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elona,08193 Bellaterra, Bar
elona, SpainAbstra
tOur main obje
tive is to study how braneworld models of higher 
odimension di�erfrom the 5D 
ase and traditional Kaluza-Klein 
ompa
ti�
ations. We �rst derive the
lassi
al dynami
s des
ribing the physi
al 
u
tuations in a wide 
lass of models in
or-porating gravity, non-Abelian gauge �elds, the dilaton and two-form potential, as wellas 3-brane sour
es. Next, we use these results to study braneworld 
ompa
ti�
ationsin 6D supergravity, fo
using on the bosoni
 �elds in the minimal model; 
omposed ofthe supergravity-tensor multiplet and the U(1) gauge multiplet whose 
ux supports the
ompa
ti�
ation. For unwarped models sour
ed by positive tension branes, a harmoni
analysis allows us to solve the large, 
oupled, di�erential system 
ompletely and ob-tain the full 4D spin-2,1 and 0 parti
le spe
tra, establishing (marginal) stability anda qualitative behaviour similar to the smooth sphere 
ompa
ti�
ation. We also �ndinteresting results for models with negative tension branes; extra massless Kaluza-Kleinve
tor �elds 
an appear in the spe
tra, beyond those expe
ted from the isometries inthe internal spa
e. These �elds imply an enhan
ed gauge symmetry in the low energy4D e�e
tive theory obtained by trun
ating to the massless se
tor, whi
h is expli
itlybroken as higher modes are ex
ited, until the full 6D symmetries are restored far abovethe Kaluza-Klein s
ale. Remarkably, the low energy e�e
tive theory does not seem todistinguish between a 
ompa
ti�
ation on a smooth sphere and these singular, deformedspheres.1Email: susha.louise.parameswaran�desy.de2Email: seif�i
tp.trieste.it3Email: salvio�ifae.es 1
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1 Introdu
tionAlmost two de
ades on, branes are evermore ubiquitous in the models 
onstru
ted to under-stand parti
le physi
s and 
osmology, with all their How?'s and Why?'s. As fundamentalobje
ts, they are the D-branes and NS-branes (or M-branes) of string (or M) theory, butwithin a low-energy e�e
tive �eld theory des
ription, they are introdu
ed as braneworlds.Often these braneworlds are 
onsidered as in�nitely thin but �nite tension obje
ts, like fortheir more fundamental 
ousins, although sometimes it proves ne
essary to resolve theirstru
ture by adding some thi
kness.A 
odimension one brane ne
essarily forms a boundary in the bulk spa
e, sin
e thereis no path whi
h 
an lead from one side to the other without traversing the brane. Thegravitational ba
krea
tion of these obje
ts is well understood; whilst the metri
 is 
ontinuousa
ross the brane, its �rst derivative 
an have �nite dis
ontinuities. Branes with more thanone transverse dimension are qualitatively di�erent, and mu
h harder, due to their sour
ingof singularities in the transverse spa
e. Still, 
odimension two branes 
an also be handledwith some 
ontrol; they ba
krea
t on the geometry in su
h a way as to produ
e relativelymild 
oni
al singularities.The 
onstru
tion of solutions sour
ed by branes, with up to two 
odimensions, in various�eld theory models is by now a well-developed art. In 5D, the ar
hetype is of 
ourse the
onstru
tion of Randall and Sundrum [1, 2℄. In 6D, we take the general warped braneworld
ompa
ti�
ations (\
oni
al-GGP solutions") of 6D N=1 gauged supergravity [3℄ found in[4, 5℄ as representative. These solutions additionally invoke 
uxes, whi
h are also playing adominant role in string 
ompa
ti�
ations today, and indeed models with two extra dimen-sions are the simplest in whi
h 
ux 
ompa
ti�
ations 
an be studied. Having established thesolutions, we 
an begin to ask about their physi
s: Are they stable to small perturbations?What are the symmetries and parti
le 
ontent of the low energy e�e
tive �eld theory? Is it
hiral? What are the modi�
ations to 4D Einsteinian gravity? What would be the e�e
tiveva
uum energy measured by a 4D observer? What role do the branes play in these andother phenomena? And so on.The �rst step towards answering these questions is to analyze the 
lassi
al spe
tra ofsmall 
u
tuations around the solution. A number of su
h studies have been made re
entlyfor the 
oni
al-GGP solutions. In [6℄ we worked out the spe
tra for 
ertain 4D gauge �eldsand fermions present in the model and no ta
hyons or ghosts were found amongst them. Asimilar (marginal) stability was found in [7℄, where the axially symmetri
 modes for someof the s
alar perturbations were 
al
ulated. The spe
trum for the gravitino has also beenanalyzed in [8℄. In [9℄, meanwhile, we studied the ta
hyoni
 instabilities that 
an arise fromthe non-axially symmetri
, 4D s
alar 
u
tuations des
ending from 6D gauge �elds, and
harged under the ba
kground 
uxes4. Whether a given model with a given 
ux su�ersfrom this instability turns out to depend on the tensions of the branes present.We now intend to 
omplete the spe
tral analysis for the bosoni
 
u
tuations about thebraneworld solutions of 6D supergravity. Our parti
ular fo
us in this paper is on the so-
alled Salam-Sezgin se
tor { that arising from the supergravity-tensor multiplet and the4The end point of this instability is studied in [10℄.3



U(1) gauge multiplet in whi
h the ba
kground monopole lies { whi
h was partially treatedin [11, 7℄. The remaining se
tors have been 
ompleted elsewhere [6, 9℄. We will 
al
ulate the
orresponding spe
tra for the 4D spin-2 and { for unwarped ba
kgrounds { spin-1 and spin-0�elds. The model that we are studying is 
ompli
ated, and te
hni
ally diÆ
ult. However,this goes hand in hand with its advantage of generality, and indeed the results for severalsimpler s
enarios 
an be extra
ted from our work at its various stages.Our approa
h will be that established in [12℄, where a formalism was developed toanalyze the spe
tra of small perturbations about arbitrary solutions of Einstein, Yang-Millsand s
alar systems. The �rst part of this paper 
an be 
onsidered as a generalization of thatwork, where we now in
lude the presen
e of thin sour
e 3-branes and extra bulk �elds thatare generi
ally present in supergravity theories; the dilaton and anti-symmetri
 two-formpotential. With little extra 
ost, we a
tually keep the number of dimensions transverse tothe brane general.We �rst derive the general form of the bilinear a
tion that des
ribes the behaviour ofsmall 
u
tuations. For 
odimension-two or higher, we in
lude 
u
tuations of the branepositions in the transverse dire
tions, the so-
alled \branons". We then apply the light-
one gauge (for bulk �elds) and stati
 gauge (for branons) to restri
t to physi
al degrees offreedom, and de
ouple the dynami
s for the spin-2, -1 and -0 
u
tuations. The gauge-�xedbilinear a
tion thus obtained provides the starting point to 
al
ulate the Kaluza-Klein (KK)spe
tra for the 
oni
al-GGP solutions, as well as, for example, the 5D Randall-Sundrummodels and the non-supersymmetri
 Einstein-Yang Mills(-dilaton) model in any dimension.In the se
ond part of this paper, we use these general equations to study the behaviourof braneworld models in 6D (along the way also re
over some of well-known aspe
ts ofthe 5D s
enarios). Here, sin
e we in
lude the ba
krea
tion of the branes, the dynami
sof the branons are not well-de�ned5. Therefore, to study the spin-0 se
tor, we 
hoose totrun
ate the branons by e.g. pla
ing the branes at orbifold �xed points, or taking the branetensions to be very large making the branes rigid within our range of validity. Meanwhile,the 
oni
al singularities in the 
urvature that are indu
ed by the 
odimension two branesdo not prevent us from understanding the behaviour of the bulk 
u
tuations.We are able to derive the spe
trum for the 4D spin-2 �elds in the model's full warpedgenerality. The spin-1 and spin-0 se
tors present large 
oupled di�erential systems, and by�nding a set of harmoni
s on the 2D internal spa
e ( the \rugbyball"), we are also able tosolve these systems analyti
ally for the unwarped 
ase. In this way, we obtain all the 4Dmodes for unwarped 
ompa
ti�
ations with positive tension brane sour
es, and qualitatively,we observe the same behaviour as in the smooth sphere 
ompa
ti�
ation without branes {in
luding marginal stability.In the presen
e of negative tension 
odimension-two branes, meanwhile, the physi
s 
ansurprise. Here, despite the fa
t that brane sour
es 
learly break the SU(2) isometries ofthe sphere to U(1), three massless spin-1 �elds6 
an be found amongst the KK spe
tra forspe
ial values of the 
oni
al de�
it angle. These spe
ial de�
it angles, Æ = �2�;�4�; : : :,5Indeed, the behaviour of the branons is usually 
onsidered under the probe brane approximation, inwhi
h the brane tension is mu
h smaller than the bulk gravitational s
ale, so that the ba
krea
tion 
an benegle
ted [13, 14℄.6In addition to any massless gauge �elds arising from unbroken higher dimensional gauge symmetries.4



allow three Killing ve
tors to be well-de�ned everywhere outside the branes, although onlyone of them 
an be globally integrated to an isometry.Whether or not the massless ve
tors are gauge bosons of an enhan
ed gauge symmetryin the 4D theory 
an be understood by going beyond bilinear order and 
onsidering theintera
tion terms. We �nd the presen
e of KK modes that are not in well-de�ned repre-sentations of the SU(2) generated by the Killing ve
tors, and therefore the full 4D theorydoes not enjoy an SU(2) gauge symmetry. For this reason, we do not expe
t the 
lassi
almasslessness of the ve
tor �elds to survive quantum 
orre
tions. Meanwhile, all our bosoni
massless modes do fall into well-de�ned SU(2) representations, and therefore we argue thatthe 
lassi
al low energy 4D e�e
tive �eld theory { obtained by trun
ating to the masslessse
tor { does enjoy an enhan
ed KK gauge symmetry beyond the isometries! Moreover, itappears that the low energy theory does not distinguish between 
ompa
ti�
ations on thesmooth sphere and these singular, deformed spheres.Let us now give an outline for the remainder of the paper. The �rst part presents arather general analysis that determines the dynami
s of perturbations in braneworld 
om-pa
ti�
ations. In the next se
tion, we introdu
e the model (both theories and ba
kgroundsolutions) and dis
uss the s
enarios to whi
h our analysis 
an be applied. In Se
tion 3, weintrodu
e the perturbations about the ba
kground, obtain the bilinear a
tion that des
ribestheir dynami
s, and dis
uss the lo
al symmetries of this a
tion. In Se
tion 4, we use thesesymmetries to �x to the \light 
one stati
 gauge", and give the bilinear a
tion in this gauge,in whi
h the di�erent spin se
tors de
ouple.Then begins the se
ond part, whi
h uses the previous results to study the 4D �eldsthat emerge in various s
enarios. In Se
tion 5, our main interest is in the braneworldsolutions of 6D supergravity, but we also dis
uss a non-supersymmetri
 6D model and the5D Randall-Sundrum models. In the main text we present the KK spe
tra for spin-2 andspin-1 �elds and identify the massless spin-0 �elds; the 
omplete spin-0 se
tor 
an be foundin the appendi
es. Finally, we understand in detail the physi
al signi�
an
e of the extramassless 4D ve
tor modes that 
an appear in the spe
tra, and the gauge invarian
e thatemerges in the 4D theory.We summarise our results in Se
tion 6, before 
on
luding in Se
tion 7.2 The ModelWe begin with the de�nition of our model. The main fo
us of the present paper will be a
lass of bosoni
 6D �eld theories with thin 
odimension-two branes. In parti
ular we areinterested in the bosoni
 part of 6D N=1 gauged supergravity [3℄. However, throughoutthe arti
le we shall keep a general spa
e-time dimension D as far as possible, and 
ertaintrun
ations of the �eld 
ontent allow our analysis to be applied to several di�erent s
enar-ios, in
luding the non-supersymmetri
 Einstein-Yang-Mills theory or the Randall-SundrumModel. 5



2.1 Field 
ontentThe basi
 ingredients of our model are the higher dimensional metri
 GMN , where thespa
e-time indi
es run over M;N; ::: = 0; :::;D � 1, and the gauge �eld AM of a 
ompa
tLie group G. These are bulk �elds in the sense that they depend on all the spa
e-time
oordinates XM .We also want to 
onsider a 
ertain numberN of 3-branes embedded in theD-dimensionalspa
e time. To do so we introdu
e, following Ref. [15℄, N fun
tions YMk (xk); k = 1; :::;N ,whi
h represent the positions of the branes in the D-dimensional spa
e time. The xkrepresent the 4D 
oordinates on the brane, xk = fx�kg, where �; �; ::: are the 4D indi
es.Not all the spa
e-time 
omponents of YMk (xk) are physi
al degrees of freedom: 4 spa
e-time 
omponents for ea
h k 
an be gauged away by using the 4D (general) 
oordinatetransformation invarian
e a
ting on xk [15℄, as we will expli
itly do in Subse
tion 4.1.We 
onsider YMk (xk) to be a brane �eld be
ause it depends only on a 4D world-volume
oordinate. These �elds are important to introdu
e the branes in a 
ovariant way, andindeed we 
an 
onstru
t the indu
ed metri
s on the branes by means ofgk�� = GMN (Yk(xk))��YMk (xk)��YM (xk) : (2.1)In order to 
omplete the bosoni
 part of the 6D supergravity, one should add other bulk�elds in addition to GMN and AM , that is a dilaton � and a 2-form �eld BMN , whi
h emergefrom the graviton multiplet and an antisymmetri
 tensor multiplet [3℄. We will refer to BMNas the Kalb-Ramond �eld. Moreover, 
on
erning the 6D supergravity, we shall assume thatG is a produ
t of simple groups that in
lude a U(1)R gauged R-symmetry. In general one
an also add some hypermultiplets [3℄, whi
h turn out to be important to 
an
el gauge andgravitational anomalies [16, 17℄. In the bosoni
 se
tor this leads to additional s
alar �elds�� (hypers
alars) in some representation of G; however, from now on we set �� = 0. We doso be
ause we are interested in the linear perturbations whi
h mix with the D-dimensionalgravitational 
u
tuations hMN : indeed, for the 
lass of ba
kgrounds we are interested in(see Subse
tion 2.3), the �� de
ouple from hMN . Their in
lusion should be straightforward.Therefore the bulk and the brane �eld 
ontents that we 
onsider are respe
tively:fGMN ;AM ; �;BMNg and �YMk (xk); :::	 : (2.2)The dots in the se
ond set of (2.2) represent additional brane �elds that we 
an alwaysintrodu
e, but whi
h are not required by general 
ovarian
e; for example they 
an be the�elds of the Standard Model (SM).2.2 The a
tionWe split the a
tion fun
tional S into the bulk a
tion SB , whi
h depends only on the bulk�elds, and the brane a
tion Sb that is a fun
tional of the brane �elds as well.6



