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DESY 09-009UAB-FT-661General Perturbations for Braneworld Compati�ationsand the Six Dimensional CaseS. L. Parameswarana1, S. Randjbar-Daemib2 and A. Salvio3a II Institute for Theoretial Physis,University of Hamburg, DESY Theory Group, Notkestrasse 85, Bldg. 2a, D-22603Hamburg, Germanyb International Center for Theoretial Physis,Strada Costiera 11, 34014 Trieste, Italy Institut de Th�eorie des Ph�enom�enes Physiques,EPFL, CH-1015 Lausanne, SwitzerlandandIFAE, Universitat Aut�onoma de Barelona,08193 Bellaterra, Barelona, SpainAbstratOur main objetive is to study how braneworld models of higher odimension di�erfrom the 5D ase and traditional Kaluza-Klein ompati�ations. We �rst derive thelassial dynamis desribing the physial utuations in a wide lass of models inor-porating gravity, non-Abelian gauge �elds, the dilaton and two-form potential, as wellas 3-brane soures. Next, we use these results to study braneworld ompati�ationsin 6D supergravity, fousing on the bosoni �elds in the minimal model; omposed ofthe supergravity-tensor multiplet and the U(1) gauge multiplet whose ux supports theompati�ation. For unwarped models soured by positive tension branes, a harmonianalysis allows us to solve the large, oupled, di�erential system ompletely and ob-tain the full 4D spin-2,1 and 0 partile spetra, establishing (marginal) stability anda qualitative behaviour similar to the smooth sphere ompati�ation. We also �ndinteresting results for models with negative tension branes; extra massless Kaluza-Kleinvetor �elds an appear in the spetra, beyond those expeted from the isometries inthe internal spae. These �elds imply an enhaned gauge symmetry in the low energy4D e�etive theory obtained by trunating to the massless setor, whih is expliitlybroken as higher modes are exited, until the full 6D symmetries are restored far abovethe Kaluza-Klein sale. Remarkably, the low energy e�etive theory does not seem todistinguish between a ompati�ation on a smooth sphere and these singular, deformedspheres.1Email: susha.louise.parameswaran�desy.de2Email: seif�itp.trieste.it3Email: salvio�ifae.es 1
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1 IntrodutionAlmost two deades on, branes are evermore ubiquitous in the models onstruted to under-stand partile physis and osmology, with all their How?'s and Why?'s. As fundamentalobjets, they are the D-branes and NS-branes (or M-branes) of string (or M) theory, butwithin a low-energy e�etive �eld theory desription, they are introdued as braneworlds.Often these braneworlds are onsidered as in�nitely thin but �nite tension objets, like fortheir more fundamental ousins, although sometimes it proves neessary to resolve theirstruture by adding some thikness.A odimension one brane neessarily forms a boundary in the bulk spae, sine thereis no path whih an lead from one side to the other without traversing the brane. Thegravitational bakreation of these objets is well understood; whilst the metri is ontinuousaross the brane, its �rst derivative an have �nite disontinuities. Branes with more thanone transverse dimension are qualitatively di�erent, and muh harder, due to their souringof singularities in the transverse spae. Still, odimension two branes an also be handledwith some ontrol; they bakreat on the geometry in suh a way as to produe relativelymild onial singularities.The onstrution of solutions soured by branes, with up to two odimensions, in various�eld theory models is by now a well-developed art. In 5D, the arhetype is of ourse theonstrution of Randall and Sundrum [1, 2℄. In 6D, we take the general warped braneworldompati�ations (\onial-GGP solutions") of 6D N=1 gauged supergravity [3℄ found in[4, 5℄ as representative. These solutions additionally invoke uxes, whih are also playing adominant role in string ompati�ations today, and indeed models with two extra dimen-sions are the simplest in whih ux ompati�ations an be studied. Having established thesolutions, we an begin to ask about their physis: Are they stable to small perturbations?What are the symmetries and partile ontent of the low energy e�etive �eld theory? Is ithiral? What are the modi�ations to 4D Einsteinian gravity? What would be the e�etivevauum energy measured by a 4D observer? What role do the branes play in these andother phenomena? And so on.The �rst step towards answering these questions is to analyze the lassial spetra ofsmall utuations around the solution. A number of suh studies have been made reentlyfor the onial-GGP solutions. In [6℄ we worked out the spetra for ertain 4D gauge �eldsand fermions present in the model and no tahyons or ghosts were found amongst them. Asimilar (marginal) stability was found in [7℄, where the axially symmetri modes for someof the salar perturbations were alulated. The spetrum for the gravitino has also beenanalyzed in [8℄. In [9℄, meanwhile, we studied the tahyoni instabilities that an arise fromthe non-axially symmetri, 4D salar utuations desending from 6D gauge �elds, andharged under the bakground uxes4. Whether a given model with a given ux su�ersfrom this instability turns out to depend on the tensions of the branes present.We now intend to omplete the spetral analysis for the bosoni utuations about thebraneworld solutions of 6D supergravity. Our partiular fous in this paper is on the so-alled Salam-Sezgin setor { that arising from the supergravity-tensor multiplet and the4The end point of this instability is studied in [10℄.3



U(1) gauge multiplet in whih the bakground monopole lies { whih was partially treatedin [11, 7℄. The remaining setors have been ompleted elsewhere [6, 9℄. We will alulate theorresponding spetra for the 4D spin-2 and { for unwarped bakgrounds { spin-1 and spin-0�elds. The model that we are studying is ompliated, and tehnially diÆult. However,this goes hand in hand with its advantage of generality, and indeed the results for severalsimpler senarios an be extrated from our work at its various stages.Our approah will be that established in [12℄, where a formalism was developed toanalyze the spetra of small perturbations about arbitrary solutions of Einstein, Yang-Millsand salar systems. The �rst part of this paper an be onsidered as a generalization of thatwork, where we now inlude the presene of thin soure 3-branes and extra bulk �elds thatare generially present in supergravity theories; the dilaton and anti-symmetri two-formpotential. With little extra ost, we atually keep the number of dimensions transverse tothe brane general.We �rst derive the general form of the bilinear ation that desribes the behaviour ofsmall utuations. For odimension-two or higher, we inlude utuations of the branepositions in the transverse diretions, the so-alled \branons". We then apply the light-one gauge (for bulk �elds) and stati gauge (for branons) to restrit to physial degrees offreedom, and deouple the dynamis for the spin-2, -1 and -0 utuations. The gauge-�xedbilinear ation thus obtained provides the starting point to alulate the Kaluza-Klein (KK)spetra for the onial-GGP solutions, as well as, for example, the 5D Randall-Sundrummodels and the non-supersymmetri Einstein-Yang Mills(-dilaton) model in any dimension.In the seond part of this paper, we use these general equations to study the behaviourof braneworld models in 6D (along the way also reover some of well-known aspets ofthe 5D senarios). Here, sine we inlude the bakreation of the branes, the dynamisof the branons are not well-de�ned5. Therefore, to study the spin-0 setor, we hoose totrunate the branons by e.g. plaing the branes at orbifold �xed points, or taking the branetensions to be very large making the branes rigid within our range of validity. Meanwhile,the onial singularities in the urvature that are indued by the odimension two branesdo not prevent us from understanding the behaviour of the bulk utuations.We are able to derive the spetrum for the 4D spin-2 �elds in the model's full warpedgenerality. The spin-1 and spin-0 setors present large oupled di�erential systems, and by�nding a set of harmonis on the 2D internal spae ( the \rugbyball"), we are also able tosolve these systems analytially for the unwarped ase. In this way, we obtain all the 4Dmodes for unwarped ompati�ations with positive tension brane soures, and qualitatively,we observe the same behaviour as in the smooth sphere ompati�ation without branes {inluding marginal stability.In the presene of negative tension odimension-two branes, meanwhile, the physis ansurprise. Here, despite the fat that brane soures learly break the SU(2) isometries ofthe sphere to U(1), three massless spin-1 �elds6 an be found amongst the KK spetra forspeial values of the onial de�it angle. These speial de�it angles, Æ = �2�;�4�; : : :,5Indeed, the behaviour of the branons is usually onsidered under the probe brane approximation, inwhih the brane tension is muh smaller than the bulk gravitational sale, so that the bakreation an benegleted [13, 14℄.6In addition to any massless gauge �elds arising from unbroken higher dimensional gauge symmetries.4



allow three Killing vetors to be well-de�ned everywhere outside the branes, although onlyone of them an be globally integrated to an isometry.Whether or not the massless vetors are gauge bosons of an enhaned gauge symmetryin the 4D theory an be understood by going beyond bilinear order and onsidering theinteration terms. We �nd the presene of KK modes that are not in well-de�ned repre-sentations of the SU(2) generated by the Killing vetors, and therefore the full 4D theorydoes not enjoy an SU(2) gauge symmetry. For this reason, we do not expet the lassialmasslessness of the vetor �elds to survive quantum orretions. Meanwhile, all our bosonimassless modes do fall into well-de�ned SU(2) representations, and therefore we argue thatthe lassial low energy 4D e�etive �eld theory { obtained by trunating to the masslesssetor { does enjoy an enhaned KK gauge symmetry beyond the isometries! Moreover, itappears that the low energy theory does not distinguish between ompati�ations on thesmooth sphere and these singular, deformed spheres.Let us now give an outline for the remainder of the paper. The �rst part presents arather general analysis that determines the dynamis of perturbations in braneworld om-pati�ations. In the next setion, we introdue the model (both theories and bakgroundsolutions) and disuss the senarios to whih our analysis an be applied. In Setion 3, weintrodue the perturbations about the bakground, obtain the bilinear ation that desribestheir dynamis, and disuss the loal symmetries of this ation. In Setion 4, we use thesesymmetries to �x to the \light one stati gauge", and give the bilinear ation in this gauge,in whih the di�erent spin setors deouple.Then begins the seond part, whih uses the previous results to study the 4D �eldsthat emerge in various senarios. In Setion 5, our main interest is in the braneworldsolutions of 6D supergravity, but we also disuss a non-supersymmetri 6D model and the5D Randall-Sundrum models. In the main text we present the KK spetra for spin-2 andspin-1 �elds and identify the massless spin-0 �elds; the omplete spin-0 setor an be foundin the appendies. Finally, we understand in detail the physial signi�ane of the extramassless 4D vetor modes that an appear in the spetra, and the gauge invariane thatemerges in the 4D theory.We summarise our results in Setion 6, before onluding in Setion 7.2 The ModelWe begin with the de�nition of our model. The main fous of the present paper will be alass of bosoni 6D �eld theories with thin odimension-two branes. In partiular we areinterested in the bosoni part of 6D N=1 gauged supergravity [3℄. However, throughoutthe artile we shall keep a general spae-time dimension D as far as possible, and ertaintrunations of the �eld ontent allow our analysis to be applied to several di�erent senar-ios, inluding the non-supersymmetri Einstein-Yang-Mills theory or the Randall-SundrumModel. 5



2.1 Field ontentThe basi ingredients of our model are the higher dimensional metri GMN , where thespae-time indies run over M;N; ::: = 0; :::;D � 1, and the gauge �eld AM of a ompatLie group G. These are bulk �elds in the sense that they depend on all the spae-timeoordinates XM .We also want to onsider a ertain numberN of 3-branes embedded in theD-dimensionalspae time. To do so we introdue, following Ref. [15℄, N funtions YMk (xk); k = 1; :::;N ,whih represent the positions of the branes in the D-dimensional spae time. The xkrepresent the 4D oordinates on the brane, xk = fx�kg, where �; �; ::: are the 4D indies.Not all the spae-time omponents of YMk (xk) are physial degrees of freedom: 4 spae-time omponents for eah k an be gauged away by using the 4D (general) oordinatetransformation invariane ating on xk [15℄, as we will expliitly do in Subsetion 4.1.We onsider YMk (xk) to be a brane �eld beause it depends only on a 4D world-volumeoordinate. These �elds are important to introdue the branes in a ovariant way, andindeed we an onstrut the indued metris on the branes by means ofgk�� = GMN (Yk(xk))��YMk (xk)��YM (xk) : (2.1)In order to omplete the bosoni part of the 6D supergravity, one should add other bulk�elds in addition to GMN and AM , that is a dilaton � and a 2-form �eld BMN , whih emergefrom the graviton multiplet and an antisymmetri tensor multiplet [3℄. We will refer to BMNas the Kalb-Ramond �eld. Moreover, onerning the 6D supergravity, we shall assume thatG is a produt of simple groups that inlude a U(1)R gauged R-symmetry. In general onean also add some hypermultiplets [3℄, whih turn out to be important to anel gauge andgravitational anomalies [16, 17℄. In the bosoni setor this leads to additional salar �elds�� (hypersalars) in some representation of G; however, from now on we set �� = 0. We doso beause we are interested in the linear perturbations whih mix with the D-dimensionalgravitational utuations hMN : indeed, for the lass of bakgrounds we are interested in(see Subsetion 2.3), the �� deouple from hMN . Their inlusion should be straightforward.Therefore the bulk and the brane �eld ontents that we onsider are respetively:fGMN ;AM ; �;BMNg and �YMk (xk); :::	 : (2.2)The dots in the seond set of (2.2) represent additional brane �elds that we an alwaysintrodue, but whih are not required by general ovariane; for example they an be the�elds of the Standard Model (SM).2.2 The ationWe split the ation funtional S into the bulk ation SB , whih depends only on the bulk�elds, and the brane ation Sb that is a funtional of the brane �elds as well.6



