingEq. (A.7) with N repla
ed by N=
 we obtainlnn 
N = dnd�n�(�)Z 10 dz zN
 �1 ln��1 1z �����=0= dnd�n 
��(�)Z 10 dz zN�1 ln��1 1z �����=0 (A.9)after res
aling the integration variable z ! z
. The inverse Mellin transform of lnn 
N 
annow be immediately read o� Eq. (A.9).B ConvolutionsIn this Appendix we 
ompute the integral�(�; �) = �(�)Z 1� dzz � ��z� ln��1 1z ; (B.1)where �(�) � �SCET(�;M2) for simpli
ity, up to terms suppressed by powers of 1 � � .Using ln 1z = 1� z +O((1� z)2) (B.2)we �nd �(�; �) = �(�)Z 1� dzz (1� z)��1� ��z�= �(�) 1Xn=0 �(n)(�)n! �n Z 1� dz (1� z)��1 (1� z)nzn+1 : (B.3)Expanding 1=zn+1 in powers of 1�z we see that the integral is a sum of terms proportionalto (1� �)�+m; m � n: (B.4)Hen
e, the derivatives �(n)(�) appear in �(�; �) multiplied by (1� �)m, with m � n. Now(1� �)�(1)(�) = � d�(�)d ln(1� �)(1� �)2�(2)(�) = � d�(�)d ln(1� �) + d2�(�)d ln2(1� �): : : (B.5)whi
h means that (1��)m�(n)(�) withm > n is power-suppressed, and 
an be we negle
tedin Eq. (B.3) sin
e we are only interested in logarithmi
ally-enhan
ed 
ontributions to�(�; �). Hen
e�(�; �) = �(�)(1 � �)� 1Xn=0 (1� �)n�(n)(�)n!(n+ �) + power-suppressed terms: (B.6)23
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