The bulk a
tion is7[3℄SB = Z dDXp�G� 1�2 �R� 14 (��)2�� 14e�=2F 2 � �248e�HMNPHMNP � V(�)� ; (2.3)where G is the determinant of GMN and � is the D-dimensional Plan
k s
ale; also8 F 2 �FMNFMN and (��)2 � �M��M�. The expli
it expression for the gauge �eld strength FMNis9 FMN = �MAN � �NAM + gAM �AN ; (2.4)where g is the gauge 
oupling, whi
h in fa
t represents a 
olle
tion of independent gauge
ouplings in
luding that of the U(1)R subgroup, g1. HMNP is the Kalb-Ramond �eldstrength, whi
h 
ontains a Chern-Simons 
oupling as follows [18℄:HMNP = �MBNP + FMNAP � g3AM (AN �AP ) + 2 
y
li
 perms : (2.5)The fun
tion V(�) is the dilaton potential. In the supersymmetri
 model this is �xed to beV(�) = 8 g21 e��=2=�4.Meanwhile, we 
onsider the following 3-brane a
tionSb =Xk ��Tk Z d4xkp�gk� � �T Z d4xp�g; (2.6)where gk is the determinant of (2.1) and Tk are the tensions of the branes. From now on(unless otherwise stated) we suppress the index k, as we have done on the right hand sideof (2.6). The reader may have noti
ed that we have not introdu
ed the Gibbons-Hawkingboundary term, whi
h is generi
ally ne
essary to treat 
odimension one branes [19℄. Indeed,we shall apply our analysis only to those 
odimension one models whose branes are pla
edon orbifold �xed points, in whi
h 
ase the Gibbons-Hawking boundary term is not present[20℄.We 
an summarise by saying that our analysis will apply to the following two types ofmodels:1. 6D N=1 gauged supergravity.2. Einstein-Yang-Mills theories, with a dilaton or 
osmologi
al 
onstant �, for a generalspa
e-time dimension.The se
ond 
ase in
ludes, for example, the RS models [1, 2℄ or the non-supersymmetri
 6DEinstein-Yang-Mills-� (EYM�) model [13, 21℄. They 
an be obtained by simply �xing theappropriate dimension and setting HMNP = 0, � = 0 and V(0) = �. Even if our main7We 
hoose signature (�;+; ::;+), and de�ne R RMN S = �M�RNS � �N�RMS + �RMP�PNS � �RNP�PMS andRMN = R PPM N .8A tra
e overall is understood when we write a produ
t of Lie algebra valued obje
ts: e.g. in Eq. (2.3)F 2 � Tr �F 2�.9We de�ne the 
ross-produ
t as (AM � AN )I = fIJKAJMAKN , with fIJK the stru
ture 
onstants of G:�T I ; T J� = ifIJKTK , where T I are the generators of G.7



interest is in models of Type 1 we will also 
onsider the se
ond 
lass for several reasons. Inthis way, we will see that our results 
an be applied in quite general 
ontexts, and it willalso provide interesting additional ways to 
he
k our formulae. Moreover, in the future itshould help us to �gure out the role of supersymmetry in the linear perturbations.Finally, it is important to note that the a
tions SB and Sb are invariant with respe
tto both the D-dimensional and the 4D 
oordinate transformations (a
ting respe
tively onXM and x�). We will dis
uss the lo
al symmetries of the present model and an expli
itgauge �xing for the linear perturbations in Subse
tions 3.2 and 4.1.2.3 The equations of motion (EOMs) and solutionsThe EOMs that follow from the variation of the a
tion SB + Sb are:RMN � 12GMNR = �22 �e�=2 �FMPFNP � 14GMNF 2�+ 12�2 �M��N��GMN � 14�2 (��)2 + V(�)��� T�2 BMN ; (2.7)DN �e�=2FNM� = 0; (2.8)12�2D2� = �V�� (�) + 18e�=2F 2; (2.9)1p�g �� �p�g GMN��Y N� = 12 �MGNP �Y N � �Y P ; (2.10)where we have �xed HMNP = 0, sin
e our interest shall be in ba
kgrounds that enjoy 4DPoin
ar�e invarian
e. Moreover, in Eq. (2.9) and (2.10) we have introdu
ed the notationD2� � DMDM�, where DM is the 
ovariant derivative, and �YM � �Y N � ��YM��Y N .Re
all also that we have suppressed the index k on YMk , whi
h labels ea
h of the branes.The last term in (2.7) represents the brane 
ontribution to the Einstein equations, whereBMN is de�ned byBMN (X) � 12 Z d4xpg=G Æ(X � Y (x)) �YM � �Y N ; (2.11)we note that the bulk quantity G in (2.11) is 
omputed at the position of the brane(G = G(Y )) be
ause of the presen
e of the D-dimensional delta fun
tion Æ(X � Y (x)).Furthermore, sin
e Eqs. (2.10) 
ome from the variation of the brane a
tion with re-spe
t to YM , there the bulk �elds GMN and �MGNP are 
omputed at the brane position(GMN = GMN (Y ) and �MGNP = �MGNP (Y )).In the present paper we will fo
us mainly on the following ansatz solution to (2.7)-(2.10):Y � = x�; (2.12)Y m = 
onstant ; (2.13)ds2 = eA(�)���dx�dx� + d�2 + eB(�)Kmn(y)dymdyn ; (2.14)A = Am(�; y)dym ; (2.15)8



� = �(�); (2.16)HMNP = 0 ; (2.17)where � = 0; 1; 2; 3, m = 5; :::; 4 +D2, m = (�;m) (we have D = 5 +D2) and ym and Kmnare respe
tively the 
oordinate and the metri
 on the D2-dimensional spa
e. Eq. (2.12) isnot really an assumption be
ause we 
an always use the 4D general 
oordinate invarian
eon the branes to set (2.12). Eq. (2.13) is instead a non trivial assumption. Moreover, in Eqs(2.14)-(2.17) we are assuming that the bulk �eld ba
kground has a 4D Poin
ar�e invarian
eand that the fun
tions A, B and � depend only on the 
oordinate �. We will also assumeA to lie in the Cartan subalgebra of Lie(G).One of the simplest models that 
an be des
ribed by this set up is the Randall-Sundrum(RS) model [1℄, where we have D = 5, � = 0 and A = 0 and the internal spa
e is S1=Z2with two branes on the �xed points of Z2, say at � = 0 and � = �r
. The expli
it form ofthe solution is given by A = �2kj�j; Y �1 = 0; Y �2 = �r
 ; (2.18)where k is a positive 
onstant. The obje
t j�j in (2.18) is equal to the absolute value of � inthe region ��r
 < � < �r
 and its value anywhere else is obtained by periodi
ity. In orderfor (2.18) to be a solution one needs T1 = �T2 = 12k=�2 and � = �12k2=�2. In Se
tion 5,we shall use this very well-known solution to 
he
k the result given in Se
tion 4.However, in this paper our main interest lies in the analysis of a 
lass of solutions foundby Gibbons, G�uven and Pope (GGP) [4℄ to the 6D supergravity: the general set of warpedsolutions with 4D Poin
ar�e symmetry, and axial symmetry in the transverse dimensions.Here we give only a subset of this general 
lass, namely that whi
h 
ontains singularitiesno worse than 
oni
al and therefore 
an be sour
ed by brane terms of the form (2.6).To give the expli
it expression of the 
oni
al-GGP solutions, it turns out to be useful tointrodu
e the following radial 
oordinate [6℄u(�) � Z �0 d�0e�A(�0)=2; (2.19)whose range is 0 � u � u � �r0=2. In this frame the metri
 readsds2 = eA(u) ����dx�dx� + du2�+ eB(u) r204 d'2 : (2.20)The expli
it 
oni
al-GGP solutions10 are then the following parti
ular 
ase of the ansatz(2.12)-(2.17) [4℄: eA = e�=2 =sf1f0 ; eB = 4�2eA 
ot2(u=r0)f21 ;A = � 4�q�f1 Qd'; (2.21)10The 
oordinate u is related to the 
oordinate r in [4℄ by r = r0 
ot(u=r0).9



where q and � are generi
 real numbers and Q is a generator of a U(1) subgroup of a simplefa
tor of G, satisfying Tr�Q2� = 1. Also,f0 � 1 + 
ot2� ur0� ; f1 � 1 + r20r21 
ot2� ur0� ; (2.22)with r20 � �2=(2g21) and r21 � 8=q2.This solution is supported by two branes lo
ated at u = 0 and u = u. Indeed, as u! 0or u! u, the metri
 tends to that of a 
one, with respe
tive de�
it anglesÆ = 2��1� j�j r21r20� and Æ = 2� (1� j�j) ; (2.23)and 
orresponding delta-fun
tion behaviours in the Ri

i s
alar. We will take � � 0 withoutloss of generality. The tensions of the two branes T and T are related to the de�
it angleas follows [22℄: T = 2Æ=�2 and T = 2Æ=�2: (2.24)Unlike the RS solution, here the warp fa
tor eA is smooth on the brane positions u = 0 andu = u. In parti
ular we haveeA u!0;u! 
onstant 6= 0; �ueA u!0;u! 0: (2.25)By using (2.25), (2.12) and (2.13), it is also easy to 
he
k that the 
oni
al-GGP 
on�g-uration satis�es the Y -equations (2.10) in addition to the bulk EOMs (2.7)-(2.9).The expression for the gauge �eld ba
kground in Eq. (2.21) is well-de�ned in the limitu ! 0, but not as u ! u. We should therefore use a di�erent pat
h to des
ribe theu = u brane, and this must be related to the pat
h in
luding the u = 0 brane by a single-valued gauge transformation. This leads to a Dira
 quantization 
ondition, whi
h for a �eldintera
ting with A through a 
harge e gives� e 4�g�q = �e�r1r0 gg1 = N ; (2.26)where N is an integer that is 
alled monopole number and g is the gauge 
oupling 
onstant
orresponding to the ba
kground gauge �eld. For example, if A lies in U(1)R, then g = g1.The 
harge e 
an be 
omputed on
e we have sele
ted the ba
kground gauge group, sin
eit is an eigenvalue of the generator Q. Also, note that the internal spa
e 
orresponding toSolutions (2.21) has an S2 topology (its Euler number equals 2).Finally, we observe that one 
an obtain the unwarped \rugbyball" 
ompa
ti�
ation [21℄simply by setting r0 = r1. In this 
ase the metri
 isds2 = ���dx�dx� + r204 �d�2 + �2 sin2 � d'2� ; (2.27)where � � 2u=r0, and the ba
kground value of the dilaton is zero; therefore this is a solutionalso to the non-supersymmetri
 6D EYM� model. For � < 1 the de�
it angle is positive.The geometry is also well-de�ned when � > 1 and the de�
it angle is negative; we name thesespa
es \saddle-spheres" (see [9℄ for a detailed dis
ussion on their properties). Moreover, we
an smoothly retrieve the sphere 
ompa
ti�
ation (with radius r0=2) by taking � = 1 inaddition to r0 = r1. 10