The bulk ation is7[3℄SB = Z dDXp�G� 1�2 �R� 14 (��)2�� 14e�=2F 2 � �248e�HMNPHMNP � V(�)� ; (2.3)where G is the determinant of GMN and � is the D-dimensional Plank sale; also8 F 2 �FMNFMN and (��)2 � �M��M�. The expliit expression for the gauge �eld strength FMNis9 FMN = �MAN � �NAM + gAM �AN ; (2.4)where g is the gauge oupling, whih in fat represents a olletion of independent gaugeouplings inluding that of the U(1)R subgroup, g1. HMNP is the Kalb-Ramond �eldstrength, whih ontains a Chern-Simons oupling as follows [18℄:HMNP = �MBNP + FMNAP � g3AM (AN �AP ) + 2 yli perms : (2.5)The funtion V(�) is the dilaton potential. In the supersymmetri model this is �xed to beV(�) = 8 g21 e��=2=�4.Meanwhile, we onsider the following 3-brane ationSb =Xk ��Tk Z d4xkp�gk� � �T Z d4xp�g; (2.6)where gk is the determinant of (2.1) and Tk are the tensions of the branes. From now on(unless otherwise stated) we suppress the index k, as we have done on the right hand sideof (2.6). The reader may have notied that we have not introdued the Gibbons-Hawkingboundary term, whih is generially neessary to treat odimension one branes [19℄. Indeed,we shall apply our analysis only to those odimension one models whose branes are plaedon orbifold �xed points, in whih ase the Gibbons-Hawking boundary term is not present[20℄.We an summarise by saying that our analysis will apply to the following two types ofmodels:1. 6D N=1 gauged supergravity.2. Einstein-Yang-Mills theories, with a dilaton or osmologial onstant �, for a generalspae-time dimension.The seond ase inludes, for example, the RS models [1, 2℄ or the non-supersymmetri 6DEinstein-Yang-Mills-� (EYM�) model [13, 21℄. They an be obtained by simply �xing theappropriate dimension and setting HMNP = 0, � = 0 and V(0) = �. Even if our main7We hoose signature (�;+; ::;+), and de�ne R RMN S = �M�RNS � �N�RMS + �RMP�PNS � �RNP�PMS andRMN = R PPM N .8A trae overall is understood when we write a produt of Lie algebra valued objets: e.g. in Eq. (2.3)F 2 � Tr �F 2�.9We de�ne the ross-produt as (AM � AN )I = fIJKAJMAKN , with fIJK the struture onstants of G:�T I ; T J� = ifIJKTK , where T I are the generators of G.7



interest is in models of Type 1 we will also onsider the seond lass for several reasons. Inthis way, we will see that our results an be applied in quite general ontexts, and it willalso provide interesting additional ways to hek our formulae. Moreover, in the future itshould help us to �gure out the role of supersymmetry in the linear perturbations.Finally, it is important to note that the ations SB and Sb are invariant with respetto both the D-dimensional and the 4D oordinate transformations (ating respetively onXM and x�). We will disuss the loal symmetries of the present model and an expliitgauge �xing for the linear perturbations in Subsetions 3.2 and 4.1.2.3 The equations of motion (EOMs) and solutionsThe EOMs that follow from the variation of the ation SB + Sb are:RMN � 12GMNR = �22 �e�=2 �FMPFNP � 14GMNF 2�+ 12�2 �M��N��GMN � 14�2 (��)2 + V(�)��� T�2 BMN ; (2.7)DN �e�=2FNM� = 0; (2.8)12�2D2� = �V�� (�) + 18e�=2F 2; (2.9)1p�g �� �p�g GMN��Y N� = 12 �MGNP �Y N � �Y P ; (2.10)where we have �xed HMNP = 0, sine our interest shall be in bakgrounds that enjoy 4DPoinar�e invariane. Moreover, in Eq. (2.9) and (2.10) we have introdued the notationD2� � DMDM�, where DM is the ovariant derivative, and �YM � �Y N � ��YM��Y N .Reall also that we have suppressed the index k on YMk , whih labels eah of the branes.The last term in (2.7) represents the brane ontribution to the Einstein equations, whereBMN is de�ned byBMN (X) � 12 Z d4xpg=G Æ(X � Y (x)) �YM � �Y N ; (2.11)we note that the bulk quantity G in (2.11) is omputed at the position of the brane(G = G(Y )) beause of the presene of the D-dimensional delta funtion Æ(X � Y (x)).Furthermore, sine Eqs. (2.10) ome from the variation of the brane ation with re-spet to YM , there the bulk �elds GMN and �MGNP are omputed at the brane position(GMN = GMN (Y ) and �MGNP = �MGNP (Y )).In the present paper we will fous mainly on the following ansatz solution to (2.7)-(2.10):Y � = x�; (2.12)Y m = onstant ; (2.13)ds2 = eA(�)���dx�dx� + d�2 + eB(�)Kmn(y)dymdyn ; (2.14)A = Am(�; y)dym ; (2.15)8



� = �(�); (2.16)HMNP = 0 ; (2.17)where � = 0; 1; 2; 3, m = 5; :::; 4 +D2, m = (�;m) (we have D = 5 +D2) and ym and Kmnare respetively the oordinate and the metri on the D2-dimensional spae. Eq. (2.12) isnot really an assumption beause we an always use the 4D general oordinate invarianeon the branes to set (2.12). Eq. (2.13) is instead a non trivial assumption. Moreover, in Eqs(2.14)-(2.17) we are assuming that the bulk �eld bakground has a 4D Poinar�e invarianeand that the funtions A, B and � depend only on the oordinate �. We will also assumeA to lie in the Cartan subalgebra of Lie(G).One of the simplest models that an be desribed by this set up is the Randall-Sundrum(RS) model [1℄, where we have D = 5, � = 0 and A = 0 and the internal spae is S1=Z2with two branes on the �xed points of Z2, say at � = 0 and � = �r. The expliit form ofthe solution is given by A = �2kj�j; Y �1 = 0; Y �2 = �r ; (2.18)where k is a positive onstant. The objet j�j in (2.18) is equal to the absolute value of � inthe region ��r < � < �r and its value anywhere else is obtained by periodiity. In orderfor (2.18) to be a solution one needs T1 = �T2 = 12k=�2 and � = �12k2=�2. In Setion 5,we shall use this very well-known solution to hek the result given in Setion 4.However, in this paper our main interest lies in the analysis of a lass of solutions foundby Gibbons, G�uven and Pope (GGP) [4℄ to the 6D supergravity: the general set of warpedsolutions with 4D Poinar�e symmetry, and axial symmetry in the transverse dimensions.Here we give only a subset of this general lass, namely that whih ontains singularitiesno worse than onial and therefore an be soured by brane terms of the form (2.6).To give the expliit expression of the onial-GGP solutions, it turns out to be useful tointrodue the following radial oordinate [6℄u(�) � Z �0 d�0e�A(�0)=2; (2.19)whose range is 0 � u � u � �r0=2. In this frame the metri readsds2 = eA(u) ����dx�dx� + du2�+ eB(u) r204 d'2 : (2.20)The expliit onial-GGP solutions10 are then the following partiular ase of the ansatz(2.12)-(2.17) [4℄: eA = e�=2 =sf1f0 ; eB = 4�2eA ot2(u=r0)f21 ;A = � 4�q�f1 Qd'; (2.21)10The oordinate u is related to the oordinate r in [4℄ by r = r0 ot(u=r0).9



where q and � are generi real numbers and Q is a generator of a U(1) subgroup of a simplefator of G, satisfying Tr�Q2� = 1. Also,f0 � 1 + ot2� ur0� ; f1 � 1 + r20r21 ot2� ur0� ; (2.22)with r20 � �2=(2g21) and r21 � 8=q2.This solution is supported by two branes loated at u = 0 and u = u. Indeed, as u! 0or u! u, the metri tends to that of a one, with respetive de�it anglesÆ = 2��1� j�j r21r20� and Æ = 2� (1� j�j) ; (2.23)and orresponding delta-funtion behaviours in the Rii salar. We will take � � 0 withoutloss of generality. The tensions of the two branes T and T are related to the de�it angleas follows [22℄: T = 2Æ=�2 and T = 2Æ=�2: (2.24)Unlike the RS solution, here the warp fator eA is smooth on the brane positions u = 0 andu = u. In partiular we haveeA u!0;u! onstant 6= 0; �ueA u!0;u! 0: (2.25)By using (2.25), (2.12) and (2.13), it is also easy to hek that the onial-GGP on�g-uration satis�es the Y -equations (2.10) in addition to the bulk EOMs (2.7)-(2.9).The expression for the gauge �eld bakground in Eq. (2.21) is well-de�ned in the limitu ! 0, but not as u ! u. We should therefore use a di�erent path to desribe theu = u brane, and this must be related to the path inluding the u = 0 brane by a single-valued gauge transformation. This leads to a Dira quantization ondition, whih for a �eldinterating with A through a harge e gives� e 4�g�q = �e�r1r0 gg1 = N ; (2.26)where N is an integer that is alled monopole number and g is the gauge oupling onstantorresponding to the bakground gauge �eld. For example, if A lies in U(1)R, then g = g1.The harge e an be omputed one we have seleted the bakground gauge group, sineit is an eigenvalue of the generator Q. Also, note that the internal spae orresponding toSolutions (2.21) has an S2 topology (its Euler number equals 2).Finally, we observe that one an obtain the unwarped \rugbyball" ompati�ation [21℄simply by setting r0 = r1. In this ase the metri isds2 = ���dx�dx� + r204 �d�2 + �2 sin2 � d'2� ; (2.27)where � � 2u=r0, and the bakground value of the dilaton is zero; therefore this is a solutionalso to the non-supersymmetri 6D EYM� model. For � < 1 the de�it angle is positive.The geometry is also well-de�ned when � > 1 and the de�it angle is negative; we name thesespaes \saddle-spheres" (see [9℄ for a detailed disussion on their properties). Moreover, wean smoothly retrieve the sphere ompati�ation (with radius r0=2) by taking � = 1 inaddition to r0 = r1. 10



3 General PerturbationsThe main purpose of this paper is to study the linear perturbations in the above models.We therefore perturb the �elds in (2.2) as follows:GMN ! GMN + hMN ; AM ! AM + VM ; �! �+ �;BMN ! BMN + bMN ; YM ! YM + �M : (3.28)The �rst terms in the right hand sides of (3.28) represent the bakground quantities of theorresponding �elds. In fat, it is useful to introdue another 2-form �eld VMN in orderto desribe the utuations of the Kalb-Ramond �eld. This an be done as follows. SineHMNP appears only quadratially in (2.3), and HMNP = 0 at the bakground level due to4D Poinar�e invariane, the linear approximation (whih orresponds to the bilinear level inthe ation) involves only the linear perturbation of HMNP , that we denote with11 H(1)MNP ,H(1)MNP = [d (b2 �A ^ V ) + 2F ^ V ℄MNP ; (3.29)where we have used the notation of p-forms and b2 is the utuation in the Kalb-Ramond2-form, A and F the bakground values of the gauge �eld and its �eld strength respetivelyand V the perturbation of the gauge �eld. We now introdue the 2-form V2 as follows:V2 � � (b2 �A ^ V ) ; (3.30)whose omponents will be denoted by VMN . H(1)MNP an now be expressed in terms of V2and V : H(1)MNP = � 1�dV2 + 2F ^ V�MNP ; (3.31)where we have introdued a new parameter ; for  = 1 we reover the struture of H(1)MNPrequired by the 6D supergravity, whereas for  = 0 the utuations of VMN are ompletelydeoupled (at the linear level) from the rest. This will allow us to treat simultaneously the6D supergravity and the EYM� models.Finally, we note that the �elds �M (x) desribe the utuations of the brane positions,and as suh they are 4D �elds.3.1 Bilinear ationHere we provide the linearized theory whih orresponds to the bilinear approximation inthe ation. The bilinear ation has been omputed by onsidering the variation of SB + Sbunder (3.28) and by keeping only terms up to the quadrati order12. We split it into di�erentontributions as follows:S(h; h) + S(V; V ) + S(h; V ) + S(�; �) + S(h; �) + S(V; �)+S(V2; V2) + S(V; V2) + S(�; �) + S(h; �) ; (3.32)11Sine the bakground HMNP = 0, and the bakground monopole, A, lies in the Cartan subalgebra, wesee that the exterior derivative ating on the bakground Kalb-Ramond potential B2 must be zero. Also,A ^A = 0.12The EOMs (2.7)-(2.10) guarantee that the linear terms vanish.11



where S(h; h) is the bilinear ation that depends only on the utuations hMN , S(h; V )represents the mixing term between hMN and VM and so on. We have S(h; V2) = S(�; V2) =0 as a onsequene of our bakground ansatz, for whihHMNP = 0. We give here the expliitexpressions for the bilinear ation that depend only on the bulk �elds; the dynamis of the�M �elds, are expliitly given in Appendix A. We �nd:S(h; h) = Z dDXp�G ( 12�2 "�hMN;M � 12h;N�2 � 12hNP;Mh ;MNP + 14h;Mh;M � 12R1h2#�12hPMhPN �12e�=2FMRFN R + 14�2 �M��N���12hMNhPR� 1�2RPMNR � 12e�=2FPMFNR��T2 �BMN �hPMhPN � hhMN�+ 12BMNPRhMNhPR�� ; (3.33)where the semiolon denotes the (bakground) gravitational ovariant derivative, h �GMNhMN , R PMN R is the Riemann tensor for the bakground metri and we have de�ned2�2R1 � 1�2R� 14e�=2F 2 � 14�2 (��)2 � V(�) (3.34)and BMNPR � Z d4xpg=G Æ(X � Y (x))�12 ��YM � �Y N� �Y P � �Y R� ��YM � �Y P � �Y N � �Y R� : (3.35)The term proportional to BMNPR in the last line of (3.33) is the ontribution to S(h; h)oming from the brane ation Sb, whereas the term proportional to BMN omes from theEOMs (2.7), whih we have used to write S(h; h) in the form (3.33). Moreover,S(V; V ) = Z dDXp�G ��12e�=2 �DMVNDMV N �DMVNDNVM���2122e� �F[MNVP ℄��F [MNV P ℄�� 12ge�=2FMNVM � VN� ; (3.36)S(h; V ) = �Z dDXp�Ge�=2 �DMV N �DNVM��14hFMN + hPNFPM� ;(3.37)S(�; �) = �Z dDXp�G � 14�2 (��)2 + 12 �2V��2 �2 + 132e�=2F 2 �2� ; (3.38)S(h; �) = Z dDXp�G � 12�2 �M� �N� �hMN � 12GMN h�� 12 �V�� h �+14e�=2�FMPFNP � 14F 2GMN� � hMN� ; (3.39)12