3 General PerturbationsThe main purpose of this paper is to study the linear perturbations in the above models.We therefore perturb the �elds in (2.2) as follows:GMN ! GMN + hMN ; AM ! AM + VM ; �! �+ �;BMN ! BMN + bMN ; YM ! YM + �M : (3.28)The �rst terms in the right hand sides of (3.28) represent the ba
kground quantities of the
orresponding �elds. In fa
t, it is useful to introdu
e another 2-form �eld VMN in orderto des
ribe the 
u
tuations of the Kalb-Ramond �eld. This 
an be done as follows. Sin
eHMNP appears only quadrati
ally in (2.3), and HMNP = 0 at the ba
kground level due to4D Poin
ar�e invarian
e, the linear approximation (whi
h 
orresponds to the bilinear level inthe a
tion) involves only the linear perturbation of HMNP , that we denote with11 H(1)MNP ,H(1)MNP = [d (b2 �A ^ V ) + 2F ^ V ℄MNP ; (3.29)where we have used the notation of p-forms and b2 is the 
u
tuation in the Kalb-Ramond2-form, A and F the ba
kground values of the gauge �eld and its �eld strength respe
tivelyand V the perturbation of the gauge �eld. We now introdu
e the 2-form V2 as follows:V2 � � (b2 �A ^ V ) ; (3.30)whose 
omponents will be denoted by VMN . H(1)MNP 
an now be expressed in terms of V2and V : H(1)MNP = � 1�dV2 + 2
F ^ V�MNP ; (3.31)where we have introdu
ed a new parameter 
; for 
 = 1 we re
over the stru
ture of H(1)MNPrequired by the 6D supergravity, whereas for 
 = 0 the 
u
tuations of VMN are 
ompletelyde
oupled (at the linear level) from the rest. This will allow us to treat simultaneously the6D supergravity and the EYM� models.Finally, we note that the �elds �M (x) des
ribe the 
u
tuations of the brane positions,and as su
h they are 4D �elds.3.1 Bilinear a
tionHere we provide the linearized theory whi
h 
orresponds to the bilinear approximation inthe a
tion. The bilinear a
tion has been 
omputed by 
onsidering the variation of SB + Sbunder (3.28) and by keeping only terms up to the quadrati
 order12. We split it into di�erent
ontributions as follows:S(h; h) + S(V; V ) + S(h; V ) + S(�; �) + S(h; �) + S(V; �)+S(V2; V2) + S(V; V2) + S(�; �) + S(h; �) ; (3.32)11Sin
e the ba
kground HMNP = 0, and the ba
kground monopole, A, lies in the Cartan subalgebra, wesee that the exterior derivative a
ting on the ba
kground Kalb-Ramond potential B2 must be zero. Also,A ^A = 0.12The EOMs (2.7)-(2.10) guarantee that the linear terms vanish.11



where S(h; h) is the bilinear a
tion that depends only on the 
u
tuations hMN , S(h; V )represents the mixing term between hMN and VM and so on. We have S(h; V2) = S(�; V2) =0 as a 
onsequen
e of our ba
kground ansatz, for whi
hHMNP = 0. We give here the expli
itexpressions for the bilinear a
tion that depend only on the bulk �elds; the dynami
s of the�M �elds, are expli
itly given in Appendix A. We �nd:S(h; h) = Z dDXp�G ( 12�2 "�hMN;M � 12h;N�2 � 12hNP;Mh ;MNP + 14h;Mh;M � 12R1h2#�12hPMhPN �12e�=2FMRFN R + 14�2 �M��N���12hMNhPR� 1�2RPMNR � 12e�=2FPMFNR��T2 �BMN �hPMhPN � hhMN�+ 12BMNPRhMNhPR�� ; (3.33)where the semi
olon denotes the (ba
kground) gravitational 
ovariant derivative, h �GMNhMN , R PMN R is the Riemann tensor for the ba
kground metri
 and we have de�ned2�2R1 � 1�2R� 14e�=2F 2 � 14�2 (��)2 � V(�) (3.34)and BMNPR � Z d4xpg=G Æ(X � Y (x))�12 ��YM � �Y N� �Y P � �Y R� ��YM � �Y P � �Y N � �Y R� : (3.35)The term proportional to BMNPR in the last line of (3.33) is the 
ontribution to S(h; h)
oming from the brane a
tion Sb, whereas the term proportional to BMN 
omes from theEOMs (2.7), whi
h we have used to write S(h; h) in the form (3.33). Moreover,S(V; V ) = Z dDXp�G ��12e�=2 �DMVNDMV N �DMVNDNVM���212
2e� �F[MNVP ℄��F [MNV P ℄�� 12ge�=2FMNVM � VN� ; (3.36)S(h; V ) = �Z dDXp�Ge�=2 �DMV N �DNVM��14hFMN + hPNFPM� ;(3.37)S(�; �) = �Z dDXp�G � 14�2 (��)2 + 12 �2V��2 �2 + 132e�=2F 2 �2� ; (3.38)S(h; �) = Z dDXp�G � 12�2 �M� �N� �hMN � 12GMN h�� 12 �V�� h �+14e�=2�FMPFNP � 14F 2GMN� � hMN� ; (3.39)12



S(V; �) = Z dDXp�G ��14e�=2FMN �DMV N �DNV M� �� ; (3.40)S(V2; V2) = � 148 Z dDXp�Ge� V[NP ;M ℄V [NP ;M ℄; (3.41)S(V; V2) = � �12
 Z dDXp�Ge� V[NP ;M ℄F [MNV P ℄; (3.42)where F[MNVP ℄ � FMNVP + 2 
y
li
 perms; V[NP ;M ℄ � VNP ;M + 2 
y
li
 perms:We would like to remind the reader of the assumptions we have made to derive (3.33)and (3.36)-(3.42) (and (A.110)-(A.111) given in Appendix A):� If the Kalb-Ramond �eld and the term HMNPHMNP in (2.3) is not in
luded, thenthe only assumption we made is that the ba
kground satis�es the EOMs (2.7)-(2.10).� If the Kalb-Ramond �eld and the term HMNPHMNP in (2.3) is instead in
luded, wealso assumed D = 6 and the ba
kground gauge �eld A to lie in the Cartan subalgebra.We observe that if we want to fo
us on the D-dimensional EYM� system we 
an restri
tourselves to the terms S(h; h), S(V; V ) (for 
 = 0), S(h; V ) and the �-dependent terms givenin Appendix A. Instead, if we want to 
onsider the 6D supergravity, we should put 
 = 1,V(�) = 8 g21 e��=2=�4 and also take into a

ount the terms (3.38)-(3.42). Finally, we notethat our results redu
e to those of Ref. [12℄ whi
h studies a general non-supersymmetri

lass of thi
k brane models, on
e we take T = 0, 
 = 0 and we negle
t the 
u
tuationsVMN .3.2 Lo
al symmetriesAs a 
onsequen
e of the lo
al symmetries of the 
omplete model, the linearized theory alsopossesses a number of lo
al symmetries:ÆhMN = ��N ;M � �M ;N ; (3.43)ÆVM = ��LFLM �DM�; (3.44)Æ� = ��M�M�; (3.45)ÆVMN = 2
��FMN + �N ;M � �M ;N ; (3.46)Æ�M = �M (Y )� ����YM : (3.47)Eqs. (3.43), (3.44) and (3.45) represent the e�e
t of the lo
al symmetries (des
endingfrom the D-dimensional 
oordinate transformation invarian
e and gauge symmetry) on themetri
, the gauge �eld and the dilaton 
u
tuations (see e.g. Ref. [12℄). The bulk fun
tions� and � are the gauge fun
tions asso
iated with the D-dimensional 
oordinate invarian
eand gauge symmetry. 13



Eq. (3.46) represents instead a lo
al symmetry a
ting on VMN , whi
h des
ends fromboth the gauge symmetry and the Kalb-Ramond symmetry13. For this reason � and �M areindependent (bulk) gauge fun
tions. Let us expli
itly 
he
k (3.46). To do so, it is enoughto verify the invarian
e of the 3-form (3.31) under (3.44) and (3.46). We haveÆH(1) = 1�d (ÆV2) + 2
F ^ ÆV = 2
d (�F ) + 2
F ^ (�� � F �D�) ; (3.48)where we have used d2� = 0 and � � F represents the 1-form with 
omponents �MFMN .Now, by using the 4D Poin
ar�e invarian
e of the ba
kground and D = 6, whi
h we alwaysassume in the presen
e of the Kalb-Ramond �eld, we have F ^ (� � F ) = 0 and F ^A = 0;also, by remembering that A is assumed to lie in the Cartan subalgebra, we have dF = 0.These equations are suÆ
ient to 
on
lude ÆH(1) = 0.Finally, Eq. (3.47) represents the lo
al transformation of the perturbation of the braneposition, des
ending from the D-dimensional 
oordinate invarian
e and the 4D brane 
o-ordinate transformation invarian
e (respe
tively the �rst and the se
ond term on the righthand side of (3.47)); the latter invarian
e is asso
iated to �� (a fun
tion of x�), whi
hrepresents another independent gauge fun
tion.4 Perturbations in the Light Cone Stati
 GaugeHaving derived the general bilinear a
tion, we now have to 
hoose a gauge in order tostudy the physi
al spe
trum. In this se
tion we will dis
uss our gauge 
hoi
e and give the
orresponding bilinear a
tion.4.1 Gauge �xingWe have two types of lo
al symmetries: the bulk lo
al symmetries (whi
h in
lude theD-dimensional 
oordinate transformation invarian
e, the gauge symmetry and the Kalb-Ramond symmetry) and the 4D 
oordinate transformation invarian
e on the brane. Let usstart with the �rst group.A very 
onvenient gauge 
hoi
e for the bulk lo
al symmetry is the light 
one gauge, asit ensures that the dynami
s of se
tors with di�erent spin de
ouple at the bilinear level14.Another advantage of the light 
one gauge is that it does not involve gauge artifa
ts su
has Faddeev-Popov ghosts, but 
ontains only the physi
al spe
trum [23, 24, 25℄. To de�nethis gauge, let us introdu
e x(�) � �x3 � x0� =p2 and A(�) � �A3 �A0� =p2, for a generalve
tor AM . Then the light 
one gauge is de�ned byV(�) = 0 ; h(�)M = 0 ; V(�)M = 0 ; 8M : (4.49)It 
an be proved that, after imposing (4.49), the (+) 
omponents of the di�erent �elds(i.e. V(+), h(+)M and V(+)M ) are not independent, but 
an be expressed in terms of the13By Kalb-Ramond symmetry we mean the lo
al invarian
e under B2 ! B2 + d� of the a
tion, where �is a general 1-form.14This has been observed in other studies, for example [24, 25, 26, 12℄.14



other 
omponents by means of 
onstraint equations [24, 25, 12℄. We therefore end up withthe following independent bulk �elds: hij , him, Vi, Vim, hmn, Vm, Vij , Vmn and � , wherei; j; ::: = 1; 2. In parti
ular the h(++) �eld equation simply leads to the 
onstrainth = 0; (4.50)whi
h brings a 
onsiderable amount of simpli�
ation.Con
erning the 4D 
oordinate transformation invarian
e, we instead impose the 
ondi-tion [15℄ �� = 0: (4.51)We will refer to (4.51) as to the stati
 gauge. We observe that the light 
one gauge andthe stati
 gauge are 
ompatible be
ause, on
e we �x the light 
one gauge by 
hoosing �M ,� and �M in a suitable way, we still have the freedom to perform the lo
al transformationsgenerated by ��. The stati
 gauge is also free from Faddeev-Popov unphysi
al ghosts [15℄.We observe that (4.51) does not remove 
ompletely the brane position �elds �M , but weare left with their 
omponents along the extra dimensions �m . We will refer to them asbranons. Even if the branons represent physi
al degrees of freedom, it 
an happen that they
an be 
onsistently trun
ated e.g. by imposing an orbifold symmetry, as in the RS modelsor in the 
oni
al-GGP 
ompa
ti�
ation [9℄. In the following we will 
on�rm that the spin-0�elds �m do not have any mixing with the spin-2 and spin-1 se
tors in the light 
one gauge.4.2 Bilinear a
tion in the light 
one stati
 gaugeHere we provide the bilinear a
tion in the light 
one stati
 gauge, that we have 
omputedby imposing the gauge 
onditions (4.49) and (4.51) on the general bilinear a
tion and byusing the 
onstraint equations for the (+) 
omponents. In this se
tion we assume the formgiven in (2.12)-(2.17) for the ba
kground solution, and give the part of the a
tion that isindependent of the branons. Those involving the branons are given in Appendix B.The results that are presented here redu
e to those for the non-supersymmetri
 modelpresent in15 [12℄ on
e we take T = 0, 
 = 0 and we negle
t the 
u
tuations VMN ; they also
orre
tly redu
e (for T = 0 and 
 = 1) to the results of [27℄, where the linear perturbationsof the sphere-monopole solution to the 6D supersymmetri
 model are analyzed.4.2.1 Spin-2 a
tionThe spin-2 a
tion S(2) only 
ontains the �eld ~hij � hij � 12Gijh kk and has the followingsimple expression in terms of ~h ji = Gjk~hik:S(2)(h; h) = � 14�2 Z dDXp�G�M~h ji �M~h ij : (4.52)We observe that (4.52) has exa
tly the same form as in [12℄ even if we have in
ludedthe brane terms. Therefore, the brane sour
es do not expli
itly 
ontribute to the spin-2dynami
s. We shall use (4.52) to derive the 4D gravitational spe
trum for the solutionsdes
ribed in Subse
tion 2.3.15We do, however, 
orre
t some typos in that referen
e.15