S(V; �) = Z dDXp�G ��14e�=2FMN �DMV N �DNV M� �� ; (3.40)S(V2; V2) = � 148 Z dDXp�Ge� V[NP ;M ℄V [NP ;M ℄; (3.41)S(V; V2) = � �12 Z dDXp�Ge� V[NP ;M ℄F [MNV P ℄; (3.42)where F[MNVP ℄ � FMNVP + 2 yli perms; V[NP ;M ℄ � VNP ;M + 2 yli perms:We would like to remind the reader of the assumptions we have made to derive (3.33)and (3.36)-(3.42) (and (A.110)-(A.111) given in Appendix A):� If the Kalb-Ramond �eld and the term HMNPHMNP in (2.3) is not inluded, thenthe only assumption we made is that the bakground satis�es the EOMs (2.7)-(2.10).� If the Kalb-Ramond �eld and the term HMNPHMNP in (2.3) is instead inluded, wealso assumed D = 6 and the bakground gauge �eld A to lie in the Cartan subalgebra.We observe that if we want to fous on the D-dimensional EYM� system we an restritourselves to the terms S(h; h), S(V; V ) (for  = 0), S(h; V ) and the �-dependent terms givenin Appendix A. Instead, if we want to onsider the 6D supergravity, we should put  = 1,V(�) = 8 g21 e��=2=�4 and also take into aount the terms (3.38)-(3.42). Finally, we notethat our results redue to those of Ref. [12℄ whih studies a general non-supersymmetrilass of thik brane models, one we take T = 0,  = 0 and we neglet the utuationsVMN .3.2 Loal symmetriesAs a onsequene of the loal symmetries of the omplete model, the linearized theory alsopossesses a number of loal symmetries:ÆhMN = ��N ;M � �M ;N ; (3.43)ÆVM = ��LFLM �DM�; (3.44)Æ� = ��M�M�; (3.45)ÆVMN = 2��FMN + �N ;M � �M ;N ; (3.46)Æ�M = �M (Y )� ����YM : (3.47)Eqs. (3.43), (3.44) and (3.45) represent the e�et of the loal symmetries (desendingfrom the D-dimensional oordinate transformation invariane and gauge symmetry) on themetri, the gauge �eld and the dilaton utuations (see e.g. Ref. [12℄). The bulk funtions� and � are the gauge funtions assoiated with the D-dimensional oordinate invarianeand gauge symmetry. 13



Eq. (3.46) represents instead a loal symmetry ating on VMN , whih desends fromboth the gauge symmetry and the Kalb-Ramond symmetry13. For this reason � and �M areindependent (bulk) gauge funtions. Let us expliitly hek (3.46). To do so, it is enoughto verify the invariane of the 3-form (3.31) under (3.44) and (3.46). We haveÆH(1) = 1�d (ÆV2) + 2F ^ ÆV = 2d (�F ) + 2F ^ (�� � F �D�) ; (3.48)where we have used d2� = 0 and � � F represents the 1-form with omponents �MFMN .Now, by using the 4D Poinar�e invariane of the bakground and D = 6, whih we alwaysassume in the presene of the Kalb-Ramond �eld, we have F ^ (� � F ) = 0 and F ^A = 0;also, by remembering that A is assumed to lie in the Cartan subalgebra, we have dF = 0.These equations are suÆient to onlude ÆH(1) = 0.Finally, Eq. (3.47) represents the loal transformation of the perturbation of the braneposition, desending from the D-dimensional oordinate invariane and the 4D brane o-ordinate transformation invariane (respetively the �rst and the seond term on the righthand side of (3.47)); the latter invariane is assoiated to �� (a funtion of x�), whihrepresents another independent gauge funtion.4 Perturbations in the Light Cone Stati GaugeHaving derived the general bilinear ation, we now have to hoose a gauge in order tostudy the physial spetrum. In this setion we will disuss our gauge hoie and give theorresponding bilinear ation.4.1 Gauge �xingWe have two types of loal symmetries: the bulk loal symmetries (whih inlude theD-dimensional oordinate transformation invariane, the gauge symmetry and the Kalb-Ramond symmetry) and the 4D oordinate transformation invariane on the brane. Let usstart with the �rst group.A very onvenient gauge hoie for the bulk loal symmetry is the light one gauge, asit ensures that the dynamis of setors with di�erent spin deouple at the bilinear level14.Another advantage of the light one gauge is that it does not involve gauge artifats suhas Faddeev-Popov ghosts, but ontains only the physial spetrum [23, 24, 25℄. To de�nethis gauge, let us introdue x(�) � �x3 � x0� =p2 and A(�) � �A3 �A0� =p2, for a generalvetor AM . Then the light one gauge is de�ned byV(�) = 0 ; h(�)M = 0 ; V(�)M = 0 ; 8M : (4.49)It an be proved that, after imposing (4.49), the (+) omponents of the di�erent �elds(i.e. V(+), h(+)M and V(+)M ) are not independent, but an be expressed in terms of the13By Kalb-Ramond symmetry we mean the loal invariane under B2 ! B2 + d� of the ation, where �is a general 1-form.14This has been observed in other studies, for example [24, 25, 26, 12℄.14



other omponents by means of onstraint equations [24, 25, 12℄. We therefore end up withthe following independent bulk �elds: hij , him, Vi, Vim, hmn, Vm, Vij , Vmn and � , wherei; j; ::: = 1; 2. In partiular the h(++) �eld equation simply leads to the onstrainth = 0; (4.50)whih brings a onsiderable amount of simpli�ation.Conerning the 4D oordinate transformation invariane, we instead impose the ondi-tion [15℄ �� = 0: (4.51)We will refer to (4.51) as to the stati gauge. We observe that the light one gauge andthe stati gauge are ompatible beause, one we �x the light one gauge by hoosing �M ,� and �M in a suitable way, we still have the freedom to perform the loal transformationsgenerated by ��. The stati gauge is also free from Faddeev-Popov unphysial ghosts [15℄.We observe that (4.51) does not remove ompletely the brane position �elds �M , but weare left with their omponents along the extra dimensions �m . We will refer to them asbranons. Even if the branons represent physial degrees of freedom, it an happen that theyan be onsistently trunated e.g. by imposing an orbifold symmetry, as in the RS modelsor in the onial-GGP ompati�ation [9℄. In the following we will on�rm that the spin-0�elds �m do not have any mixing with the spin-2 and spin-1 setors in the light one gauge.4.2 Bilinear ation in the light one stati gaugeHere we provide the bilinear ation in the light one stati gauge, that we have omputedby imposing the gauge onditions (4.49) and (4.51) on the general bilinear ation and byusing the onstraint equations for the (+) omponents. In this setion we assume the formgiven in (2.12)-(2.17) for the bakground solution, and give the part of the ation that isindependent of the branons. Those involving the branons are given in Appendix B.The results that are presented here redue to those for the non-supersymmetri modelpresent in15 [12℄ one we take T = 0,  = 0 and we neglet the utuations VMN ; they alsoorretly redue (for T = 0 and  = 1) to the results of [27℄, where the linear perturbationsof the sphere-monopole solution to the 6D supersymmetri model are analyzed.4.2.1 Spin-2 ationThe spin-2 ation S(2) only ontains the �eld ~hij � hij � 12Gijh kk and has the followingsimple expression in terms of ~h ji = Gjk~hik:S(2)(h; h) = � 14�2 Z dDXp�G�M~h ji �M~h ij : (4.52)We observe that (4.52) has exatly the same form as in [12℄ even if we have inludedthe brane terms. Therefore, the brane soures do not expliitly ontribute to the spin-2dynamis. We shall use (4.52) to derive the 4D gravitational spetrum for the solutionsdesribed in Subsetion 2.3.15We do, however, orret some typos in that referene.15



4.2.2 Spin-1 ationThe spin-1 ation S(1) involves him; Vi and Vim. We have the following expliit expressions.S(1)(h; h) = Z dDXp�G �� 12�2 ���him��him + ��him��him + him;nhim;n�� 14�2himhim�A02 + B022 �� 14�2h�ih i� �D2A0B0 �A02��12himhi n�12e�=2Fm lF nl + 14�2 �m ��n ��+ 1�2A0h i� h ;mmi � T4pg=G Æ(X � Y)hm i hm i� ; (4.53)where 0 � ��. The last term in (4.53) is the brane ontribution. We have introdued thenotation X and Y for the internal omponents of the oordinate and the brane positionrespetively, where the label  stands for the odimension of the brane. The other nonvanishing terms are the following.S(1)(V; V ) = Z dDXp�G e�=2 ��12 ���Vi��V i + e�A��Vi��Vi +DmViDmV i���24 2e�=2 �FmnVi�FmnV i� ; (4.54)S(1)(h; V ) = Z dDXp�G e�=2��DmVih il F lm � 12A0VihliFl �� ; (4.55)S(1)(V2; V2) = �18 Z dDXp�Ge� �e�A ���Vim��V mi+GmlGnh ��mVni�lVhi � �mVni�hVli�i�e�4A�2� �e�+3A=2 V mi�;m �e�+3A=2 V n i�;n�2e�2AVmi�m �e���A=2 �e�+3A=2V n i�;n�� ; (4.56)S(1)(V; V2) = ��2 Z dDXp�Ge���12A0VimV iF m� + Vni;mFmnV i� : (4.57)The term S(1)(h; V2) vanishes as a onsequene of HMNP = 0 (at the bakground level).We observe that the term S(1)(V; V ) redues, as it should, to the orresponding ation inRef. [6℄ in the ase in whih Vi is orthogonal to the bakground gauge �eld. Finally, wenote that the brane tension enters expliitly only in the term S(1)(h; h).4.2.3 Spin-0 ation and singularities due to bakreating, utuating branesThe last and most ompliated part is the spin-0 ation, whih involves16 hmn, h ii , Vm,� , Vij, Vmn and �m. We observe that, in the light one stati gauge, the �elds �m indeed16Note that hmn and h ii are not independent as Eq. (4.50) implies h ii + h mm = 0.16



only appear here. In other words they are in general ompletely deoupled from the spin-2and spin-1 �elds. Sine it is quite ompliated, we give the expliit expression of the spin-0ation in Appendix B.Having ompleted the bilinear ation, we should make some observations regardingits onsisteny, in partiular given the presene of in�nitesimally thin dynamial soures.Indeed, as to be expeted, if we inlude the gravitational bakreation of the branes (T 90) then there are singular ontributions to the dynamis of both the bulk gravitationalutuations and the branons.First, onerning the bulk gravitational utuations, we enounter loalized ontribu-tions to the mass terms in both the spin-1 (see Eq. (4.53)) and spin-0 (see Eq. (B.112))setors. These ontributions involve the behaviour of bakground and perturbed �elds atthe bakground positions of the branes. They are well-de�ned in the odimension one RSsenario, where the metri is well-de�ned everywhere inluding at the brane positions (al-though its derivatives are not). They do not appear to be well-de�ned in the odimensiontwo (or higher) ase, where the internal metri is atually singular at the brane positionsdue to the bakreation of the branes. However, as we shall see in subsequent setions, theseterms do not obstrut our derivation of the 4D partile spetra arising from bulk modes in6D.Meanwhile, the linearized dynamis for the branons of a bakreating brane would bemore problemati. For example, in (B.124), sine the ation is evaluated at the bakgroundposition of the branes, the kineti term for the branons is not well-de�ned in the odimensiontwo ase, beause of the onial defet in Gmn. Suh a singularity was disussed in [13℄,where it was argued that within the domain of validity of the e�etive �eld theory, theurvature singularity ould be disarded. Moreover, the mass term for the branons takesthe form17 of a Æ(0). These singularities are not present in the RS model, as there thebranons are projeted out with an orbifolding18. Indeed we should reiterate here thatwe apply our analysis to odimension one branes only on orbifold �xed points (to avoidthe appearane of Gibbons-Hawking boundary terms), and so without branon degrees offreedom.In order to perform a omplete analysis of the spin-0 ation in odimension two (orhigher) models, taking into aount both the bakreation of the brane and its dynamialutuations, it seems neessary to resolve the thin struture of the brane. Otherwise we anassume a brane tension muh smaller than the 6D fundamental sale, so that its bakreationis negligible. Or we an assume a high brane tension so that the brane is very heavy andrigid and does not osillate. Or else we an assume an additional orbifold symmetry underwhih the branons are projeted out { an example of suh a symmetry has been provided inRef. [9℄ and is disussed in19 Appendix C. In these ases, we an avoid the singular branon17Æ(0) singularities due to the loalization of �elds on a boundary have been disussed in a di�erent ontext(5D SYM theory on S1=Z2) in [28℄.18Indeed, in the RS literature, the radion has been studied in depth [29℄, but the branons are absent.Although the radion an also be seen as a brane bending in the ase of RS, sine the branes are at theboundaries of the internal spae, one should not onfuse the radion with the branon. The radion is adeformation of the bulk metri, whereas the branon is a deformation of the brane itself within the bulkmanifold. As a hek of our formalism, we will �nd the radion mode in Subsetion 5.4.19By using the expliit expression for the mixing terms between branons and bulk �elds given in Appendix17



ation.5 6D (and 5D) BraneworldsIn the seond part of this paper, we apply the results of the previous setions to derive the4D partile spetra in spei� setups. Our main interest is in the warped (and unwarped)axi-symmetri braneworld ompati�ations of 6D supergravity, but along the way we shallalso disuss the rugbyball ompati�ations in the non-supersymmetri 6D EYM� theory,as well as the 5D Randall-Sundrum models. We disuss in order the spin-2, spin-1 andspin-0 utuations.5.1 Gravitational utuationsThe simplest appliation of our results is the analysis of the spin-2 setor. As we havedisussed, this setor ompletely deouples from the rest. The ~h ji �elds ontain only themaximal heliity omponents of a spin-2 multipet; one should look for the remaining om-ponents in the spin-1 and spin-0 ations. However, by virtue of 4D Poinar�e invariane, thelower heliity omponents must have the same spetrum [12℄. We an therefore fous onEq. (4.52) to study the spin-2 utuations.In order to analyze this setor we dedue the EOMs from Eq. (4.52):�M �p�G�M~h ji � = 0 8 i; j : (5.58)In deriving this equation we have required as usual that the boundary terms whih emergein the integration by parts vanish, that isZ dDX�M �p�GÆ~h ji �M~h ji � = 0; (5.59)where Æ~h ji is the variation of the �eld ~h ji , whih is performed to apply the minimal ationpriniple. Sine we assume standard boundary onditions on the 4D boundary, (5.59)redues to [30, 6℄ Z dD2+1X�m �p�GÆ~h ji �m~h ji � = 0: (5.60)We now perform a KK deomposition of the �elds as follows:~h ji (X) =Xk ~h(k)ji (x)fk(�; y); (5.61)where k represents a olletive KK number. By taking ~h(k)ji (x) to be an eigenfuntion of������� , that is �������~h(k)ji (x) =M2k ~h(k)ji (x), the EOMs (5.58) beome� 1p�GeA�m �p�G�mfk� =M2kfk (5.62)B, it is easy to on�rm that symmetry onsistently trunates the branons.18



and the orresponding boundary onditions (5.60) read (we reall that Æ~h ji and ~h ji areindependent �elds) Z dD2+1X�m �p�Gfk0�mfk� = 0: 8k;k0 : (5.63)Condition (5.63) ensures that the operator ating on fk in the left hand side of (5.62) isa Hermitian operator [30, 6℄; we will therefore refer to (5.63) as the hermitiity ondition(HC). In addition to the HC we will also require the wave funtions fk to be normalizable,that is Z dD2+1Xp�Ge�Af2k <1:This normalizability ondition (NC) is equivalent to the �niteness of the kineti energy ofthe modes ~h(k)ji (x). We observe that there is always a onstant massless (M2k = 0) solutionto (5.62), satisfying the HC (5.63). This solution orresponds to a 4D graviton providedthat the NC is satis�ed, that is R dD2+1Xp�Ge�A <1.5.1.1 Randall-SundrumIn the speial ase D = 5, and therefore in partiular for the RS bakground (2.18), theEOM (5.62) has the form � e�A�� �e2A��fk� =M2kfk : (5.64)Here we do not want to analyze the latter equation as this has been done in the originalRS works, but we observe, as a hek of our spin-2 ation, that (5.64) has exatly the sameform as in [2℄.5.1.2 6D Brane WorldsWe now move to the onial-GGP solutions to 6D supergravity given in Eqs. (2.21)-(2.22).Sine our internal spae is topologially S2, we require ~h ji to be periodi funtions of ':~h ji (X) =Xn;m ~h jinm(x)fnm(�)eim'; (5.65)where m is a generi integer and n is an extra KK number that emerges as we have anumber of ompat dimensions greater than one. Also we observe that Eq. (5.62) withthe HC and NC is formally idential20 to the orresponding problem for 4D gauge �eldsaddressed in Ref. [6℄. Therefore, here we only give the result. The wave funtions an beexpressed in a more ompat way by introduing � e(3A+B)=4f; (5.66)20In [6℄ there is the extra parameter NV , whih is equal to zero here. To hek that the two problems areidential it is useful to remember A = �=2, whih is true for the onial-GGP solutions. Also, take are that� in referene [6℄ is half � here. 19
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Figure 1: Graviton Wave Funtion Pro�les: n = 0; 1; 20 modes plotted for angular momentum numbersm = �1; 0. The parameters are hosen to be (r0; !; !) = (1; 1=4; 1), orresponding to a single negativetension brane at u = 0. Also the normalization onstant is set suh that R duj j2 = 1. The number ofintersetions with the u-axis equals n, aording to quantum mehanis. Notie that the (m;n) = (0; 0)mode is massless.where we have suppressed n and m. The expliit expression for  is / z�(1� z)�F (a; b; ; z); (5.67)where z � os2 (u=r0), F is Gauss's hypergeometri funtion and� � 14 (1 + 2jmj!) ; � � 14 (1 + 2m!) ;  � 1 + jmj!;a � 12 + m2 ! + jmj2 ! + 12qr20M2 + 1 +m2 (! � !)2;b � 12 + m2 ! + jmj2 ! � 12qr20M2 + 1 +m2 (! � !)2; (5.68)with ! � (1� Æ=2�)�1; ! � (1� Æ=2�)�1: (5.69)Moreover the expliit form of the mass spetrum is given byM2 = 4r20 �n(n+ 1) +�12 + n� jmj (! + !) +m2!!� � 0; (5.70)where n = 0; 1; 2; 3; ::: [6℄. So we have obtained the exat and omplete spetrum (wavefuntions and masses) for the spin-2 utuations of the onial-GGP solutions. We observethat Eq. (5.70) tells us there is a massless normalizable solution (for n = m = 0), whihorresponds to the 4D graviton. This solution is separated from the �rst KK exitationby a �nite mass gap, whih is of order 1=r0 (if ! � ! � 1). We plot some representativewave funtion pro�les in Figure 1. As disussed in [6℄ the asymptoti behaviour lose tothe branes is universal for eah KK tower, and it does not appear possible to separate thein�nite number of heavy modes from the light ones by using their respetive wave funtionpro�les.Here we also observe that Eq. (5.58) is independent of  and the dilaton potentialV. This implies that the spin-2 spetrum of the non supersymmetri and supersymmetri20



models are the same (provided the bakgrounds are the same). Indeed, the rugbyballon�guration (that is ! = !) leads to the same spin-2 spetrum in the EYM� model andin the 6D supergravity.Finally, as a hek, we an onsider the S2 limit (!; ! ! 1), whose mass spetrum iswell-known. Our spetrum (5.70) redues tor204 M2 = l(l + 1); multipliity = 2l + 1 ; (5.71)where l = 0; 1; 2; 3; :::. Sine r0=2 represents the radius of S2 in the sphere limit, this isexatly the result that one �nds by using the spherial harmoni expansion [31, 32℄ fromthe beginning.5.2 Vetor utuationsHere we analyze the vetor utuations, in partiular their wavefuntion expansions andmass spetra. In the following subsetion we shall study the impliations of these results forthe struture of the 4D gauge group in the 6D models of interest. The physial 4D vetor�eld spetrum an be extrated from the spin-1 ation given in Subsetion 4.2.2. However,some of the perturbations in that ation are simply the heliity-(�1) omponents of massivegravitons and therefore should not be interpreted as independent vetor �elds.5.2.1 Randall-SundrumTo illustrate the previous point we �rst notie that our spin-1 ation leads to the well-knownresult that there are no physial 4D vetor �elds in the RS model (unless one introduesbulk gauge �elds). Indeed, in that ase the only �eld appearing in the spin-1 ation is hi�,whose ation is simplyS(1)(h; h) / Z d5Xp�G���hi���hi� + ��hi���hi� � A022 hi�hi� � 32A00hi�hi�� ; (5.72)where we used the property A00 + T�2Æ(�� Y )=3 = 0 (5.73)that follows from the form of the warp fator, Eq. (2.18), in the RS model. Therefore, one(5.73) is used the problem assumes the same form as in Ref. [12℄, where it is shown thatthe 4D spetrum from hi� exatly reprodues the graviton one with the zero mode removed.By ounting the degrees of freedom, it follows that there are no physial vetor �elds.5.2.2 6D Brane WorldsLet us begin by onsidering what we might expet from the symmetries of the problem {with some bene�t of hindsight from the authors. In the limit where the brane tensions goto zero, the smooth sphere-monopole ompati�ation is reovered. In this ase, standard21



KK theory tells us that there are three massless KK gauge bosons21, whih manifest theSU(2) isometries of the sphere in the 4D theory [31℄. Clearly, any branes break the spherialsymmetry in the internal dimensions. For the solutions of present interest an axial isometrysurvives, and therefore we an expet the 4D theory to enjoy a U(1) KK gauge symmetry22.At the same time, for the ase of an unwarped \saddle-sphere" with the speial de�itangles (for � = 1 we reover the sphere)Æ = �2�;�4�; : : : or � = 1! = 2; 3; : : : (5.74)the metri (2.27) { de�ned everywhere but at the branes { has three single-valued Killingvetors, whih obey the Lie algebra of SU(2):K+ = ei�'� ��� + i ot � 1� ��'� ; K� = e�i�'�� ��� + i ot � 1� ��'� ; K0 = � i� ��':(5.75)Only one of these Killing vetors, K0, implies a genuine ontinuous isometry, sine K�annot be globally integrated to an isometry23. In other words, we have an in�nitesimalSU(2) isometry for the speial saddle-spheres, ompared to a genuine SU(2) isometry forthe sphere. As we will show, this turns out to be suÆient to ensure three massless 4Dvetors amongst the KK spetra. From the point of view of the full 4D theory, however,we will argue that these massless �elds arise aidentally and that their masslessness is notproteted by any symmetry.Rugbyball Harmonis Let us now see how the above story plays out in detail. Ourfous shall then be on the unwarped rugbyballs and saddle-spheres, Eq. (2.27), and indeedall previous results have indiated that warping does not lead to any qualitative hanges inthe physis (see the spin-2 results in the present paper, as well as Refs.[6℄-[11℄). We shallthus proeed by �nding a set of \rugbyball harmonis" and their mass spetra, in analogyto the spherial harmonis (and, more generally, the so-alled Wigner funtions) used inthe smooth sphere ompati�ation [31℄.We �rst observe that the vetor �eld utuations Vi, whih are orthogonal to the gauge�eld bakground (ViFmn = 0), do not mix with the other perturbations him and Vim.These utuations have been already studied in Ref. [6℄ where the omplete KK towersare provided and it is shown that there are as many 4D gauge �elds as utuations Viwith vanishing monopole harge (Vi � Fmn = 0), as expeted from group theory. Here wetherefore onsider only the ase when Vi is parallel to the bakground monopole.21There may be additional massless gauge �elds desending from any unbroken higher dimensional gaugesymmetries.22For the analysis of a very similar model, in whih the SU(2) KK gauge symmetry of the sphere is brokendown to U(1) by smooth axisymmetri deformations, see Ref. [33℄.23To avoid the need of di�erential geometri results for singular spaes, we an onsider removing thebrane singularities and taking instead a smooth non-ompat manifold, for whih 0 < � < �. Killing vetor�elds are the generators of the in�nitesimal isometries of a manifold, whereas an isometry is a global aspetof the geometry. Whilst for smooth ompat manifolds the Killing vetors are always globally integrable toan isometry, for non-ompat manifolds this may not always be the ase.22