4.2.2 Spin-1 a
tionThe spin-1 a
tion S(1) involves him; Vi and Vim. We have the following expli
it expressions.S(1)(h; h) = Z dDXp�G �� 12�2 ���him��him + ��him��him + him;nhim;n�� 14�2himhim�A02 + B022 �� 14�2h�ih i� �D2A0B0 �A02��12himhi n�12e�=2Fm lF nl + 14�2 �m ��n ��+ 1�2A0h i� h ;mmi � T4pg=G Æ(X
 � Y
)hm i hm i� ; (4.53)where 0 � ��. The last term in (4.53) is the brane 
ontribution. We have introdu
ed thenotation X
 and Y
 for the internal 
omponents of the 
oordinate and the brane positionrespe
tively, where the label 
 stands for the 
odimension of the brane. The other nonvanishing terms are the following.S(1)(V; V ) = Z dDXp�G e�=2 ��12 ���Vi��V i + e�A��Vi��Vi +DmViDmV i���24 
2e�=2 �FmnVi�FmnV i� ; (4.54)S(1)(h; V ) = Z dDXp�G e�=2��DmVih il F lm � 12A0VihliFl �� ; (4.55)S(1)(V2; V2) = �18 Z dDXp�Ge� �e�A ���Vim��V mi+GmlGnh ��mVni�lVhi � �mVni�hVli�i�e�4A�2� �e�+3A=2 V mi�;m �e�+3A=2 V n i�;n�2e�2AVmi�m �e���A=2 �e�+3A=2V n i�;n�� ; (4.56)S(1)(V; V2) = ��2
 Z dDXp�Ge���12A0VimV iF m� + Vni;mFmnV i� : (4.57)The term S(1)(h; V2) vanishes as a 
onsequen
e of HMNP = 0 (at the ba
kground level).We observe that the term S(1)(V; V ) redu
es, as it should, to the 
orresponding a
tion inRef. [6℄ in the 
ase in whi
h Vi is orthogonal to the ba
kground gauge �eld. Finally, wenote that the brane tension enters expli
itly only in the term S(1)(h; h).4.2.3 Spin-0 a
tion and singularities due to ba
krea
ting, 
u
tuating branesThe last and most 
ompli
ated part is the spin-0 a
tion, whi
h involves16 hmn, h ii , Vm,� , Vij, Vmn and �m. We observe that, in the light 
one stati
 gauge, the �elds �m indeed16Note that hmn and h ii are not independent as Eq. (4.50) implies h ii + h mm = 0.16



only appear here. In other words they are in general 
ompletely de
oupled from the spin-2and spin-1 �elds. Sin
e it is quite 
ompli
ated, we give the expli
it expression of the spin-0a
tion in Appendix B.Having 
ompleted the bilinear a
tion, we should make some observations regardingits 
onsisten
y, in parti
ular given the presen
e of in�nitesimally thin dynami
al sour
es.Indeed, as to be expe
ted, if we in
lude the gravitational ba
krea
tion of the branes (T 90) then there are singular 
ontributions to the dynami
s of both the bulk gravitational
u
tuations and the branons.First, 
on
erning the bulk gravitational 
u
tuations, we en
ounter lo
alized 
ontribu-tions to the mass terms in both the spin-1 (see Eq. (4.53)) and spin-0 (see Eq. (B.112))se
tors. These 
ontributions involve the behaviour of ba
kground and perturbed �elds atthe ba
kground positions of the branes. They are well-de�ned in the 
odimension one RSs
enario, where the metri
 is well-de�ned everywhere in
luding at the brane positions (al-though its derivatives are not). They do not appear to be well-de�ned in the 
odimensiontwo (or higher) 
ase, where the internal metri
 is a
tually singular at the brane positionsdue to the ba
krea
tion of the branes. However, as we shall see in subsequent se
tions, theseterms do not obstru
t our derivation of the 4D parti
le spe
tra arising from bulk modes in6D.Meanwhile, the linearized dynami
s for the branons of a ba
krea
ting brane would bemore problemati
. For example, in (B.124), sin
e the a
tion is evaluated at the ba
kgroundposition of the branes, the kineti
 term for the branons is not well-de�ned in the 
odimensiontwo 
ase, be
ause of the 
oni
al defe
t in Gmn. Su
h a singularity was dis
ussed in [13℄,where it was argued that within the domain of validity of the e�e
tive �eld theory, the
urvature singularity 
ould be dis
arded. Moreover, the mass term for the branons takesthe form17 of a Æ(0). These singularities are not present in the RS model, as there thebranons are proje
ted out with an orbifolding18. Indeed we should reiterate here thatwe apply our analysis to 
odimension one branes only on orbifold �xed points (to avoidthe appearan
e of Gibbons-Hawking boundary terms), and so without branon degrees offreedom.In order to perform a 
omplete analysis of the spin-0 a
tion in 
odimension two (orhigher) models, taking into a

ount both the ba
krea
tion of the brane and its dynami
al
u
tuations, it seems ne
essary to resolve the thin stru
ture of the brane. Otherwise we 
anassume a brane tension mu
h smaller than the 6D fundamental s
ale, so that its ba
krea
tionis negligible. Or we 
an assume a high brane tension so that the brane is very heavy andrigid and does not os
illate. Or else we 
an assume an additional orbifold symmetry underwhi
h the branons are proje
ted out { an example of su
h a symmetry has been provided inRef. [9℄ and is dis
ussed in19 Appendix C. In these 
ases, we 
an avoid the singular branon17Æ(0) singularities due to the lo
alization of �elds on a boundary have been dis
ussed in a di�erent 
ontext(5D SYM theory on S1=Z2) in [28℄.18Indeed, in the RS literature, the radion has been studied in depth [29℄, but the branons are absent.Although the radion 
an also be seen as a brane bending in the 
ase of RS, sin
e the branes are at theboundaries of the internal spa
e, one should not 
onfuse the radion with the branon. The radion is adeformation of the bulk metri
, whereas the branon is a deformation of the brane itself within the bulkmanifold. As a 
he
k of our formalism, we will �nd the radion mode in Subse
tion 5.4.19By using the expli
it expression for the mixing terms between branons and bulk �elds given in Appendix17



a
tion.5 6D (and 5D) BraneworldsIn the se
ond part of this paper, we apply the results of the previous se
tions to derive the4D parti
le spe
tra in spe
i�
 setups. Our main interest is in the warped (and unwarped)axi-symmetri
 braneworld 
ompa
ti�
ations of 6D supergravity, but along the way we shallalso dis
uss the rugbyball 
ompa
ti�
ations in the non-supersymmetri
 6D EYM� theory,as well as the 5D Randall-Sundrum models. We dis
uss in order the spin-2, spin-1 andspin-0 
u
tuations.5.1 Gravitational 
u
tuationsThe simplest appli
ation of our results is the analysis of the spin-2 se
tor. As we havedis
ussed, this se
tor 
ompletely de
ouples from the rest. The ~h ji �elds 
ontain only themaximal heli
ity 
omponents of a spin-2 multipet; one should look for the remaining 
om-ponents in the spin-1 and spin-0 a
tions. However, by virtue of 4D Poin
ar�e invarian
e, thelower heli
ity 
omponents must have the same spe
trum [12℄. We 
an therefore fo
us onEq. (4.52) to study the spin-2 
u
tuations.In order to analyze this se
tor we dedu
e the EOMs from Eq. (4.52):�M �p�G�M~h ji � = 0 8 i; j : (5.58)In deriving this equation we have required as usual that the boundary terms whi
h emergein the integration by parts vanish, that isZ dDX�M �p�GÆ~h ji �M~h ji � = 0; (5.59)where Æ~h ji is the variation of the �eld ~h ji , whi
h is performed to apply the minimal a
tionprin
iple. Sin
e we assume standard boundary 
onditions on the 4D boundary, (5.59)redu
es to [30, 6℄ Z dD2+1X�m �p�GÆ~h ji �m~h ji � = 0: (5.60)We now perform a KK de
omposition of the �elds as follows:~h ji (X) =Xk ~h(k)ji (x)fk(�; y); (5.61)where k represents a 
olle
tive KK number. By taking ~h(k)ji (x) to be an eigenfun
tion of������� , that is �������~h(k)ji (x) =M2k ~h(k)ji (x), the EOMs (5.58) be
ome� 1p�GeA�m �p�G�mfk� =M2kfk (5.62)B, it is easy to 
on�rm that symmetry 
onsistently trun
ates the branons.18



and the 
orresponding boundary 
onditions (5.60) read (we re
all that Æ~h ji and ~h ji areindependent �elds) Z dD2+1X�m �p�Gfk0�mfk� = 0: 8k;k0 : (5.63)Condition (5.63) ensures that the operator a
ting on fk in the left hand side of (5.62) isa Hermitian operator [30, 6℄; we will therefore refer to (5.63) as the hermiti
ity 
ondition(HC). In addition to the HC we will also require the wave fun
tions fk to be normalizable,that is Z dD2+1Xp�Ge�Af2k <1:This normalizability 
ondition (NC) is equivalent to the �niteness of the kineti
 energy ofthe modes ~h(k)ji (x). We observe that there is always a 
onstant massless (M2k = 0) solutionto (5.62), satisfying the HC (5.63). This solution 
orresponds to a 4D graviton providedthat the NC is satis�ed, that is R dD2+1Xp�Ge�A <1.5.1.1 Randall-SundrumIn the spe
ial 
ase D = 5, and therefore in parti
ular for the RS ba
kground (2.18), theEOM (5.62) has the form � e�A�� �e2A��fk� =M2kfk : (5.64)Here we do not want to analyze the latter equation as this has been done in the originalRS works, but we observe, as a 
he
k of our spin-2 a
tion, that (5.64) has exa
tly the sameform as in [2℄.5.1.2 6D Brane WorldsWe now move to the 
oni
al-GGP solutions to 6D supergravity given in Eqs. (2.21)-(2.22).Sin
e our internal spa
e is topologi
ally S2, we require ~h ji to be periodi
 fun
tions of ':~h ji (X) =Xn;m ~h jinm(x)fnm(�)eim'; (5.65)where m is a generi
 integer and n is an extra KK number that emerges as we have anumber of 
ompa
t dimensions greater than one. Also we observe that Eq. (5.62) withthe HC and NC is formally identi
al20 to the 
orresponding problem for 4D gauge �eldsaddressed in Ref. [6℄. Therefore, here we only give the result. The wave fun
tions 
an beexpressed in a more 
ompa
t way by introdu
ing � e(3A+B)=4f; (5.66)20In [6℄ there is the extra parameter NV , whi
h is equal to zero here. To 
he
k that the two problems areidenti
al it is useful to remember A = �=2, whi
h is true for the 
oni
al-GGP solutions. Also, take 
are that� in referen
e [6℄ is half � here. 19
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Figure 1: Graviton Wave Fun
tion Pro�les: n = 0; 1; 20 modes plotted for angular momentum numbersm = �1; 0. The parameters are 
hosen to be (r0; !; !) = (1; 1=4; 1), 
orresponding to a single negativetension brane at u = 0. Also the normalization 
onstant is set su
h that R duj j2 = 1. The number ofinterse
tions with the u-axis equals n, a

ording to quantum me
hani
s. Noti
e that the (m;n) = (0; 0)mode is massless.where we have suppressed n and m. The expli
it expression for  is / z�(1� z)�F (a; b; 
; z); (5.67)where z � 
os2 (u=r0), F is Gauss's hypergeometri
 fun
tion and� � 14 (1 + 2jmj!) ; � � 14 (1 + 2m!) ; 
 � 1 + jmj!;a � 12 + m2 ! + jmj2 ! + 12qr20M2 + 1 +m2 (! � !)2;b � 12 + m2 ! + jmj2 ! � 12qr20M2 + 1 +m2 (! � !)2; (5.68)with ! � (1� Æ=2�)�1; ! � (1� Æ=2�)�1: (5.69)Moreover the expli
it form of the mass spe
trum is given byM2 = 4r20 �n(n+ 1) +�12 + n� jmj (! + !) +m2!!� � 0; (5.70)where n = 0; 1; 2; 3; ::: [6℄. So we have obtained the exa
t and 
omplete spe
trum (wavefun
tions and masses) for the spin-2 
u
tuations of the 
oni
al-GGP solutions. We observethat Eq. (5.70) tells us there is a massless normalizable solution (for n = m = 0), whi
h
orresponds to the 4D graviton. This solution is separated from the �rst KK ex
itationby a �nite mass gap, whi
h is of order 1=r0 (if ! � ! � 1). We plot some representativewave fun
tion pro�les in Figure 1. As dis
ussed in [6℄ the asymptoti
 behaviour 
lose tothe branes is universal for ea
h KK tower, and it does not appear possible to separate thein�nite number of heavy modes from the light ones by using their respe
tive wave fun
tionpro�les.Here we also observe that Eq. (5.58) is independent of 
 and the dilaton potentialV. This implies that the spin-2 spe
trum of the non supersymmetri
 and supersymmetri
20



models are the same (provided the ba
kgrounds are the same). Indeed, the rugbyball
on�guration (that is ! = !) leads to the same spin-2 spe
trum in the EYM� model andin the 6D supergravity.Finally, as a 
he
k, we 
an 
onsider the S2 limit (!; ! ! 1), whose mass spe
trum iswell-known. Our spe
trum (5.70) redu
es tor204 M2 = l(l + 1); multipli
ity = 2l + 1 ; (5.71)where l = 0; 1; 2; 3; :::. Sin
e r0=2 represents the radius of S2 in the sphere limit, this isexa
tly the result that one �nds by using the spheri
al harmoni
 expansion [31, 32℄ fromthe beginning.5.2 Ve
tor 
u
tuationsHere we analyze the ve
tor 
u
tuations, in parti
ular their wavefun
tion expansions andmass spe
tra. In the following subse
tion we shall study the impli
ations of these results forthe stru
ture of the 4D gauge group in the 6D models of interest. The physi
al 4D ve
tor�eld spe
trum 
an be extra
ted from the spin-1 a
tion given in Subse
tion 4.2.2. However,some of the perturbations in that a
tion are simply the heli
ity-(�1) 
omponents of massivegravitons and therefore should not be interpreted as independent ve
tor �elds.5.2.1 Randall-SundrumTo illustrate the previous point we �rst noti
e that our spin-1 a
tion leads to the well-knownresult that there are no physi
al 4D ve
tor �elds in the RS model (unless one introdu
esbulk gauge �elds). Indeed, in that 
ase the only �eld appearing in the spin-1 a
tion is hi�,whose a
tion is simplyS(1)(h; h) / Z d5Xp�G���hi���hi� + ��hi���hi� � A022 hi�hi� � 32A00hi�hi�� ; (5.72)where we used the property A00 + T�2Æ(�� Y )=3 = 0 (5.73)that follows from the form of the warp fa
tor, Eq. (2.18), in the RS model. Therefore, on
e(5.73) is used the problem assumes the same form as in Ref. [12℄, where it is shown thatthe 4D spe
trum from hi� exa
tly reprodu
es the graviton one with the zero mode removed.By 
ounting the degrees of freedom, it follows that there are no physi
al ve
tor �elds.5.2.2 6D Brane WorldsLet us begin by 
onsidering what we might expe
t from the symmetries of the problem {with some bene�t of hindsight from the authors. In the limit where the brane tensions goto zero, the smooth sphere-monopole 
ompa
ti�
ation is re
overed. In this 
ase, standard21



KK theory tells us that there are three massless KK gauge bosons21, whi
h manifest theSU(2) isometries of the sphere in the 4D theory [31℄. Clearly, any branes break the spheri
alsymmetry in the internal dimensions. For the solutions of present interest an axial isometrysurvives, and therefore we 
an expe
t the 4D theory to enjoy a U(1) KK gauge symmetry22.At the same time, for the 
ase of an unwarped \saddle-sphere" with the spe
ial de�
itangles (for � = 1 we re
over the sphere)Æ = �2�;�4�; : : : or � = 1! = 2; 3; : : : (5.74)the metri
 (2.27) { de�ned everywhere but at the branes { has three single-valued Killingve
tors, whi
h obey the Lie algebra of SU(2):K+ = ei�'� ��� + i 
ot � 1� ��'� ; K� = e�i�'�� ��� + i 
ot � 1� ��'� ; K0 = � i� ��':(5.75)Only one of these Killing ve
tors, K0, implies a genuine 
ontinuous isometry, sin
e K�
annot be globally integrated to an isometry23. In other words, we have an in�nitesimalSU(2) isometry for the spe
ial saddle-spheres, 
ompared to a genuine SU(2) isometry forthe sphere. As we will show, this turns out to be suÆ
ient to ensure three massless 4Dve
tors amongst the KK spe
tra. From the point of view of the full 4D theory, however,we will argue that these massless �elds arise a

identally and that their masslessness is notprote
ted by any symmetry.Rugbyball Harmoni
s Let us now see how the above story plays out in detail. Ourfo
us shall then be on the unwarped rugbyballs and saddle-spheres, Eq. (2.27), and indeedall previous results have indi
ated that warping does not lead to any qualitative 
hanges inthe physi
s (see the spin-2 results in the present paper, as well as Refs.[6℄-[11℄). We shallthus pro
eed by �nding a set of \rugbyball harmoni
s" and their mass spe
tra, in analogyto the spheri
al harmoni
s (and, more generally, the so-
alled Wigner fun
tions) used inthe smooth sphere 
ompa
ti�
ation [31℄.We �rst observe that the ve
tor �eld 
u
tuations Vi, whi
h are orthogonal to the gauge�eld ba
kground (ViFmn = 0), do not mix with the other perturbations him and Vim.These 
u
tuations have been already studied in Ref. [6℄ where the 
omplete KK towersare provided and it is shown that there are as many 4D gauge �elds as 
u
tuations Viwith vanishing monopole 
harge (Vi � Fmn = 0), as expe
ted from group theory. Here wetherefore 
onsider only the 
ase when Vi is parallel to the ba
kground monopole.21There may be additional massless gauge �elds des
ending from any unbroken higher dimensional gaugesymmetries.22For the analysis of a very similar model, in whi
h the SU(2) KK gauge symmetry of the sphere is brokendown to U(1) by smooth axisymmetri
 deformations, see Ref. [33℄.23To avoid the need of di�erential geometri
 results for singular spa
es, we 
an 
onsider removing thebrane singularities and taking instead a smooth non-
ompa
t manifold, for whi
h 0 < � < �. Killing ve
tor�elds are the generators of the in�nitesimal isometries of a manifold, whereas an isometry is a global aspe
tof the geometry. Whilst for smooth 
ompa
t manifolds the Killing ve
tors are always globally integrable toan isometry, for non-
ompa
t manifolds this may not always be the 
ase.22



Now, from Subse
tion 4.2.2 it follows that the spin-1 a
tion for unwarped solutions hasthe following form.S(1)(h; h) = � 12�2 Z d6Xp�G���hmi��hmi + hmi;nhmi;n + R2 hmihmi� ;S(1)(V; V ) = �12 Z d6Xp�G ���Vi��V i + �mVi�mV i + �22 
2F 2ViV i� ;S(1)(V2; V2) = �18 Z d6Xp�G���Vmi��V mi + Vmi;nV mi;n + R2 VmiV mi� ;S(1)(h; V ) + S(1)(V; V2) = Z d6Xp�G���mVihniF nm � �2 
�mV iVniF nm� ;(5.76)where we have used Vi;m = �mVi be
ause the ba
kground solution is unwarped and Vi isun
harged under the ba
kground monopole. Also m;n; ::: here run over � and '. To derivethe last term in S(1)(h; h) we have used the Einstein equations:2�2p�GRmn = p�GFmlF ln +GmnTÆ(X2 � Y2); (5.77)whi
h allow us to rewrite the brane 
ontribution in the last term of (4.53) as a 
ombinationof the Ri

i tensor and the �eld strength. Also we have used that in two dimensionsRmn = GmnR=2 and the Maxwell equations Fmn;m = 0. The EOMs des
ending from (5.76)are the following. ��2 +D2 � R2 �hmi � �2F lm �lVi = 0; (5.78)��2 +D2 � R2 �Vmi � 2�
F lm �lVi = 0; (5.79)��2 +D2 � �22 
2F 2�Vi + F nmhni;m + �2 
F nmVni;m = 0; (5.80)where �2 � ���� and D2 � DmDm. As for the spin-2 
ase above, the EOMs 
ome with aset of boundary 
onditions, whi
h we refer to as Hermiti
ity Conditions (HCs) [30, 6℄:Z d6Xp�G �Æhmihmi;n�;n = 0; Z d6Xp�G �ÆVmiV mi;n�;n = 0; (5.81)Z d6Xp�G�ÆV ihliF lm�;m = 0; Z d6Xp�G�ÆV iVliF lm�;m = 0; (5.82)Z d6Xp�G �ÆVi�mV i�;m = 0: (5.83)We will additionally impose the usual Normalizability Conditions (NCs).We 
an immediately observe that there is a simple solution to Eqs. (5.78)-(5.80), withh�i = h'i = 0, V�i = V'i = 0 and Vi independent of the extra dimensions. Its squared massis given by M2 = �22 
2F 2 = 8r20 
2; (5.84)23



where we expli
itly used the rugbyball solution. We see that the monopole U(1) is a gaugesymmetry in the EYM� model (
 = 0), whereas it is broken in 6D supergravity (
 = 1),like for the smooth sphere-monopole solution [16℄.We now want to �nd the general solution to Eqs. (5.78)-(5.80) subje
t to the HCs andNCs. System (5.78)-(5.80) is a rather 
ompli
ated set of 
oupled di�erential equations, butthe 
ase at hand 
an be elegantly solved by using the harmoni
 expansion of the s
alarLapla
ian; let us now des
ribe this te
hnique. It is easy to solve the eigenvalue problem for�D2 a
ting on the 2D s
alars (in fa
t, for A = 0 and applying the diagonal HC and theNC, the system is identi
al to that for the heli
ity-2 �eld above). The eigenfun
tions arethen given by (5.65-5.68) with ! = !, and the eigenvalues 
an be written as:�2nm � 4r20 (n+ jmj!) (n+ jmj! + 1) � 0; (5.85)where n = 0; 1; 2; 3; ::: and m run over all the integers. This is the generalization to therugbyball of the s
alar spheri
al harmoni
s. They form a 
omplete basis for the 2D s
alar�elds Vi.We next pro
eed by determining a 
omplete basis for the 2D ve
tor 
u
tuations fh�i; h'igand fV�i; V'ig. We fo
us only on fh�i; h'ig as the analysis for fV�i; V'ig is identi
al. A wayto determine su
h a basis is to look at the eigenvalue problem for the operator �D2 +R=2appearing in Eq. (5.78), be
ause the diagonal HC (5.81) guarantees that this operator isHermitian over the spa
e of fun
tions where fh�i; h'ig lives, and therefore has a 
ompletebasis of eigenfun
tions. Again, this system is easy to solve, this time using the results24 ofRef. [9℄. We therefore just summarise the results. The eigenvalue problem for �D2 +R=2on 2D ve
tors generi
ally mixes the h�i and h'i 
omponents, but redu
es to a diagonalform, at least in the rugbyball 
ase, by introdu
ing25h�i � 1pr0 �eB=4h�i � ie�B=4h'i� : (5.86)Eq. (5.86) de�nes a new basis for tensors on the 2D internal spa
e, and we remind thereader that for the rugbyball eB = �2 sin2 �. The squared mass problem 
an then betransformed into a pair of de
oupled S
hr�odinger equations, whi
h 
an be solved. Note thatthe singularities of the spin-1 a
tion dis
ussed in Subse
tion 4.2.3 appear in the S
hr�odingerproblems as two singular points in the e�e
tive potentials (one for ea
h brane), whi
h donot obstru
t the determination of the spe
trum [6, 9℄. The h�i �elds 
an be KK expandedas follows h�i(X) =Xn;mh�i nm(x)f�nm(�)eim'; (5.87)and, in the 
ase m = 0 or jmj � 1=!; (5.88)24In Ref. [9℄ a more general problem has been solved, whi
h redu
es to the present one in the unwarped
ase A = 0.25The � appearing in (5.86) and throughout this se
tion should not be 
onfused with the (�) used tode�ned the light-
one gauge in Subse
tion 4.1, for this reason the latter are written inside bra
kets.24



both the KK tower asso
iated with f+ and f� turn out to be exa
tly that in (5.85), wheren = 0; 1; 2; 3; ::: and m run over all the integers, but with the 
onstraint fn;mg 6= f0; 0g.Condition (5.88) is satis�ed by every jmj for non-negative tensions and it is satis�ed bysome (but not all) jmj for negative tensions. This, however, will be enough to show thatwhen the tensions assume the values in (5.74), the KK spe
tra in
lude extra massless spin-1�elds. In the following we denote (5.88) with 0 6< jmj! 6< 1.So we have found that, for modes satisfying (5.88), the spe
trum of �D2 +R=2 on 2Dve
tors is made up of two identi
al 
opies of the spe
trum of �D2 on 2D s
alars but withzero mode removed. This suggests that we may be able to express the eigenfun
tions of�D2 + R=2 on 2D ve
tors in terms of eigenfun
tions of �D2 on 2D s
alars. Indeed, if we
onsider a solution V to the eigenvalue problem of �D2 with eigenvalue �2, then it is easyto show that �mV is an eigenfun
tion of �D2 +R=2 with the same eigenvalue. In the 
ase(5.88), this implies that we 
an write�� �fnm(�)eim'� = 
nmf�nm(�)eim'; (5.89)where we have used the basis de�ned in Eq.(5.86) for ��, and moreover 
nm are normaliza-tion 
onstants whi
h, having 
hosen a 
onvenient normalization for the wave fun
tions, 
anbe �xed to be 
nm = �nm=p2. This is the analogue of the derivative relation that existsbetween Wigner fun
tions for �elds of di�erent spin on the sphere (see eq. (3.17) of Ref.[31℄). So, remarkably, we 
an 
onstru
t the 
omplete harmoni
 expansion for26 Vi, h�i andV�i by using the solution to the eigenvalue problem for the s
alar Lapla
ian. Moreover, itis easy to 
he
k that, having applied the diagonal HCs to derive the 
omplete basis for h�iand V�i, the mixed HCs (5.82) are automati
ally satis�ed.Having derived the harmoni
 expansions one more observation is ne
essary. It turnsout that the fa
tor F ++ whi
h appears in the mixing terms S(1)(h; V ) and S(1)(V2; V ) is
onstant for the rugbyball (F ++ = 2p2i=(r0�)). Putting everything together, we are thenable to transform the di�erential eigenvalue problem for the squared mass operator intoan algebrai
 problem that 
an be solved. In parti
ular, after integrating out the extradimensions, A
tion (5.76) assumes the following form in terms of the KK modes.S(1)(h; h) + S(1)(V2; V2) + S(1)(h; V ) + S(1)(V; V2) + S(1)(V; V )= Z d4xXn;m� 12�2 (h+i nm)� ��2 � �2nm�h+i nm + 12�2 (h�i nm)� ��2 � �2nm�h�i nm+18 (V+i nm)� ��2 � �2nm�V+i nm + 18 (V�i nm)� ��2 � �2nm�V�i nm�2�nmir0� [(h+i nm)� Vi nm � (h�i nm)� Vi nm+�2
 ((V+i nm)� Vi nm � (V�i nm)� Vi nm)i+12 (Vi nm)���2 � �2nm � 8
2r20 �Vi nm� ; (5.90)26It is easy to show that all we have stated about the harmoni
 expansion for hmi holds for Vmi as well.25



6D Einstein-Yang-Mills-� Squared mass Multipli
ity0 1�2nm + 2p2r0 �nm 1�2nm � 2p2r0 �nm 1
6D Supergravity