Now, from Subsetion 4.2.2 it follows that the spin-1 ation for unwarped solutions hasthe following form.S(1)(h; h) = � 12�2 Z d6Xp�G���hmi��hmi + hmi;nhmi;n + R2 hmihmi� ;S(1)(V; V ) = �12 Z d6Xp�G ���Vi��V i + �mVi�mV i + �22 2F 2ViV i� ;S(1)(V2; V2) = �18 Z d6Xp�G���Vmi��V mi + Vmi;nV mi;n + R2 VmiV mi� ;S(1)(h; V ) + S(1)(V; V2) = Z d6Xp�G���mVihniF nm � �2 �mV iVniF nm� ;(5.76)where we have used Vi;m = �mVi beause the bakground solution is unwarped and Vi isunharged under the bakground monopole. Also m;n; ::: here run over � and '. To derivethe last term in S(1)(h; h) we have used the Einstein equations:2�2p�GRmn = p�GFmlF ln +GmnTÆ(X2 � Y2); (5.77)whih allow us to rewrite the brane ontribution in the last term of (4.53) as a ombinationof the Rii tensor and the �eld strength. Also we have used that in two dimensionsRmn = GmnR=2 and the Maxwell equations Fmn;m = 0. The EOMs desending from (5.76)are the following. ��2 +D2 � R2 �hmi � �2F lm �lVi = 0; (5.78)��2 +D2 � R2 �Vmi � 2�F lm �lVi = 0; (5.79)��2 +D2 � �22 2F 2�Vi + F nmhni;m + �2 F nmVni;m = 0; (5.80)where �2 � ���� and D2 � DmDm. As for the spin-2 ase above, the EOMs ome with aset of boundary onditions, whih we refer to as Hermitiity Conditions (HCs) [30, 6℄:Z d6Xp�G �Æhmihmi;n�;n = 0; Z d6Xp�G �ÆVmiV mi;n�;n = 0; (5.81)Z d6Xp�G�ÆV ihliF lm�;m = 0; Z d6Xp�G�ÆV iVliF lm�;m = 0; (5.82)Z d6Xp�G �ÆVi�mV i�;m = 0: (5.83)We will additionally impose the usual Normalizability Conditions (NCs).We an immediately observe that there is a simple solution to Eqs. (5.78)-(5.80), withh�i = h'i = 0, V�i = V'i = 0 and Vi independent of the extra dimensions. Its squared massis given by M2 = �22 2F 2 = 8r20 2; (5.84)23



where we expliitly used the rugbyball solution. We see that the monopole U(1) is a gaugesymmetry in the EYM� model ( = 0), whereas it is broken in 6D supergravity ( = 1),like for the smooth sphere-monopole solution [16℄.We now want to �nd the general solution to Eqs. (5.78)-(5.80) subjet to the HCs andNCs. System (5.78)-(5.80) is a rather ompliated set of oupled di�erential equations, butthe ase at hand an be elegantly solved by using the harmoni expansion of the salarLaplaian; let us now desribe this tehnique. It is easy to solve the eigenvalue problem for�D2 ating on the 2D salars (in fat, for A = 0 and applying the diagonal HC and theNC, the system is idential to that for the heliity-2 �eld above). The eigenfuntions arethen given by (5.65-5.68) with ! = !, and the eigenvalues an be written as:�2nm � 4r20 (n+ jmj!) (n+ jmj! + 1) � 0; (5.85)where n = 0; 1; 2; 3; ::: and m run over all the integers. This is the generalization to therugbyball of the salar spherial harmonis. They form a omplete basis for the 2D salar�elds Vi.We next proeed by determining a omplete basis for the 2D vetor utuations fh�i; h'igand fV�i; V'ig. We fous only on fh�i; h'ig as the analysis for fV�i; V'ig is idential. A wayto determine suh a basis is to look at the eigenvalue problem for the operator �D2 +R=2appearing in Eq. (5.78), beause the diagonal HC (5.81) guarantees that this operator isHermitian over the spae of funtions where fh�i; h'ig lives, and therefore has a ompletebasis of eigenfuntions. Again, this system is easy to solve, this time using the results24 ofRef. [9℄. We therefore just summarise the results. The eigenvalue problem for �D2 +R=2on 2D vetors generially mixes the h�i and h'i omponents, but redues to a diagonalform, at least in the rugbyball ase, by introduing25h�i � 1pr0 �eB=4h�i � ie�B=4h'i� : (5.86)Eq. (5.86) de�nes a new basis for tensors on the 2D internal spae, and we remind thereader that for the rugbyball eB = �2 sin2 �. The squared mass problem an then betransformed into a pair of deoupled Shr�odinger equations, whih an be solved. Note thatthe singularities of the spin-1 ation disussed in Subsetion 4.2.3 appear in the Shr�odingerproblems as two singular points in the e�etive potentials (one for eah brane), whih donot obstrut the determination of the spetrum [6, 9℄. The h�i �elds an be KK expandedas follows h�i(X) =Xn;mh�i nm(x)f�nm(�)eim'; (5.87)and, in the ase m = 0 or jmj � 1=!; (5.88)24In Ref. [9℄ a more general problem has been solved, whih redues to the present one in the unwarpedase A = 0.25The � appearing in (5.86) and throughout this setion should not be onfused with the (�) used tode�ned the light-one gauge in Subsetion 4.1, for this reason the latter are written inside brakets.24



both the KK tower assoiated with f+ and f� turn out to be exatly that in (5.85), wheren = 0; 1; 2; 3; ::: and m run over all the integers, but with the onstraint fn;mg 6= f0; 0g.Condition (5.88) is satis�ed by every jmj for non-negative tensions and it is satis�ed bysome (but not all) jmj for negative tensions. This, however, will be enough to show thatwhen the tensions assume the values in (5.74), the KK spetra inlude extra massless spin-1�elds. In the following we denote (5.88) with 0 6< jmj! 6< 1.So we have found that, for modes satisfying (5.88), the spetrum of �D2 +R=2 on 2Dvetors is made up of two idential opies of the spetrum of �D2 on 2D salars but withzero mode removed. This suggests that we may be able to express the eigenfuntions of�D2 + R=2 on 2D vetors in terms of eigenfuntions of �D2 on 2D salars. Indeed, if weonsider a solution V to the eigenvalue problem of �D2 with eigenvalue �2, then it is easyto show that �mV is an eigenfuntion of �D2 +R=2 with the same eigenvalue. In the ase(5.88), this implies that we an write�� �fnm(�)eim'� = nmf�nm(�)eim'; (5.89)where we have used the basis de�ned in Eq.(5.86) for ��, and moreover nm are normaliza-tion onstants whih, having hosen a onvenient normalization for the wave funtions, anbe �xed to be nm = �nm=p2. This is the analogue of the derivative relation that existsbetween Wigner funtions for �elds of di�erent spin on the sphere (see eq. (3.17) of Ref.[31℄). So, remarkably, we an onstrut the omplete harmoni expansion for26 Vi, h�i andV�i by using the solution to the eigenvalue problem for the salar Laplaian. Moreover, itis easy to hek that, having applied the diagonal HCs to derive the omplete basis for h�iand V�i, the mixed HCs (5.82) are automatially satis�ed.Having derived the harmoni expansions one more observation is neessary. It turnsout that the fator F ++ whih appears in the mixing terms S(1)(h; V ) and S(1)(V2; V ) isonstant for the rugbyball (F ++ = 2p2i=(r0�)). Putting everything together, we are thenable to transform the di�erential eigenvalue problem for the squared mass operator intoan algebrai problem that an be solved. In partiular, after integrating out the extradimensions, Ation (5.76) assumes the following form in terms of the KK modes.S(1)(h; h) + S(1)(V2; V2) + S(1)(h; V ) + S(1)(V; V2) + S(1)(V; V )= Z d4xXn;m� 12�2 (h+i nm)� ��2 � �2nm�h+i nm + 12�2 (h�i nm)� ��2 � �2nm�h�i nm+18 (V+i nm)� ��2 � �2nm�V+i nm + 18 (V�i nm)� ��2 � �2nm�V�i nm�2�nmir0� [(h+i nm)� Vi nm � (h�i nm)� Vi nm+�2 ((V+i nm)� Vi nm � (V�i nm)� Vi nm)i+12 (Vi nm)���2 � �2nm � 82r20 �Vi nm� ; (5.90)26It is easy to show that all we have stated about the harmoni expansion for hmi holds for Vmi as well.25



6D Einstein-Yang-Mills-� Squared mass Multipliity0 1�2nm + 2p2r0 �nm 1�2nm � 2p2r0 �nm 1
6D Supergravity

Squared mass Multipliity8r20 1�2nm 24r20 �1 + r204 �2nm +p1 + r20�2nm� 14r20 �1 + r204 �2nm �p1 + r20�2nm� 1Table 1: Squared mass KK towers of physial spin-1 perturbations around the rugbyball solution to the6D EYM� model and 6D supergravity, for modes satisfying (5.88). �2nm is de�ned in (5.85), but here theKK numbers n;m run over n = 0; 1; 2; 3; :::, m = 0;�1;�2;�3; :::, with the onstraint fn;mg 6= f0; 0g.where the sum over n and m is performed over n = 0; 1; 2; 3; ::: and m = 0;�1;�2;�3; :::,but with the ondition h�i 0;0 = 0 and V�i 0;0 = 0. Also, as a onsequene of the realityonditions h+i(X) = h��i(X), V+i(X) = V ��i(X) and Vi(X) = V �i (X), we have the relationsh+i nm(x) = h��i n�m(x), V+i nm(x) = V ��i n�m(x) and Vi nm(x) = V �i n�m(x).In this way, the squared mass operator has �nally been transformed into an algebraimatrix with onstant entries and we an �nd its eigenvalues exatly.6D EYM� model To address the spin-1 utuations in the 6D EYM� model, we set = 0 and remove the Kalb-Ramond perturbations (V�i = 0) in the above 4D bilinearation, Eq. (5.90). By diagonalizing the orresponding mass-matrix, we �nd that theexpliit heliity-(�1) towers are as followsM2nm = �2nm � 0; (5.91)with n = 0; 1; 2; 3; ::: and m = 0;�1;�2;�3; :::, but 0 6< jmj! 6< 1 andM2nm = �2nm � 2p2r0 �nm � 0; (5.92)with n = 0; 1; 2; 3; ::: and m = 0;�1;�2;�3; :::, but 0 6< jmj! 6< 1 and fn;mg 6= f0; 0g.Neither tahyons nor ghosts are found. The fn;mg = f0; 0g mode in (5.91) is the massless26



gauge �eld assoiated with the 6D monopole U(1), whih we have previously disussed in(5.84). The remaining modes in (5.91) are instead the heliity-(� 1) omponents of massivegravitons; we observe that the massive part of the KK tower (5.70) is exatly reprodued by(5.91), aording to 4D Poinar�e invariane. The KK towers in (5.92) orrespond insteadto physial spin-1 �elds. The omplete set of masses for physial spin-1 �elds is given inTable 1.By analyzing those towers, one easily �nds that there are physial massless 4D spin-1�elds (in addition to (5.84)) if and only if �2nm = 8=r20 , whih an be restated asfn;m!g = f1; 0g or fn;m!g = f0;�1g: (5.93)Therefore there is at least one massless spin-1 �eld for any value of the tension (this orre-sponds to fn;mg = f1; 0g). In the sphere ase (! = 1) we have three ways to satisfy thisondition, that is fn;mg = f1; 0g; f0;�1g;whih orrespond to the three gauge �elds of SU(2)KK , whereas for positive tension rug-byballs and generi saddle-spheres there is only one hoie:fn;mg = f1; 0g;orresponding to the KK gauge group U(1)KK . However, for the speial saddle-spheres forwhih (5.74) holds, the number of massless vetor �elds is enhaned from one plus one toone plus three!We shall disuss in detail the physial signi�ane of these modes in the following sub-setion.6D supergravity We onlude this subsetion by providing the heliity-(�1) masses forthe 6D supergravity (set  = 1 and keep the Kalb-Ramond utuations in Eq. (5.90)).Diagonalizing the orresponding mass-matrix, we �nd:M2 = 8r20 > 0; (5.94)whih is the vetor �eld assoiated with the monopole U(1),M2nm = �2nm � 0; with multipliity 3 (5.95)and M2nm = 4r20 �1 + r204 �2nm �q1 + r20�2nm� � 0 (5.96)where n = 0; 1; 2; 3; :::, m = 0;�1;�2;�3; :::, fn;mg 6= f0; 0g and 0 6< jmj! 6< 1. Themasses in (5.94), two towers out of three in (5.95) and the towers in (5.96) orrespond tophysial spin-1 �elds, whereas one of the towers in (5.95) are the heliity-(�1) omponentsof massive gravitons. The omplete set of masses for the physial spin-1 �elds is summarizedin Table 1. We note that neither tahyons nor ghosts are found.27



Regarding the massless vetor �elds the situation is similar to the 6D EYM� model.It easy to see that the ondition for masslessness is again (5.93) and, therefore, again wehave a single KK massless gauge boson for positive tensions and generi negative tensions;instead, for negative tensions of the form (5.74), the number of massless vetor �elds isenhaned from one to three!As an e�etive hek of the results presented in this subsetion, we have also derivedthe aforementioned spetrum in the sphere ase (! = 1) by expanding the bulk �elds overthe Wigner funtions as in [31℄ and obtained exatly the sphere limit of our towers.5.3 Massless vetors and 4D gauge symmetriesIn the previous subsetion we observed three massless 4D vetor �elds amongst the KKspetra for the 6D models27 on both the sphere and the speial saddle-spheres (5.74). Weshall now address the physial signi�ane of these modes. One of them, the one with axialquantum numberm = 0, should provide the gauge boson for the U(1)KK gauge symmetry,desending from the axial isometry of the internal spae. The other two massless vetors,having m 6= 0, are harged under this axial symmetry and so we may expet the threevetors to �t into a non-Abelian struture, like SU(2). For the sphere, this is indeed thease, and the three massless vetors ompose the gauge �elds of an SU(2) gauge symmetryin the 4D theory. What happens for the speial saddle-spheres, where there is no SU(2)isometry in the bakground? Let's take � = 2; 3; : : :, so we onsider the speial saddle-spheres (we also allow for the smooth sphere with � = 1).5.3.1 Why there are three massless vetor modesLet us begin by understanding why three massless vetor modes appear in the spetrum,despite the fat that any branes learly break the SU(2) isometries of the sphere.Above, we found that the massless vetor �elds arise as a linear ombination of h m� mn(x)and V�mn(x) (and V m� mn(x) for 6D supergravity), one we have integrated out the extradimensions. In detail, if one takes the squared mass matrix de�ned impliitly by the 4Dbilinear ation in (5.90) in e.g. the EYM� ase, one �nds that the mass eigenstates are(fn;mg 6= (0; 0)): Ai nm = i2h+i nm � i2h�i nm + 1p2Vi nm;Ui nm = � i2h+i nm + i2h�i nm + 1p2Vi nm;Wi nm = 1p2h+i nm + 1p2h�i nm; (5.97)orresponding respetively to M2nm = �2nm � (2p2=r0)�nm, M2nm = �2nm + (2p2=r0)�nmand M2nm = �2nm in (5.92) and (5.91). Reall that the massless modes emerge from theAi nm tower, when fn;m!g = f1; 0g; f0;�1g.27In the EYM� model there is also a massless vetor �eld desending from the higher dimensional U(1)gauge �eld, whih forms a 4D U(1) gauge �eld. 28