Squared mass Multipli
ity8r20 1�2nm 24r20 �1 + r204 �2nm +p1 + r20�2nm� 14r20 �1 + r204 �2nm �p1 + r20�2nm� 1Table 1: Squared mass KK towers of physi
al spin-1 perturbations around the rugbyball solution to the6D EYM� model and 6D supergravity, for modes satisfying (5.88). �2nm is de�ned in (5.85), but here theKK numbers n;m run over n = 0; 1; 2; 3; :::, m = 0;�1;�2;�3; :::, with the 
onstraint fn;mg 6= f0; 0g.where the sum over n and m is performed over n = 0; 1; 2; 3; ::: and m = 0;�1;�2;�3; :::,but with the 
ondition h�i 0;0 = 0 and V�i 0;0 = 0. Also, as a 
onsequen
e of the reality
onditions h+i(X) = h��i(X), V+i(X) = V ��i(X) and Vi(X) = V �i (X), we have the relationsh+i nm(x) = h��i n�m(x), V+i nm(x) = V ��i n�m(x) and Vi nm(x) = V �i n�m(x).In this way, the squared mass operator has �nally been transformed into an algebrai
matrix with 
onstant entries and we 
an �nd its eigenvalues exa
tly.6D EYM� model To address the spin-1 
u
tuations in the 6D EYM� model, we set
 = 0 and remove the Kalb-Ramond perturbations (V�i = 0) in the above 4D bilineara
tion, Eq. (5.90). By diagonalizing the 
orresponding mass-matrix, we �nd that theexpli
it heli
ity-(�1) towers are as followsM2nm = �2nm � 0; (5.91)with n = 0; 1; 2; 3; ::: and m = 0;�1;�2;�3; :::, but 0 6< jmj! 6< 1 andM2nm = �2nm � 2p2r0 �nm � 0; (5.92)with n = 0; 1; 2; 3; ::: and m = 0;�1;�2;�3; :::, but 0 6< jmj! 6< 1 and fn;mg 6= f0; 0g.Neither ta
hyons nor ghosts are found. The fn;mg = f0; 0g mode in (5.91) is the massless26



gauge �eld asso
iated with the 6D monopole U(1), whi
h we have previously dis
ussed in(5.84). The remaining modes in (5.91) are instead the heli
ity-(� 1) 
omponents of massivegravitons; we observe that the massive part of the KK tower (5.70) is exa
tly reprodu
ed by(5.91), a

ording to 4D Poin
ar�e invarian
e. The KK towers in (5.92) 
orrespond insteadto physi
al spin-1 �elds. The 
omplete set of masses for physi
al spin-1 �elds is given inTable 1.By analyzing those towers, one easily �nds that there are physi
al massless 4D spin-1�elds (in addition to (5.84)) if and only if �2nm = 8=r20 , whi
h 
an be restated asfn;m!g = f1; 0g or fn;m!g = f0;�1g: (5.93)Therefore there is at least one massless spin-1 �eld for any value of the tension (this 
orre-sponds to fn;mg = f1; 0g). In the sphere 
ase (! = 1) we have three ways to satisfy this
ondition, that is fn;mg = f1; 0g; f0;�1g;whi
h 
orrespond to the three gauge �elds of SU(2)KK , whereas for positive tension rug-byballs and generi
 saddle-spheres there is only one 
hoi
e:fn;mg = f1; 0g;
orresponding to the KK gauge group U(1)KK . However, for the spe
ial saddle-spheres forwhi
h (5.74) holds, the number of massless ve
tor �elds is enhan
ed from one plus one toone plus three!We shall dis
uss in detail the physi
al signi�
an
e of these modes in the following sub-se
tion.6D supergravity We 
on
lude this subse
tion by providing the heli
ity-(�1) masses forthe 6D supergravity (set 
 = 1 and keep the Kalb-Ramond 
u
tuations in Eq. (5.90)).Diagonalizing the 
orresponding mass-matrix, we �nd:M2 = 8r20 > 0; (5.94)whi
h is the ve
tor �eld asso
iated with the monopole U(1),M2nm = �2nm � 0; with multipli
ity 3 (5.95)and M2nm = 4r20 �1 + r204 �2nm �q1 + r20�2nm� � 0 (5.96)where n = 0; 1; 2; 3; :::, m = 0;�1;�2;�3; :::, fn;mg 6= f0; 0g and 0 6< jmj! 6< 1. Themasses in (5.94), two towers out of three in (5.95) and the towers in (5.96) 
orrespond tophysi
al spin-1 �elds, whereas one of the towers in (5.95) are the heli
ity-(�1) 
omponentsof massive gravitons. The 
omplete set of masses for the physi
al spin-1 �elds is summarizedin Table 1. We note that neither ta
hyons nor ghosts are found.27



Regarding the massless ve
tor �elds the situation is similar to the 6D EYM� model.It easy to see that the 
ondition for masslessness is again (5.93) and, therefore, again wehave a single KK massless gauge boson for positive tensions and generi
 negative tensions;instead, for negative tensions of the form (5.74), the number of massless ve
tor �elds isenhan
ed from one to three!As an e�e
tive 
he
k of the results presented in this subse
tion, we have also derivedthe aforementioned spe
trum in the sphere 
ase (! = 1) by expanding the bulk �elds overthe Wigner fun
tions as in [31℄ and obtained exa
tly the sphere limit of our towers.5.3 Massless ve
tors and 4D gauge symmetriesIn the previous subse
tion we observed three massless 4D ve
tor �elds amongst the KKspe
tra for the 6D models27 on both the sphere and the spe
ial saddle-spheres (5.74). Weshall now address the physi
al signi�
an
e of these modes. One of them, the one with axialquantum numberm = 0, should provide the gauge boson for the U(1)KK gauge symmetry,des
ending from the axial isometry of the internal spa
e. The other two massless ve
tors,having m 6= 0, are 
harged under this axial symmetry and so we may expe
t the threeve
tors to �t into a non-Abelian stru
ture, like SU(2). For the sphere, this is indeed the
ase, and the three massless ve
tors 
ompose the gauge �elds of an SU(2) gauge symmetryin the 4D theory. What happens for the spe
ial saddle-spheres, where there is no SU(2)isometry in the ba
kground? Let's take � = 2; 3; : : :, so we 
onsider the spe
ial saddle-spheres (we also allow for the smooth sphere with � = 1).5.3.1 Why there are three massless ve
tor modesLet us begin by understanding why three massless ve
tor modes appear in the spe
trum,despite the fa
t that any branes 
learly break the SU(2) isometries of the sphere.Above, we found that the massless ve
tor �elds arise as a linear 
ombination of h m� mn(x)and V�mn(x) (and V m� mn(x) for 6D supergravity), on
e we have integrated out the extradimensions. In detail, if one takes the squared mass matrix de�ned impli
itly by the 4Dbilinear a
tion in (5.90) in e.g. the EYM� 
ase, one �nds that the mass eigenstates are(fn;mg 6= (0; 0)): Ai nm = i2h+i nm � i2h�i nm + 1p2Vi nm;Ui nm = � i2h+i nm + i2h�i nm + 1p2Vi nm;Wi nm = 1p2h+i nm + 1p2h�i nm; (5.97)
orresponding respe
tively to M2nm = �2nm � (2p2=r0)�nm, M2nm = �2nm + (2p2=r0)�nmand M2nm = �2nm in (5.92) and (5.91). Re
all that the massless modes emerge from theAi nm tower, when fn;m!g = f1; 0g; f0;�1g.27In the EYM� model there is also a massless ve
tor �eld des
ending from the higher dimensional U(1)gauge �eld, whi
h forms a 4D U(1) gauge �eld. 28



We 
an write, then, the harmoni
 expansion of h m� (X) as:h m� (X) = XI=�;0;+AI�(x)KI m(�; ') +massive modes : (5.98)Using the expansion (5.86,5.87), the expli
it form for the wave fun
tions (5.89) and therearrangement in terms of the mass eigenstates (5.97), it is straightforward to show thatKI m(�; ') indeed 
orrespond to the Killing ve
tors (5.75) on the spe
ial saddle-sphere,where I = 0 
orresponds to fn;m!g = f1; 0g and I = � to fn;m!g = f0;�1g. This isjust as in the traditional KK redu
tion s
heme.In this way, we 
on�rm that the presen
e of in�nitesimal isometries on the internal spa
e,whi
h are generated by Killing ve
tor �elds, is suÆ
ient for the appearan
e of massless ve
tormodes { even if they 
annot be integrated to genuine isometries.5.3.2 The absen
e of enhan
ed gauge symmetries in the full 4D theoryWe now ask whether or not these massless ve
tor modes behave as gauge �elds of an SU(2)gauge symmetry. The linearized 4D theory 
annot probe any non-Abelian stru
ture, and soto understand the gauge invarian
e of the full 4D theory, we must go beyond linear order.To this end, we 
onsider a simple extension of the EYM� model, where we add a single
omplex, massless, neutral s
alar �eld whi
h has an a
tion:S� = �Z d6Xp�G�M�� �M� (5.99)and whi
h assumes a trivial VEV in the saddle-sphere ba
kground. It is easy to see thatthe linearized equation of motion for Z := Æ� gives rise to the rugbyball s
alar harmoni
s(see above Eq. (5.85)): Z(X) =Xm;n zmn(x)fmn(�)eim' (5.100)with the 
orresponding masses (5.85):M2 = 4r20 l (l + 1) where l = n+ jmj! : (5.101)The multipli
ity of a given mass is given by 2l + 1 when l is integer or half-odd integer;otherwise it is given by 2([l℄ + 12) + 1, where [l℄ denotes the integer part of l. We also notethat for l integer (whi
h 
orresponds also to m! integer), the wavefun
tion fmn(�) is anAsso
iated Legendre fun
tion, just as for the spheri
al harmoni
s. The modes with l non-integer are instead additional harmoni
s, whi
h generi
ally have no 
orresponding statesamongst the spheri
al harmoni
s nor indeed any of the Wigner fun
tions.Now let us ask how the 4D �elds zmn(x) 
ouple to the massless ve
tor �elds, and inparti
ular if they do in a gauge-invariant way. At trilinear level, this 
oupling des
ends onlyfrom the term: S(Z�; h�m; Z) = �Z d6Xp�G��Z� h m� �mZ (5.102)29



and its 
omplex 
onjugate. The above trilinear 
oupling 
an now be reexpressed in termsof the 4D �elds, and isolating the 
ontributions involving the massless ve
tors, Eq. (5.98),we �nd:S(z�; AI�; z) = �Z d4xp�g4 ��z�AI� z0 Z d� d' r204 � sin � f e�im'KI m �m �f 0 eim0'� ;(5.103)where we have suppressed the KK indi
es fn;mg and fn0;m0g on z; f and z0; f 0 respe
tively.Performing the integral over the internal dimensions:gI = Z d� d' r204 � sin � f e�im'KI m �m �f 0 eim0'� ; (5.104)we see that the wavefun
tion overlap (5.104) gives the 4D 
oupling between z(x) and z0(x)via a massless ve
tor �eld, AI�(x):� gI Z d4xp�g4 ��z�AI� z0 : (5.105)Observe that if the full 4D theory were to respe
t an SU(2) gauge symmetry whosegauge �elds are the three massless ve
tor modes, then z and z0 would belong to SU(2)multiplets of the same dimension and (5.105) would 
orrespond to the trilinear terms inthe gauge invariant 
ombination �D�za�D�z0a, where D�za = ��za+AI�T I ab zb, the indi
esa; b run over a; b = 1; : : : ; r and r is the size of the multiplet. For the 
lassi
 sphere, � = 1,this is of 
ourse the 
ase, and the wave fun
tion overlaps in (5.104) are zero unless z and z0belong to the same SU(2) multiplet, thanks to the properties of the spheri
al harmoni
s.We shall now see that su
h a stru
ture does not hold for the spe
ial saddle-spheres.To this purpose, let us 
onsider the rugbyball harmoni
s with 0 <m! < 1. The patternthat emerges for the overlaps (5.104) on
e both the integrals over d� and d� are performed28,is that a mode, f , with 0 < m! < 1 and n even (respe
tively odd) has a non-zero overlapwith the modes, f 0, for whi
h m0! = m! � 1 and all n0 odd (respe
tively even). It 
anthen easily be seen that this prevents the realization of an SU(2) gauge symmetry. Take forinstan
e the set of modes fzg with some mass-squared l(l + 1) in whi
h 0 < jmj! < 1 andn = 0. This mass 
omes only with degenera
y 2, 
orresponding to KK numbers f0;�mg.Therefore, if there exists an SU(2) gauge symmetry, then the modes in fzg fall either intoan SU(2) doublet or two singlets. The overlap (5.104) between the modes f0;mg andf0;�mg is zero, and the subsequent vanishing of the 
oupling in (5.105) tells us that fzg
annot form a doublet. On the other hand, the modes f0;�mg do have a non-zero overlapwith fn odd;�m� 1=!g and fn odd;�m+ 1=!g, and so the two modes in fzg ea
h havea trilinear 
oupling (5.105) with towers of z0 and the massless ve
tors �elds. Thus, they
annot be singlets. In this way we 
an 
on
lude that there does not exist an SU(2) gaugesymmetry 
orresponding to the massless ve
tor �elds.We would like to draw one more insight into the absen
e of SU(2) gauge symmetryfor the full 4D theory. The Killing ve
tors (5.75) 
an be 
onsidered as generators of an28Whilst we have not 
he
ked this result for all !, m and n the pattern is quite 
onvin
ing.30



SU(2) algebra, and the mass-squared operator for the saddle-sphere s
alars, �D2, 
an beunderstood as the Casimir Operator for the algebra: � r204 D2 = 12 (K+K� +K�K+) +(K0)2. The saddle-sphere s
alar harmoni
s form a basis for the Hilbert spa
e of fun
tionson whi
h the Hermitian operator, �D2 (plus boundary 
onditions), a
ts. However, theSU(2) ladder operators, K�, do not a
t within this Hilbert spa
e: the a
tion of K� onthe harmoni
s fmn(�)eim' with 0 < jmj! < 1 gives ba
k fun
tions whi
h do not obey theNC and HC boundary 
onditions. Again, we see that the saddle-sphere harmoni
s do notfurnish well-de�ned representations of the SU(2)KK generated by the Killing ve
tors, andit is pre
isely the modes with 0 < jmj! < 1 that are the problemati
s ones29.As we have implied above, the absen
e of an SU(2) KK gauge symmetry in the 4Dtheory 
an be understood in the 6D pi
ture as being due to the absen
e of a genuine SU(2)isometry in the internal dimensions.5.3.3 The emergen
e of enhan
ed gauge symmetries at low energiesFinally, noti
e that although the modes with 0 < jmj! < 1 do not belong to well-de�nedSU(2) representations, the massless wave fun
tions that we have found are equivalent tothose present in the sphere 
ase (up to an integer 
onstant multiplying ') and do furnishwell-de�ned SU(2) representations30. This holds also for the massless spin-2 and spin-1�elds above, as well as the massless spin-0 �elds dis
ussed below31. Therefore, the 
lassi
allow energy 4D e�e
tive theory that results from trun
ating the massive modes does enjoyan SU(2) KK gauge invarian
e to all orders in perturbation theory { despite the absen
e ofa genuine SU(2) isometry in the extra dimensions. Indeed, this low energy 4D theory doesnot distinguish between a 
ompa
ti�
ation on a smooth sphere or a spe
ial saddle-sphere!Moreover, we 
an argue that the above trun
ation to the massless se
tor is a 
onsistentone32, at least for the bosoni
 theory that we have studied whose �eld 
ontent is identi
al tothat of 6D supergravity. Then, if we remove the branes and repla
e the singular spa
e witha smooth non-
ompa
t manifold, the lo
al geometry is the same for the sphere everywhereand the KK ansatz for the spe
ial saddle-sphere is essentially identi
al to that of the smoothsphere. Meanwhile, the sphere redu
tion of 6D supergravity was shown to be a 
onsistentone in Ref. [35℄, thanks to a remarkable 
onspira
y between properties of the 2-sphere and29Noti
e that this range ofm is empty for the spe
ial saddle-sphere with ! = 12 if we impose the Z2 orbifoldproje
tion dis
ussed in Appendix C. In this 
ase, then, all the KK modes are in well-de�ned representationsof SU(2) (
orresponding to the Wigner fun
tions), and we 
an expe
t an SU(2) gauge invarian
e in thefull 4D theory, at least if we remove the branes and dis
uss a smooth non-
ompa
t manifold. This is notsurprising, sin
e { outside the branes { the Z2 orbifolding e�e
tively 
an
els out the Æ = �2� de�
it angle,and we return to the standard sphere 
ase.30This is a 
onsequen
e of the fa
t that in our mass-squared's,M2, as well as in our fnm(�) wavefun
tions,m and ! enter only through the 
ombinationm!. This is obvious for the masses, and for the wave fun
tionsit 
an be seen from Eq. (5.68), after setting �! = ! to re
over the spe
tra for the rugbyball. Furthermore,the massless modes all have integer m!.31We should 
aution that, although there are no symmetries that suggest them to be massless, our har-moni
 analysis has not in
luded the modes with 0 < jmj! < 1 in the spin-1 se
tor, nor the modes with0 < jmj! < 1 and 1 < jmj! < 2 in the spin-0 se
tor.32Mathemati
al 
onsisten
y may of 
ourse not be ne
essary, if the trun
ation is 
onsistent up to someenergy s
ale. 31



the stru
ture of supergravity.5.4 Massless s
alarsFinally, we turn to the spe
tra of 4D spin-0 �elds, whi
h are governed by the a
tion givenin Appendix B. In Appendix C we give the 
omplete spe
tra for unwarped braneworld
ompa
ti�
ations in 6D supergravity. Here, our fo
us shall be on the massless s
alarsfeatured in the low energy 4D e�e
tive theory. Again we shall �rst review the RS modeland then examine the 6D braneworld models.5.4.1 Randall-SundrumIn the RS model of Ref. [1℄, the massless s
alar se
tor involves one normalizable mode(the radion), whi
h be
omes non normalizable in the de
ompa
ti�
ation limit r
 !1 [29℄.Let us �nd this mode in our formalism. We 
an of 
ourse restri
t our attention to thespin-0 a
tion S(0)(h; h) as in [1℄ only gravity is introdu
ed and the branons are 
onsistentlyproje
ted out by the S1=Z2 orbifold 
onditions. Therefore, we only have to deal with theperturbation h��, be
ause (4.50) implies h ii = �h��. It is easy to derive the EOM for h��:� 1p�G�M �p�G�Mh���+ ��A02 + 13T�2Æ(�� Y )�h�� = 0; (5.106)where T�2Æ(� � Y ) � T1�2Æ(�) + T2�2Æ(� � �r
). We now perform a KK de
ompositionh��(x; �) = Pn h��(x)fn(�) and fo
us on the massless 
ase (������� = 0); we obtain thesimple equation  00 = 0; (5.107)where we have de�ned  � eAf and used property (5.73). The only solution to (5.107)satisfying the S1=Z2 orbifold 
onditions is  
onstant, whi
h 
orresponds tof / e�A: (5.108)Mode (5.108) is the wave fun
tion of the radion. By inserting this mode in the kineti
 termof h�� in (B.112) one easily �nds that it is normalizable for any �nite r
, but be
omes nonnormalizable in the limit r
 !1.5.4.2 6D Brane WorldsAfter this non-trivial 
he
k of our formalism we now turn to the 
oni
al-GGP solutions of6D supergravity. The stability of the GGP solutions has been investigated in [7℄ and [9℄,where no ta
hyons emerged unless non-Abelian gauge groups are 
onsidered. Indeed, in thepresen
e of non-Abelian gauge groups, an instability may arise in the se
tor des
ribed bythe a
tion S(0)(V; V ), with Vm orthogonal to the ba
kground monopole33 [9℄. We observethat, even in the absen
e of non-Abelian gauge groups, the stability of the GGP solutions is33This instability is also present in the sphere-monopole solution [34℄, whi
h is a parti
ular 
ase of theGGP solutions. 32



marginal, in the sense that there are ne
essarily massless s
alars in the physi
al spe
trum.These massless parti
les are manifestations of two symmetries in the model. One is thefollowing invarian
e of the EOMs: GMN ! wGMN and e�=2 ! w e�=2, where w is areal number. Note that this is only a 
lassi
al symmetry be
ause the a
tion res
ales asSB ! w2 SB, so we do not expe
t the 
orresponding s
alar to remain massless on
e quantum
orre
tions are in
luded. The other is the Kalb-Ramond symmetry, whi
h a
ts as B2 ! B2+d�, where � is a general 1-form �eld. The a
tual presen
e of the zero mode 
orrespondingto the former symmetry has been shown in Refs. [11, 7℄.Here, by using our bilinear a
tion, we 
an easily �gure out where the other masslesss
alar is. This emerges as the lightest 4D mode of the �eld Vij , whose bilinear a
tion issimply (see Eq. (B.118)) � 116 Z d6Xp�Ge��2A�MVij�MVij : (5.109)This a
tion is equivalent to the spin-2 a
tion (4.52) in the 
ase of the 
oni
al-GGP solutions,whi
h satisfy A = �=2. The wave fun
tions and mass spe
trum 
oming from Vij are thereforeidenti
al to the one presented in Subse
tion 5.1. For n = m = 0 we obtain the masslesss
alar �eld asso
iated to the Kalb-Ramond symmetry. In the spheri
al limit this 
orrespondsto the l = 0 mode in (5.71) [27℄.6 Summary of ResultsBefore 
on
luding, let us provide an overview of our results.� We have derived the linearized dynami
s, Eqs. (4.52)-(4.57) and Appendix B, for thephysi
al perturbations about general ba
kgrounds in a general 
lass of �eld theories.In parti
ular, we take Einstein-Yang Mills (EYM) theory in D spa
etime dimensions,with a bulk dilaton or 
osmologi
al 
onstant (�), and a number of dynami
al 3-branes.Moreover, for D = 6 we in
lude a dilaton and 2-form potential. Therefore, 6D 
hiralsupergravity, D-dimensional EYM� theory and the 5D Randall-Sundrum models allfall within our analysis. The ba
kgrounds 
onsidered respe
t 4D Poin
ar�e invarian
e,but may be warped in a radial transverse 
oordinate.� Taking the Randall-Sundrum models as an illustrative example within our formalism,we retrieve the well-known dynami
s for spin-2 
u
tuations and identify the masslesss
alar (the radion), whi
h is normalizable in the two brane model and be
omes non-normalizable in the one brane model.� For the 6D EYM� model, we 
onsider the unwarped \rugbyball-monopole" 
ompa
t-i�
ations, sour
ed by two 3-branes of equal tension. When the tensions are zero, were
over the sphere-monopole 
ompa
ti�
ation, and when the tensions are negativewe refer to the 2D geometry as a \saddle-sphere". By deriving a set of \rugbyballharmoni
s", we are able to obtain analyti
 KK spe
tra; i.e. we dis
uss how to �ndphysi
al 4D spin-2, spin-1 and { 
onsistently trun
ating branons { spin-0 �elds and33



spin-2 spin-1 spin-0Rugby-ball Æ � 0 all modes all modes all modesSaddle-sphere Æ = �2� all modes all modes all modesGeneri
 Saddle-sphere all modes m = 0; jmj � 1=! jmj = 0; 1=!; jmj � 2=!Warped Models all modes { {Table 2: The se
tors 
overed in the present paper for Braneworld Compa
ti�
ations in 6D Supergravity.In order to address the spin-0 se
tor, we proje
ted out the branons with an orbifolding. We also here imposethe orbifolding for all se
tors in the presen
e of negative tension branes.their masses. We present the full spin-2 spe
trum and the spin-1 spe
tra for axialmomentum number 0 6< jmj! 6< 1.� For the 6D supergravity, the ba
kgrounds of interest are the warped, axially symmetrybraneworld (\
oni
al-GGP") solutions, whi
h have unwarped limits to the rugyballsand saddle-spheres, and to the sphere. Our fo
us is on the bosoni
 \Salam-Sezgin"se
tor (from the gravity-tensor supermultiplet and the U(1) gauge multiplet in whi
hthe ba
kground monopole lies), sin
e the remaining bosoni
 se
tors have been treatedelsewhere. We obtain the 
omplete spin-2 spe
trum. For the spin-1 and spin-0 se
tors,we restri
t to the unwarped ba
kgrounds, and employ the rugbyball harmoni
s to �ndthe spe
tra. The se
tors 
overed by our analysis34 are summarized in detail in Table2.Our main physi
al results for the 6D braneworlds are as follows.� The spin-2 spe
trum in
ludes the massless 4D graviton separated from the rest ofthe KK tower by a mass gap, and the mass gap is indeed observed in all se
tors.For rugbyballs with positive de�
it angles and for generi
 saddle-spheres, the spin-1se
tor 
ontains a massless KK gauge boson due to the U(1) isometry in the ba
kground(in addition to any massless 4D gauge bosons des
ending from unbroken 6D gaugesymmetries). For the spe
ial saddle-spheres with de�
it angles Æ = �2�;�4�; : : :,there is a qualitative di�eren
e. Here, there are three Killing ve
tors, whi
h are well-de�ned everywhere outside the branes and obey an SU(2) Lie algebra. Although onlyone of them integrates to a genuine isometry, the number of massless KK ve
tors �eldsis 
onsequently enhan
ed to three. Meanwhile, in the spin-0 se
tor for supergravity,we identify the two massless s
alar �elds expe
ted in all 
ases from the 
lassi
al s
alingsymmetry and the Kalb-Ramond symmetry.� The spin-2 and spin-1 spe
tra are all well-behaved despite the presen
e of 
odimension-two dynami
al brane sour
es, whi
h indu
e singularities in the bulk geometry. Tomake progress in the spin-0 se
tor, we had to dis
ard the branon modes (e.g. bypla
ing the branes at orbifold �xed points).34We also �nd the spe
trum in the sphere 
ase as a 
he
k.34