We an write, then, the harmoni expansion of h m� (X) as:h m� (X) = XI=�;0;+AI�(x)KI m(�; ') +massive modes : (5.98)Using the expansion (5.86,5.87), the expliit form for the wave funtions (5.89) and therearrangement in terms of the mass eigenstates (5.97), it is straightforward to show thatKI m(�; ') indeed orrespond to the Killing vetors (5.75) on the speial saddle-sphere,where I = 0 orresponds to fn;m!g = f1; 0g and I = � to fn;m!g = f0;�1g. This isjust as in the traditional KK redution sheme.In this way, we on�rm that the presene of in�nitesimal isometries on the internal spae,whih are generated by Killing vetor �elds, is suÆient for the appearane of massless vetormodes { even if they annot be integrated to genuine isometries.5.3.2 The absene of enhaned gauge symmetries in the full 4D theoryWe now ask whether or not these massless vetor modes behave as gauge �elds of an SU(2)gauge symmetry. The linearized 4D theory annot probe any non-Abelian struture, and soto understand the gauge invariane of the full 4D theory, we must go beyond linear order.To this end, we onsider a simple extension of the EYM� model, where we add a singleomplex, massless, neutral salar �eld whih has an ation:S� = �Z d6Xp�G�M�� �M� (5.99)and whih assumes a trivial VEV in the saddle-sphere bakground. It is easy to see thatthe linearized equation of motion for Z := Æ� gives rise to the rugbyball salar harmonis(see above Eq. (5.85)): Z(X) =Xm;n zmn(x)fmn(�)eim' (5.100)with the orresponding masses (5.85):M2 = 4r20 l (l + 1) where l = n+ jmj! : (5.101)The multipliity of a given mass is given by 2l + 1 when l is integer or half-odd integer;otherwise it is given by 2([l℄ + 12) + 1, where [l℄ denotes the integer part of l. We also notethat for l integer (whih orresponds also to m! integer), the wavefuntion fmn(�) is anAssoiated Legendre funtion, just as for the spherial harmonis. The modes with l non-integer are instead additional harmonis, whih generially have no orresponding statesamongst the spherial harmonis nor indeed any of the Wigner funtions.Now let us ask how the 4D �elds zmn(x) ouple to the massless vetor �elds, and inpartiular if they do in a gauge-invariant way. At trilinear level, this oupling desends onlyfrom the term: S(Z�; h�m; Z) = �Z d6Xp�G��Z� h m� �mZ (5.102)29



and its omplex onjugate. The above trilinear oupling an now be reexpressed in termsof the 4D �elds, and isolating the ontributions involving the massless vetors, Eq. (5.98),we �nd:S(z�; AI�; z) = �Z d4xp�g4 ��z�AI� z0 Z d� d' r204 � sin � f e�im'KI m �m �f 0 eim0'� ;(5.103)where we have suppressed the KK indies fn;mg and fn0;m0g on z; f and z0; f 0 respetively.Performing the integral over the internal dimensions:gI = Z d� d' r204 � sin � f e�im'KI m �m �f 0 eim0'� ; (5.104)we see that the wavefuntion overlap (5.104) gives the 4D oupling between z(x) and z0(x)via a massless vetor �eld, AI�(x):� gI Z d4xp�g4 ��z�AI� z0 : (5.105)Observe that if the full 4D theory were to respet an SU(2) gauge symmetry whosegauge �elds are the three massless vetor modes, then z and z0 would belong to SU(2)multiplets of the same dimension and (5.105) would orrespond to the trilinear terms inthe gauge invariant ombination �D�za�D�z0a, where D�za = ��za+AI�T I ab zb, the indiesa; b run over a; b = 1; : : : ; r and r is the size of the multiplet. For the lassi sphere, � = 1,this is of ourse the ase, and the wave funtion overlaps in (5.104) are zero unless z and z0belong to the same SU(2) multiplet, thanks to the properties of the spherial harmonis.We shall now see that suh a struture does not hold for the speial saddle-spheres.To this purpose, let us onsider the rugbyball harmonis with 0 <m! < 1. The patternthat emerges for the overlaps (5.104) one both the integrals over d� and d� are performed28,is that a mode, f , with 0 < m! < 1 and n even (respetively odd) has a non-zero overlapwith the modes, f 0, for whih m0! = m! � 1 and all n0 odd (respetively even). It anthen easily be seen that this prevents the realization of an SU(2) gauge symmetry. Take forinstane the set of modes fzg with some mass-squared l(l + 1) in whih 0 < jmj! < 1 andn = 0. This mass omes only with degeneray 2, orresponding to KK numbers f0;�mg.Therefore, if there exists an SU(2) gauge symmetry, then the modes in fzg fall either intoan SU(2) doublet or two singlets. The overlap (5.104) between the modes f0;mg andf0;�mg is zero, and the subsequent vanishing of the oupling in (5.105) tells us that fzgannot form a doublet. On the other hand, the modes f0;�mg do have a non-zero overlapwith fn odd;�m� 1=!g and fn odd;�m+ 1=!g, and so the two modes in fzg eah havea trilinear oupling (5.105) with towers of z0 and the massless vetors �elds. Thus, theyannot be singlets. In this way we an onlude that there does not exist an SU(2) gaugesymmetry orresponding to the massless vetor �elds.We would like to draw one more insight into the absene of SU(2) gauge symmetryfor the full 4D theory. The Killing vetors (5.75) an be onsidered as generators of an28Whilst we have not heked this result for all !, m and n the pattern is quite onvining.30



SU(2) algebra, and the mass-squared operator for the saddle-sphere salars, �D2, an beunderstood as the Casimir Operator for the algebra: � r204 D2 = 12 (K+K� +K�K+) +(K0)2. The saddle-sphere salar harmonis form a basis for the Hilbert spae of funtionson whih the Hermitian operator, �D2 (plus boundary onditions), ats. However, theSU(2) ladder operators, K�, do not at within this Hilbert spae: the ation of K� onthe harmonis fmn(�)eim' with 0 < jmj! < 1 gives bak funtions whih do not obey theNC and HC boundary onditions. Again, we see that the saddle-sphere harmonis do notfurnish well-de�ned representations of the SU(2)KK generated by the Killing vetors, andit is preisely the modes with 0 < jmj! < 1 that are the problematis ones29.As we have implied above, the absene of an SU(2) KK gauge symmetry in the 4Dtheory an be understood in the 6D piture as being due to the absene of a genuine SU(2)isometry in the internal dimensions.5.3.3 The emergene of enhaned gauge symmetries at low energiesFinally, notie that although the modes with 0 < jmj! < 1 do not belong to well-de�nedSU(2) representations, the massless wave funtions that we have found are equivalent tothose present in the sphere ase (up to an integer onstant multiplying ') and do furnishwell-de�ned SU(2) representations30. This holds also for the massless spin-2 and spin-1�elds above, as well as the massless spin-0 �elds disussed below31. Therefore, the lassiallow energy 4D e�etive theory that results from trunating the massive modes does enjoyan SU(2) KK gauge invariane to all orders in perturbation theory { despite the absene ofa genuine SU(2) isometry in the extra dimensions. Indeed, this low energy 4D theory doesnot distinguish between a ompati�ation on a smooth sphere or a speial saddle-sphere!Moreover, we an argue that the above trunation to the massless setor is a onsistentone32, at least for the bosoni theory that we have studied whose �eld ontent is idential tothat of 6D supergravity. Then, if we remove the branes and replae the singular spae witha smooth non-ompat manifold, the loal geometry is the same for the sphere everywhereand the KK ansatz for the speial saddle-sphere is essentially idential to that of the smoothsphere. Meanwhile, the sphere redution of 6D supergravity was shown to be a onsistentone in Ref. [35℄, thanks to a remarkable onspiray between properties of the 2-sphere and29Notie that this range ofm is empty for the speial saddle-sphere with ! = 12 if we impose the Z2 orbifoldprojetion disussed in Appendix C. In this ase, then, all the KK modes are in well-de�ned representationsof SU(2) (orresponding to the Wigner funtions), and we an expet an SU(2) gauge invariane in thefull 4D theory, at least if we remove the branes and disuss a smooth non-ompat manifold. This is notsurprising, sine { outside the branes { the Z2 orbifolding e�etively anels out the Æ = �2� de�it angle,and we return to the standard sphere ase.30This is a onsequene of the fat that in our mass-squared's,M2, as well as in our fnm(�) wavefuntions,m and ! enter only through the ombinationm!. This is obvious for the masses, and for the wave funtionsit an be seen from Eq. (5.68), after setting �! = ! to reover the spetra for the rugbyball. Furthermore,the massless modes all have integer m!.31We should aution that, although there are no symmetries that suggest them to be massless, our har-moni analysis has not inluded the modes with 0 < jmj! < 1 in the spin-1 setor, nor the modes with0 < jmj! < 1 and 1 < jmj! < 2 in the spin-0 setor.32Mathematial onsisteny may of ourse not be neessary, if the trunation is onsistent up to someenergy sale. 31



the struture of supergravity.5.4 Massless salarsFinally, we turn to the spetra of 4D spin-0 �elds, whih are governed by the ation givenin Appendix B. In Appendix C we give the omplete spetra for unwarped braneworldompati�ations in 6D supergravity. Here, our fous shall be on the massless salarsfeatured in the low energy 4D e�etive theory. Again we shall �rst review the RS modeland then examine the 6D braneworld models.5.4.1 Randall-SundrumIn the RS model of Ref. [1℄, the massless salar setor involves one normalizable mode(the radion), whih beomes non normalizable in the deompati�ation limit r !1 [29℄.Let us �nd this mode in our formalism. We an of ourse restrit our attention to thespin-0 ation S(0)(h; h) as in [1℄ only gravity is introdued and the branons are onsistentlyprojeted out by the S1=Z2 orbifold onditions. Therefore, we only have to deal with theperturbation h��, beause (4.50) implies h ii = �h��. It is easy to derive the EOM for h��:� 1p�G�M �p�G�Mh���+ ��A02 + 13T�2Æ(�� Y )�h�� = 0; (5.106)where T�2Æ(� � Y ) � T1�2Æ(�) + T2�2Æ(� � �r). We now perform a KK deompositionh��(x; �) = Pn h��(x)fn(�) and fous on the massless ase (������� = 0); we obtain thesimple equation  00 = 0; (5.107)where we have de�ned  � eAf and used property (5.73). The only solution to (5.107)satisfying the S1=Z2 orbifold onditions is  onstant, whih orresponds tof / e�A: (5.108)Mode (5.108) is the wave funtion of the radion. By inserting this mode in the kineti termof h�� in (B.112) one easily �nds that it is normalizable for any �nite r, but beomes nonnormalizable in the limit r !1.5.4.2 6D Brane WorldsAfter this non-trivial hek of our formalism we now turn to the onial-GGP solutions of6D supergravity. The stability of the GGP solutions has been investigated in [7℄ and [9℄,where no tahyons emerged unless non-Abelian gauge groups are onsidered. Indeed, in thepresene of non-Abelian gauge groups, an instability may arise in the setor desribed bythe ation S(0)(V; V ), with Vm orthogonal to the bakground monopole33 [9℄. We observethat, even in the absene of non-Abelian gauge groups, the stability of the GGP solutions is33This instability is also present in the sphere-monopole solution [34℄, whih is a partiular ase of theGGP solutions. 32



marginal, in the sense that there are neessarily massless salars in the physial spetrum.These massless partiles are manifestations of two symmetries in the model. One is thefollowing invariane of the EOMs: GMN ! wGMN and e�=2 ! w e�=2, where w is areal number. Note that this is only a lassial symmetry beause the ation resales asSB ! w2 SB, so we do not expet the orresponding salar to remain massless one quantumorretions are inluded. The other is the Kalb-Ramond symmetry, whih ats as B2 ! B2+d�, where � is a general 1-form �eld. The atual presene of the zero mode orrespondingto the former symmetry has been shown in Refs. [11, 7℄.Here, by using our bilinear ation, we an easily �gure out where the other masslesssalar is. This emerges as the lightest 4D mode of the �eld Vij , whose bilinear ation issimply (see Eq. (B.118)) � 116 Z d6Xp�Ge��2A�MVij�MVij : (5.109)This ation is equivalent to the spin-2 ation (4.52) in the ase of the onial-GGP solutions,whih satisfy A = �=2. The wave funtions and mass spetrum oming from Vij are thereforeidential to the one presented in Subsetion 5.1. For n = m = 0 we obtain the masslesssalar �eld assoiated to the Kalb-Ramond symmetry. In the spherial limit this orrespondsto the l = 0 mode in (5.71) [27℄.6 Summary of ResultsBefore onluding, let us provide an overview of our results.� We have derived the linearized dynamis, Eqs. (4.52)-(4.57) and Appendix B, for thephysial perturbations about general bakgrounds in a general lass of �eld theories.In partiular, we take Einstein-Yang Mills (EYM) theory in D spaetime dimensions,with a bulk dilaton or osmologial onstant (�), and a number of dynamial 3-branes.Moreover, for D = 6 we inlude a dilaton and 2-form potential. Therefore, 6D hiralsupergravity, D-dimensional EYM� theory and the 5D Randall-Sundrum models allfall within our analysis. The bakgrounds onsidered respet 4D Poinar�e invariane,but may be warped in a radial transverse oordinate.� Taking the Randall-Sundrum models as an illustrative example within our formalism,we retrieve the well-known dynamis for spin-2 utuations and identify the masslesssalar (the radion), whih is normalizable in the two brane model and beomes non-normalizable in the one brane model.� For the 6D EYM� model, we onsider the unwarped \rugbyball-monopole" ompat-i�ations, soured by two 3-branes of equal tension. When the tensions are zero, wereover the sphere-monopole ompati�ation, and when the tensions are negativewe refer to the 2D geometry as a \saddle-sphere". By deriving a set of \rugbyballharmonis", we are able to obtain analyti KK spetra; i.e. we disuss how to �ndphysial 4D spin-2, spin-1 and { onsistently trunating branons { spin-0 �elds and33



spin-2 spin-1 spin-0Rugby-ball Æ � 0 all modes all modes all modesSaddle-sphere Æ = �2� all modes all modes all modesGeneri Saddle-sphere all modes m = 0; jmj � 1=! jmj = 0; 1=!; jmj � 2=!Warped Models all modes { {Table 2: The setors overed in the present paper for Braneworld Compati�ations in 6D Supergravity.In order to address the spin-0 setor, we projeted out the branons with an orbifolding. We also here imposethe orbifolding for all setors in the presene of negative tension branes.their masses. We present the full spin-2 spetrum and the spin-1 spetra for axialmomentum number 0 6< jmj! 6< 1.� For the 6D supergravity, the bakgrounds of interest are the warped, axially symmetrybraneworld (\onial-GGP") solutions, whih have unwarped limits to the rugyballsand saddle-spheres, and to the sphere. Our fous is on the bosoni \Salam-Sezgin"setor (from the gravity-tensor supermultiplet and the U(1) gauge multiplet in whihthe bakground monopole lies), sine the remaining bosoni setors have been treatedelsewhere. We obtain the omplete spin-2 spetrum. For the spin-1 and spin-0 setors,we restrit to the unwarped bakgrounds, and employ the rugbyball harmonis to �ndthe spetra. The setors overed by our analysis34 are summarized in detail in Table2.Our main physial results for the 6D braneworlds are as follows.� The spin-2 spetrum inludes the massless 4D graviton separated from the rest ofthe KK tower by a mass gap, and the mass gap is indeed observed in all setors.For rugbyballs with positive de�it angles and for generi saddle-spheres, the spin-1setor ontains a massless KK gauge boson due to the U(1) isometry in the bakground(in addition to any massless 4D gauge bosons desending from unbroken 6D gaugesymmetries). For the speial saddle-spheres with de�it angles Æ = �2�;�4�; : : :,there is a qualitative di�erene. Here, there are three Killing vetors, whih are well-de�ned everywhere outside the branes and obey an SU(2) Lie algebra. Although onlyone of them integrates to a genuine isometry, the number of massless KK vetors �eldsis onsequently enhaned to three. Meanwhile, in the spin-0 setor for supergravity,we identify the two massless salar �elds expeted in all ases from the lassial salingsymmetry and the Kalb-Ramond symmetry.� The spin-2 and spin-1 spetra are all well-behaved despite the presene of odimension-two dynamial brane soures, whih indue singularities in the bulk geometry. Tomake progress in the spin-0 setor, we had to disard the branon modes (e.g. byplaing the branes at orbifold �xed points).34We also �nd the spetrum in the sphere ase as a hek.34



� The spetra analysed { whih inorporates allmodes for rugbyballs soured by positivetension branes { do not harbour any instabilities; neither tahyons nor ghosts.� To understand the signi�ane of the three massless 4D vetor �elds that appear forthe speial saddle-spheres, we go beyond bilinear order. We �nd that in the full 4Dtheory, they do not represent gauge �elds of an SU(2) gauge symmetry. This is dueto the presene of KK modes that are not in well-de�ned SU(2) representations. Thelassial masslessness of the vetor �elds is thus not proteted by any symmetry, whihis in aordane with the absene of a genuine SU(2) isometry in the bakground.� In the massless setor, however, all modes fall into well-de�ned SU(2) representations.Therefore, the low energy 4D e�etive theory obtained by trunating to the masslesssetor does seem to enjoy a lassial SU(2) KK gauge symmetry, despite the abseneof a bakground SU(2) isometry! Indeed, this low energy e�etive theory does notdistinguish between ompati�ations on the sphere and the speial saddle-spheres.7 ConlusionsIn this paper, we have provided the dynamis of the physial utuations in a wide lassof models, whih inorporate the bosoni �elds generially present in bulk supergravitytheories { gravity, non-Abelian gauge �elds, the dilaton and two-form potential { as wellas dynamial 3-branes. Our �nal equations ((4.52)-(4.57) and those in Appendix B), whihan be onsidered as a generalization of the analysis in [12℄, provide the starting point toonstrut a 4D e�etive �eld theory emerging from various higher dimensional models, withompati�ed extra dimensions and/or branes.We next proeeded with that objetive to study the behaviour of braneworlds solutionsin six dimensions, taking as representative the rugbyball ompati�ations of Einstein-Yang Mills theory with a osmologial onstant (EYM�) and ertain axi-symmetri warpedompati�ations to 6D minimal gauged supergravity; the so-alled onial-GGP solutions.We have obtained the omplete KK spetrum for the 4D spin-2 setor in the onial-GGPsolutions, whih is a step towards understanding the behaviour of gravity in odimensiontwo braneworld models, as for example studied in [36℄. The spin-1 and spin-0 setorspresent large systems of oupled di�erential equations to be solved (�ve-by-�ve for the spin-1 utuations, eight-by-eight for the spin-0 utuations after trunating the branons), andwe are able to do so in the unwarped ases by developing \rugbyball harmonis", in analogyto the spherial harmonis. Along the way, we also reovered some familiar features of the5D Randall-Sundrum models. Our main results are summarized in the previous setion.Previous studies have revealed that odimension-two braneworld ompati�ations anevade the traditional KK lore in several ways. For instane, in [6℄ it was found that theKK mass-gap an be deoupled from the size of the extra dimensions in the presene ofnegative tension branes, in priniple allowing not only gravity but also the SM to propagatein large extra dimensions. This phenomenon an also be observed here. We an also nowsuggest the following. The power-law warping present in the 6D braneworlds studied heredoes not hange qualitatively the physis. Moreover, models with only positive tension35



odimension-two branes also have qualitatively the same behaviour as traditional KK om-pati�ations. Meanwhile, the introdution of negative tension odimension-two branes anlead to surprising dynamis.As yet another example of how the physis of braneworlds in 6D an ounter in-tuition, we have found { for speial saddle-sphere ompati�ations with de�it anglesÆ = �2�;�4�; : : : { three massless vetor �elds thanks to the presene of three SU(2)Killing vetors in the internal manifold that are well de�ned everywhere outside the branes.Thus we see that in�nitesimal isometries are suÆient to imply massless vetor �elds, evenif they annot be integrated to genuine isometries. All the massless modes in the modelsstudied here fall into well-de�ned representations of the SU(2), although there are massiveKK modes whih do not. In this way we see that the massless vetors provide the gauge�elds of an enhaned SU(2) KK gauge symmetry in the lassial, low energy, 4D e�etivetheory obtained by trunating to the massless setor, despite the absene of an SU(2) isom-etry in the bakground! Apparently, the low energy theory does not distinguish between aompati�ation on the speial saddle-spheres and the smooth sphere.At the same time, as we approah the energy of the KK mass gap and inorporatethe non-zero modes, we see that the SU(2) KK gauge symmetry is broken expliitly toU(1). This is beause only the U(1) is a genuine global ontinuous isometry of the internalmanifold. The masslessness of the extra massless vetor �elds is thus not proteted by anysymmetry, and should not survive quantum orretions. Meanwhile, reahing energies farabove the KK mass-gap, the full 6D symmetries will be restored as usual. The pattern ofsymmetry breaking and emergene that we have found within our lassial approximation,as di�erent energy sales are probed, is thus a novel one.In the model whose �eld ontent and struture orresponds to the bosoni part of 6Dsupergravity, the low-energy theory desribes the graviton, the three vetors in the adjointof SU(2) and two massless salars that are SU(2) singlets. Whether the above propertiesare shared with fermioni modes is not known and their behaviour, though of interest, liesbeyond the sope of the present paper. Meanwhile, we argued that we expet the zero-modetrunation to be a onsistent one, at least in the aforementioned model one we remove thebrane soures and study a non-ompat smooth manifold. We thus note that this bosonimodel is in priniple a omplete one, suÆient to demonstrate the unonventional dynamisthat we have observed. It would ertainly be interesting to hek the onsisteny also inthe presene of branes.This work onludes our study of the bosoni perturbations in the axi-symmetri brane-world solutions to 6D supergravity. We may now turn to the fermioni setor.Aknowledgments. It is a pleasure to thank Cli� Burgess, Claudia de Rham, StephanMohrdiek, Niola Pagani, Riardo Rattazzi, Mihele Redi, Mikhail Shaposhnikov and An-drea Wulzer for valuable disussions. S.L.P. is supported by the Deutshe Forshungsge-meinshaft under the Collaborative Researh Center 676 and by the European Union 6thframework program MRTN-CT-503359 \Quest for Uni�ation". A.S. has been supportedby the Tomalla Foundation and by CICYT-FEDER-FPA2008-01430. S.L.P. and A.S. thankthe High Energy Theory Group at ICTP for hospitality at various stages of this work.36



AppendixA General �-Dependent Bilinear AtionHere we give the expliit expression for the biliner ation that depends on the utuations ofthe brane positions �M , before any gauge �xing, that is the last two terms in (3.32). Theseterms have been omputed by varying the brane ation (2.6) with respet to (3.28) and bykeeping only terms up to the quadrati order. Their expliit expression is the followingS(�; �) = �T2 Z d4xp�g �GMN��M � ��N+12�P �R�P�RGMN�YM � �Y N + 2�P�PGMN��M � �Y N+12�P�PGMN �R�RGSQ �12�Y M � �Y N�Y S � �Y Q � �YM � �Y S�Y N � �Y Q�+GMNGPR ���M � �Y N��P � �Y R � 2��M � ��P�Y N � �Y R�+�P�PGMNGRS ��YM � �Y N��R � �Y S � 2�Y M � ��R�Y N � �Y S�� ; (A.110)andS(h; �) = �T2 Z d4xp�g ��P�PhMN�YM � �Y N + 2hMN��M � �Y N+hMN �P�PGRS �12�Y M � �Y N�Y R � �Y S � �YM � �Y R�Y N � �Y S�+hMNGPR ��YM � �Y N��P � �Y R � 2�Y M � ��P�Y N � �Y R�� : (A.111)The bulk quantities in (A.110) and (A.111), that is the bakground metri GMN and theutuation hMN , are omputed in the bakground brane position. This is beause (A.110)and (A.111) ome from the variation of the brane ation (2.6) where the bulk �elds areomputed in the brane position.B Spin-0 Bilinear Ation in the Light Cone Stati GaugeHere we provide the spin-0 ation in the light one stati gauge de�ned by (4.49) and (4.51).This is the only part where the branons �m appear.Let us start with the spin-0 ation that only depends on the bulk �elds. The nonvanishing terms are the following:S(0)(h; h) = � 14�2 Z dDXp�G h��hmn��hmn + ��hmn��hmn + hmn;lhmn;l+h2��(D2A0B0 + 2A00) + 2 �A00 +A02�h��h ii�D2A0B0 + 2A00 � 12B02 � 2B00�h�mh m� � 4A0h n� h ;mmn37



+h ii h mm A0B0 + 2�B00 + B022 �h��h mm + 12B02hmnhmn + 12B02 (h mm )2�2e�Bhmlhnh
 lhmn + 2�2hlmhl n�12e�=2Fm hF nh + 14�2 �m ��n ��+�2e�=2hmnhlhFlmFhn + 12 ���h ii ��h jj + ��h ii ��h jj + h ii ;mh j;mj �+ �h ii �2�12A02 + T2 �2pg=G Æ(X � Y)�� ; (B.112)where 
 lmn h is the Riemann tensor for the metri Kmn and X and Y are de�ned belowEq. (4.53). We observe that in the last line of (B.112) there is an expliit brane ontribution(the tension of the brane T appears expliitly). Moreover,S(0)(V; V ) = �12 Z dDXp�Ge�=2 ���Vm��V m +DmVnDmV n +��2A02 + 14�02�V 2�+ ��2A0 + �0�V�DmV m +RmnVmVn + 2 gFmnVm � Vn�12�0V�DmV m + 12�0V mDmV� + �2e�=2 �F ml Vm�F lnVn� ; (B.113)S(0)(h; V ) = Z dDXp�Ge�=2 hF nmVm h ;lln + �DnVm �DmVn�h nl F lm�12A0F �mVmh ii +A0FmnVnhm�� ; (B.114)S(0)(�; �) = �Z dDXp�G � 14�2 �M� �M� + 12 ��2V��2 + 116e�=2F 2 + �024�2� �2� ;(B.115)S(0)(h; �) = Z dDXp�G� 12�2 ��0� �A0h�� + h ;mm� � 12A0h ii �+ hm��m� �0�+14e�=2Fml F nl � hmn� ; (B.116)S(0)(V; �) = Z dDXp�Ge�=2 �14Fmn � �DnVm �DmVn�� 12�0F �m�Vm� ; (B.117)S(0)(V2; V2) = � 116 Z dDXp�Ge� �e�2A�MVij�MVij�2e�4A�2� �e�+2AV n m�;n �e�+2AV lm�;l�4V mne�A�m �e�A�� �e�+2AV ln�;l�+��Vmn��V mn + 13V[nl;m℄V [nl;m℄ + �22 2e�=2 �VmnFmn�2� ; (B.118)S(0)(V; V2) = ��4 Z dDXp�Ge�VmnFmn ��A0 + 12�0�V� +DlV l� : (B.119)We have no mixing of the form S(0)(h; V2) and S(0)(�; V2) as a onsequene of HMNP = 0 (atthe bakground level). We have heked that the term S(0)(V; V ) redues, as it should, to38



the orresponding ation in Ref. [9℄ in the ase in whih Vm is orthogonal to the bakgroundgauge �eld.Let us onsider now the branon-dependent ation. This turns out to have the followingform35: S(0)(h; �) + S(0)(V; �) + S(0)(�; �) + S(0)(�; �): (B.120)Therefore, the �elds �m in general ouple with some bulk �elds, but these mixings areon�ned to the spin-0 ation. The expliit expressions for the di�erent piees areS(0)(h; �) = �T2 Z d4xp�g � 2 �m �A0h�m + h ;nnm �+ e�A�m�mhii� ; (B.121)S(0)(V; �) = T�2 Z d4xp�g e�=2F nm Vn �m; (B.122)S(0)(�; �) = T2 Z d4xp�g �m �m� �; (B.123)S(0)(�; �) = �T2 Z d4xp�g �Gmn���m ���n + 12�m�mg�� �n�ng�� �12g��g�� � g��g���+12�m�n �m�ng�� g�� +T�2pg=G Æ(Y � Y)�m�mi : (B.124)We disuss the various singularities that an be observed in the above in Subsetion4.2.3 and below.C Spin-0 Spetrum for 6D Supergravity Compati�ationWe �nally analyse the (massive) spin-0 utuations in 6D braneworlds by using the generalspin-0 ation given in Appendix B. Here we disard the branons. There are di�erent waysto make this trunation onsistently, e.g. by introduing an orbifold that projets themout. In Ref. [9℄ suh an orbifold has been de�ned taking into aount the presene of atleast two pathes in the desription of spherial topologies. Here we only use the fat thatthe orbifold ation in the intersetion of the two pathes is ' ! ' + �. In the absene ofthe branons the Æ(0) singularities mentioned in Subsetion 4.2.3 obviously disappear. Weshall see that it is also possible to deal with the other type of singularities mentioned thereand extrat a �nite spetrum.Here we fous on the unwarped solutions and in partiular on the rugbyballs and saddle-spheres de�ned in Subsetion 2.3. In this ase we will be able to generalize the harmonianalysis developed in Subsetion 5.2.2 to the spin-0 setor, whih involves 2D tensors aswell as 2D vetors and salars. This tehnique allows us to transform ompliated oupleddi�erential equations into algebrai equations whose solutions an be found exatly. Therelevant utuations are hmn, Vm, � , Vij and Vmn, where m and n run over � and '. Weobserve that the utuations Vm orthogonal to bakground gauge �eld deouple to the other�elds and have already been analyzed in [9℄; therefore here we assume Vm to be parallel to35The term of the form S(0)(V2; �) vanishes as a onsequene of HMNP = 0 at the bakground level, whihin turn follows from our bakground ansatz. 39



the bakground gauge �eld. One should keep in mind that, if the branons are projetedout by the above-mentioned orbifold, only the modes with m even survive (in the Fourierexpansion over eim'). The spin-0 ation in the light one gauge assumes the following form:S(0)(h; h) = � 14�2 Z d6Xp�G h��hmn��hmn + hmn;lhmn;l�2hmlhnhR lhmn + �2hlmhl nFmhF nh + �2hmnhlhFlmFhn�12h mm (�2 +D2)h nn + T2 �2(h mm )2pg=G Æ(X2 � Y2)� ;S(0)(V; V ) = �12 Z d6Xp�G [��Vm��V m + Vm;nV m;n+12RVmV m + �22 F 2VmV m� ;S(0)(�; �) = 14�2 Z d6Xp�G �� ��2 +D2 � 4r20� �� ;S(0)(V2; V2) = Z d6Xp�G � 116Vij(�2 +D2)Vij + 116Vmn(�2 +D2)V mn��2232 (VmnFmn)2� ;S(0)(h; V ) = Z d6Xp�G h�Vn;mh nl F lmi ;S(0)(h; �) = 18 Z d6Xp�GF 2 � h mm ;S(0)(V; �) = Z d6Xp�G �4Fmn(Vm;n � Vn;m);S(0)(V; V2) = ��4 Z d6Xp�GVmnFmnV ;ll ; (C.125)where we have used the light one gauge relation h ii + h mm = 0 in S(0)(h; h) and theproperty FmlF nl = GmnF 2=2 in S(0)(V; V ) and S(0)(h; �), whih is a onsequene of (5.77).We now want to use a tehnique similar to that explained in the spin-1 setor, in orderto transform the above di�erential problem into an algebrai one. Note that the methodprovided in Subsetion 5.2.2 an be already applied to perform this transformation in theterms S(0)(V; V ), S(0)(�; �), S(0)(V2; V2), S(0)(V; �) and S(0)(V; V2) as they only involve 2Dsalars and 2D vetors36. What we have done there is to identify appropriate mass-squaredoperators from the diagonal part of the bilinear ation, whih are Hermitian one the HCsare imposed. In this way we were able to de�ne omplete sets of 2D salar and vetorharmonis. Then we foused on the ases in whih the derivative relation, Eq. (5.89),between salar and vetor harmonis holds. That relation is what allowed us to deal withthe derivative ouplings between salars and vetors and transform the spin-1 di�erentialproblem into an algebrai one, whih ould easily be solved.36The analysis of the Vmn-EOMs shows that Vmn=p�G is a 2D salar.40



Here we generalize the above proedure to inlude the 2D tensor utuations in hmn.Indeed, hmn an be deomposed into its trae, h mm , and traeless part, ~hmn � hmn �Gmnh ll =2, so that the �rst entry in (C.125) deomposes into the two terms:S(0)(h mm ; h mm ) = 18�2 Z d6Xp�G �h mm ��2 +D2 � �24 F 2�h nn � ;S(0)(~hmn; ~hmn) = 14�2 Z d6Xp�G h~hmn ��2 +D2 �R� ~hmni ; (C.126)where we used the following identities:Rpmqn = R2 (GpqGmn �GmqGpn); FlmFhn = F 22 (GlhGmn �GmhGln): (C.127)Observe that h mm is in fat a 2D salar �eld, and we an expand it in terms of the 2D salarharmonis found in Subsetion 5.1.2. The utuations ~hmn are instead genuine 2D tensorutuations, and the appropriate mass-squared operator is �D2 +R. Thus, we would liketo solve the eigenproblem: ��D2 +R� ~hmn = �2T ~hmn; (C.128)with the given NCs and HCs, where �2T are the orresponding mass-eigenvalues.In a general basis, Eq. (C.128) is a set of two oupled di�erential equations (the traelessproperty removes one out of the three omponents of a rank two symmetri tensor in twodimensions). However, by writing down Eq. (C.128) in the � basis de�ned in (5.86):��D2 +R�h�� = �2T h��; (C.129)where we used h�� = ~h��, and by expliitly evaluatingD2h��, one �nds that the equationsfor h++ and h�� are deoupled, like those of the h+i and h�i �elds in the spin-1 setor.After a long but straightforward alulation we �nd� �2�f�� + _B2 ��f�� + m2e�B � 2m _Be�B=2 + _B22 � �B2 ! f�� = r204 �2Tf��; (C.130)where a dot represents a derivative with respet to � and f�� is the wave funtion of h��,de�ned by a KK expansionh��(X) =Xn;mh��nm(x)f��nm(�)eim'; with m = generi integer (C.131)and in (C.130) the KK numbers n and m are understood. The eigenvalues �2T an befound by using the tehnique disussed in Ref. [6℄: one an put the equations into thehypergeometri form, onsider the general solution to the hypergeometri equation andthen impose the HCs and NCs. We �nd� For jmj! � 2 �2T = 4r20 [(n+ jmj!)(n+ jmj! + 1)� 2℄ (C.132)41



� For �2 <m! < 2 �2T = 4r20 [(n+ 2)(n + 3)� 2℄ (C.133)where n = 0; 1; 2; 3; ::: . In this way we have found a omplete set of 2D tensor harmonis.We now remember that, in the spin-1 setor analysed in Subsetion 5.2.2, one an gen-erate the 2D vetor harmonis by ating with derivatives over the 2D salar harmonis (seeEq. (5.89) and the disussion right above). We an imagine that something similar happenshere and the 2D tensor harmonis (C.129) an be generated by ating with derivatives over2D vetor harmonis. This is indeed the ase and in order to see it let us onsider the 2Dvetor harmonis for Vm: ��D2 + R2 �Vm = �2V Vm; (C.134)where �2V are the 2D vetor mass-eigenvalues. From now on we shall assume Condition(5.88), so that �2V = �2, with �2 the 2D salar mass-eigenvalues given in (5.85). After somemanipulation it is easy to show that if Vm satis�es the previous equation then we also have�D2 ~Vm;n +R( ~Vm;n + ~Vn;m) + 12(R;mVn +R;nVm �GmnR;lV l) = �2 ~Vm;n; (C.135)where ~Vm;n � Vm;n�GmnV ;ll =2. This equation is valid for any unwarped ompati�ation,but in the rugbyball ase it an be simpli�ed. Although the Rii salar is not onstanteverywhere like in the sphere limit as it ontains delta-funtions, these additional deltafuntion terms an be disarded in Eq. (C.135) beause they are dominated by strongersingularities37, whih emerge from D2 ~Vm;n. This allows us to write (C.135) as follows:�D2 ~Vm;n +Rs( ~Vm;n + ~Vn;m) = �2 ~Vm;n; (C.136)where Rs is the Rii salar of the sphere (Rs = 8=r20), or, in the � basis,��D2 + 2Rs�V�;� = �2V�;�; (C.137)where we used V�;� = ~V�;�. Now, omparing the eigenproblems for h�� and V�;�, Eqs.(C.129) and (C.137), we see that their eigenfuntions will belong to the same orthogonalset provided that: �2T = �2 �Rs = �2 � 8=r20 : (C.138)By omparing the 2D vetor mass-eigenvalues, �2 given in (5.85), with the 2D tensor eigen-values, �2T given in Eqs. (C.132) and (C.133), we �nd that Condition (C.138) is indeed truein the following ases:� For m = 0 or jmj � 2=!, whih we denote by 0 6< jmj! 6< 2, with the onstraintfn;mg 6= f0; 0g ; f1; 0g.� For jmj! = 1, with the onstraint n 6= 0.37This is a quite generi property of rugbyball ompati�ations [6, 9℄.42



� The sphere ase (! = 1), with the onstraint fn;mg 6= f0; 0g ; f1; 0g ; f0;�1g. Thisresult is in agreement with that obtained by using the Wigner funtions [31℄.When (C.138) is true a derivative relation between the 2D tensor and 2D vetor wavefuntions holds: D�(f�nm(�)eim') = T nmf��nm(�)eim'; (C.139)where T nm are normalization onstants whih, having hosen a onvenient normalizationfor the wave funtions, an be �xed to be T nm =p�2T nm=p2.It remains to expand the 6D �elds in the ation (C.125) into their harmonis on therugbyball and integrate over the extra dimensions. Thanks to the derivative relations(5.89,C.139), and F 2 = onst, the mass-squared operator redues to an algebrai matrixwith onstant entries, whih an easily be diagonalized. We note that the mass-matrix turnsout to be well-de�ned despite the singularities mentioned in Subsetion 4.2.3.We end with the resulting spetrum for spin-0 �elds (whih an be trusted when Eq.(C.138) holds). For de�niteness we fous here on the 6D supergravity setup, but thereare no problems in deriving the squared masses in the EYM� ase as well. We split thespetrum aording to the values of l � n+ jmj!:� For l = 0 r204 M2 = 0; 0; 2; [2℄� For l = 1 r204 M2 = 2; 6; [2℄; [2℄; [2℄; [6℄� For l > 1M2 = �2nm with multipliity 1[+3℄M2 = 4r20 �1 + r204 �2nm �q1 + r20�2nm� with multipliity 1[+1℄M2 = 4r20 �1 + r204 �2nm +q1 + r20�2nm� with multipliity 1[+1℄where the square brakets denote heliity-0 omponents of higher spin �elds and the remain-ing modes are physial spin-0 �elds. We observe that there are neither ghosts nor tahyonsand we reover the two massless �elds disussed in Subsetion 5.4.2.As an e�etive hek of the above spetrum we observe that it orretly redues, when! = 1, to the sphere result obtained by diretly expanding the bulk �elds over the Wignerfuntions [27℄.
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