� The spe
tra analysed { whi
h in
orporates allmodes for rugbyballs sour
ed by positivetension branes { do not harbour any instabilities; neither ta
hyons nor ghosts.� To understand the signi�
an
e of the three massless 4D ve
tor �elds that appear forthe spe
ial saddle-spheres, we go beyond bilinear order. We �nd that in the full 4Dtheory, they do not represent gauge �elds of an SU(2) gauge symmetry. This is dueto the presen
e of KK modes that are not in well-de�ned SU(2) representations. The
lassi
al masslessness of the ve
tor �elds is thus not prote
ted by any symmetry, whi
his in a

ordan
e with the absen
e of a genuine SU(2) isometry in the ba
kground.� In the massless se
tor, however, all modes fall into well-de�ned SU(2) representations.Therefore, the low energy 4D e�e
tive theory obtained by trun
ating to the masslessse
tor does seem to enjoy a 
lassi
al SU(2) KK gauge symmetry, despite the absen
eof a ba
kground SU(2) isometry! Indeed, this low energy e�e
tive theory does notdistinguish between 
ompa
ti�
ations on the sphere and the spe
ial saddle-spheres.7 Con
lusionsIn this paper, we have provided the dynami
s of the physi
al 
u
tuations in a wide 
lassof models, whi
h in
orporate the bosoni
 �elds generi
ally present in bulk supergravitytheories { gravity, non-Abelian gauge �elds, the dilaton and two-form potential { as wellas dynami
al 3-branes. Our �nal equations ((4.52)-(4.57) and those in Appendix B), whi
h
an be 
onsidered as a generalization of the analysis in [12℄, provide the starting point to
onstru
t a 4D e�e
tive �eld theory emerging from various higher dimensional models, with
ompa
ti�ed extra dimensions and/or branes.We next pro
eeded with that obje
tive to study the behaviour of braneworlds solutionsin six dimensions, taking as representative the rugbyball 
ompa
ti�
ations of Einstein-Yang Mills theory with a 
osmologi
al 
onstant (EYM�) and 
ertain axi-symmetri
 warped
ompa
ti�
ations to 6D minimal gauged supergravity; the so-
alled 
oni
al-GGP solutions.We have obtained the 
omplete KK spe
trum for the 4D spin-2 se
tor in the 
oni
al-GGPsolutions, whi
h is a step towards understanding the behaviour of gravity in 
odimensiontwo braneworld models, as for example studied in [36℄. The spin-1 and spin-0 se
torspresent large systems of 
oupled di�erential equations to be solved (�ve-by-�ve for the spin-1 
u
tuations, eight-by-eight for the spin-0 
u
tuations after trun
ating the branons), andwe are able to do so in the unwarped 
ases by developing \rugbyball harmoni
s", in analogyto the spheri
al harmoni
s. Along the way, we also re
overed some familiar features of the5D Randall-Sundrum models. Our main results are summarized in the previous se
tion.Previous studies have revealed that 
odimension-two braneworld 
ompa
ti�
ations 
anevade the traditional KK lore in several ways. For instan
e, in [6℄ it was found that theKK mass-gap 
an be de
oupled from the size of the extra dimensions in the presen
e ofnegative tension branes, in prin
iple allowing not only gravity but also the SM to propagatein large extra dimensions. This phenomenon 
an also be observed here. We 
an also nowsuggest the following. The power-law warping present in the 6D braneworlds studied heredoes not 
hange qualitatively the physi
s. Moreover, models with only positive tension35




odimension-two branes also have qualitatively the same behaviour as traditional KK 
om-pa
ti�
ations. Meanwhile, the introdu
tion of negative tension 
odimension-two branes 
anlead to surprising dynami
s.As yet another example of how the physi
s of braneworlds in 6D 
an 
ounter in-tuition, we have found { for spe
ial saddle-sphere 
ompa
ti�
ations with de�
it anglesÆ = �2�;�4�; : : : { three massless ve
tor �elds thanks to the presen
e of three SU(2)Killing ve
tors in the internal manifold that are well de�ned everywhere outside the branes.Thus we see that in�nitesimal isometries are suÆ
ient to imply massless ve
tor �elds, evenif they 
annot be integrated to genuine isometries. All the massless modes in the modelsstudied here fall into well-de�ned representations of the SU(2), although there are massiveKK modes whi
h do not. In this way we see that the massless ve
tors provide the gauge�elds of an enhan
ed SU(2) KK gauge symmetry in the 
lassi
al, low energy, 4D e�e
tivetheory obtained by trun
ating to the massless se
tor, despite the absen
e of an SU(2) isom-etry in the ba
kground! Apparently, the low energy theory does not distinguish between a
ompa
ti�
ation on the spe
ial saddle-spheres and the smooth sphere.At the same time, as we approa
h the energy of the KK mass gap and in
orporatethe non-zero modes, we see that the SU(2) KK gauge symmetry is broken expli
itly toU(1). This is be
ause only the U(1) is a genuine global 
ontinuous isometry of the internalmanifold. The masslessness of the extra massless ve
tor �elds is thus not prote
ted by anysymmetry, and should not survive quantum 
orre
tions. Meanwhile, rea
hing energies farabove the KK mass-gap, the full 6D symmetries will be restored as usual. The pattern ofsymmetry breaking and emergen
e that we have found within our 
lassi
al approximation,as di�erent energy s
ales are probed, is thus a novel one.In the model whose �eld 
ontent and stru
ture 
orresponds to the bosoni
 part of 6Dsupergravity, the low-energy theory des
ribes the graviton, the three ve
tors in the adjointof SU(2) and two massless s
alars that are SU(2) singlets. Whether the above propertiesare shared with fermioni
 modes is not known and their behaviour, though of interest, liesbeyond the s
ope of the present paper. Meanwhile, we argued that we expe
t the zero-modetrun
ation to be a 
onsistent one, at least in the aforementioned model on
e we remove thebrane sour
es and study a non-
ompa
t smooth manifold. We thus note that this bosoni
model is in prin
iple a 
omplete one, suÆ
ient to demonstrate the un
onventional dynami
sthat we have observed. It would 
ertainly be interesting to 
he
k the 
onsisten
y also inthe presen
e of branes.This work 
on
ludes our study of the bosoni
 perturbations in the axi-symmetri
 brane-world solutions to 6D supergravity. We may now turn to the fermioni
 se
tor.A
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AppendixA General �-Dependent Bilinear A
tionHere we give the expli
it expression for the biliner a
tion that depends on the 
u
tuations ofthe brane positions �M , before any gauge �xing, that is the last two terms in (3.32). Theseterms have been 
omputed by varying the brane a
tion (2.6) with respe
t to (3.28) and bykeeping only terms up to the quadrati
 order. Their expli
it expression is the followingS(�; �) = �T2 Z d4xp�g �GMN��M � ��N+12�P �R�P�RGMN�YM � �Y N + 2�P�PGMN��M � �Y N+12�P�PGMN �R�RGSQ �12�Y M � �Y N�Y S � �Y Q � �YM � �Y S�Y N � �Y Q�+GMNGPR ���M � �Y N��P � �Y R � 2��M � ��P�Y N � �Y R�+�P�PGMNGRS ��YM � �Y N��R � �Y S � 2�Y M � ��R�Y N � �Y S�� ; (A.110)andS(h; �) = �T2 Z d4xp�g ��P�PhMN�YM � �Y N + 2hMN��M � �Y N+hMN �P�PGRS �12�Y M � �Y N�Y R � �Y S � �YM � �Y R�Y N � �Y S�+hMNGPR ��YM � �Y N��P � �Y R � 2�Y M � ��P�Y N � �Y R�� : (A.111)The bulk quantities in (A.110) and (A.111), that is the ba
kground metri
 GMN and the
u
tuation hMN , are 
omputed in the ba
kground brane position. This is be
ause (A.110)and (A.111) 
ome from the variation of the brane a
tion (2.6) where the bulk �elds are
omputed in the brane position.B Spin-0 Bilinear A
tion in the Light Cone Stati
 GaugeHere we provide the spin-0 a
tion in the light 
one stati
 gauge de�ned by (4.49) and (4.51).This is the only part where the branons �m appear.Let us start with the spin-0 a
tion that only depends on the bulk �elds. The nonvanishing terms are the following:S(0)(h; h) = � 14�2 Z dDXp�G h��hmn��hmn + ��hmn��hmn + hmn;lhmn;l+h2��(D2A0B0 + 2A00) + 2 �A00 +A02�h��h ii�D2A0B0 + 2A00 � 12B02 � 2B00�h�mh m� � 4A0h n� h ;mmn37



+h ii h mm A0B0 + 2�B00 + B022 �h��h mm + 12B02hmnhmn + 12B02 (h mm )2�2e�Bhmlhnh
 lhmn + 2�2hlmhl n�12e�=2Fm hF nh + 14�2 �m ��n ��+�2e�=2hmnhlhFlmFhn + 12 ���h ii ��h jj + ��h ii ��h jj + h ii ;mh j;mj �+ �h ii �2�12A02 + T2 �2pg=G Æ(X
 � Y
)�� ; (B.112)where 
 lmn h is the Riemann tensor for the metri
 Kmn and X
 and Y
 are de�ned belowEq. (4.53). We observe that in the last line of (B.112) there is an expli
it brane 
ontribution(the tension of the brane T appears expli
itly). Moreover,S(0)(V; V ) = �12 Z dDXp�Ge�=2 ���Vm��V m +DmVnDmV n +��2A02 + 14�02�V 2�+ ��2A0 + �0�V�DmV m +RmnVmVn + 2 gFmnVm � Vn�12�0V�DmV m + 12�0V mDmV� + �2e�=2 �F ml Vm�F lnVn� ; (B.113)S(0)(h; V ) = Z dDXp�Ge�=2 hF nmVm h ;lln + �DnVm �DmVn�h nl F lm�12A0F �mVmh ii +A0FmnVnhm�� ; (B.114)S(0)(�; �) = �Z dDXp�G � 14�2 �M� �M� + 12 ��2V��2 + 116e�=2F 2 + �024�2� �2� ;(B.115)S(0)(h; �) = Z dDXp�G� 12�2 ��0� �A0h�� + h ;mm� � 12A0h ii �+ hm��m� �0�+14e�=2Fml F nl � hmn� ; (B.116)S(0)(V; �) = Z dDXp�Ge�=2 �14Fmn � �DnVm �DmVn�� 12�0F �m�Vm� ; (B.117)S(0)(V2; V2) = � 116 Z dDXp�Ge� �e�2A�MVij�MVij�2e�4A�2� �e�+2AV n m�;n �e�+2AV lm�;l�4V mne�A�m �e�A�� �e�+2AV ln�;l�+��Vmn��V mn + 13V[nl;m℄V [nl;m℄ + �22 
2e�=2 �VmnFmn�2� ; (B.118)S(0)(V; V2) = ��4
 Z dDXp�Ge�VmnFmn ��A0 + 12�0�V� +DlV l� : (B.119)We have no mixing of the form S(0)(h; V2) and S(0)(�; V2) as a 
onsequen
e of HMNP = 0 (atthe ba
kground level). We have 
he
ked that the term S(0)(V; V ) redu
es, as it should, to38



the 
orresponding a
tion in Ref. [9℄ in the 
ase in whi
h Vm is orthogonal to the ba
kgroundgauge �eld.Let us 
onsider now the branon-dependent a
tion. This turns out to have the followingform35: S(0)(h; �) + S(0)(V; �) + S(0)(�; �) + S(0)(�; �): (B.120)Therefore, the �elds �m in general 
ouple with some bulk �elds, but these mixings are
on�ned to the spin-0 a
tion. The expli
it expressions for the di�erent pie
es areS(0)(h; �) = �T2 Z d4xp�g � 2 �m �A0h�m + h ;nnm �+ e�A�m�mhii� ; (B.121)S(0)(V; �) = T�2 Z d4xp�g e�=2F nm Vn �m; (B.122)S(0)(�; �) = T2 Z d4xp�g �m �m� �; (B.123)S(0)(�; �) = �T2 Z d4xp�g �Gmn���m ���n + 12�m�mg�� �n�ng�� �12g��g�� � g��g���+12�m�n �m�ng�� g�� +T�2pg=G Æ(Y
 � Y
)�m�mi : (B.124)We dis
uss the various singularities that 
an be observed in the above in Subse
tion4.2.3 and below.C Spin-0 Spe
trum for 6D Supergravity Compa
ti�
ationWe �nally analyse the (massive) spin-0 
u
tuations in 6D braneworlds by using the generalspin-0 a
tion given in Appendix B. Here we dis
ard the branons. There are di�erent waysto make this trun
ation 
onsistently, e.g. by introdu
ing an orbifold that proje
ts themout. In Ref. [9℄ su
h an orbifold has been de�ned taking into a

ount the presen
e of atleast two pat
hes in the des
ription of spheri
al topologies. Here we only use the fa
t thatthe orbifold a
tion in the interse
tion of the two pat
hes is ' ! ' + �. In the absen
e ofthe branons the Æ(0) singularities mentioned in Subse
tion 4.2.3 obviously disappear. Weshall see that it is also possible to deal with the other type of singularities mentioned thereand extra
t a �nite spe
trum.Here we fo
us on the unwarped solutions and in parti
ular on the rugbyballs and saddle-spheres de�ned in Subse
tion 2.3. In this 
ase we will be able to generalize the harmoni
analysis developed in Subse
tion 5.2.2 to the spin-0 se
tor, whi
h involves 2D tensors aswell as 2D ve
tors and s
alars. This te
hnique allows us to transform 
ompli
ated 
oupleddi�erential equations into algebrai
 equations whose solutions 
an be found exa
tly. Therelevant 
u
tuations are hmn, Vm, � , Vij and Vmn, where m and n run over � and '. Weobserve that the 
u
tuations Vm orthogonal to ba
kground gauge �eld de
ouple to the other�elds and have already been analyzed in [9℄; therefore here we assume Vm to be parallel to35The term of the form S(0)(V2; �) vanishes as a 
onsequen
e of HMNP = 0 at the ba
kground level, whi
hin turn follows from our ba
kground ansatz. 39



the ba
kground gauge �eld. One should keep in mind that, if the branons are proje
tedout by the above-mentioned orbifold, only the modes with m even survive (in the Fourierexpansion over eim'). The spin-0 a
tion in the light 
one gauge assumes the following form:S(0)(h; h) = � 14�2 Z d6Xp�G h��hmn��hmn + hmn;lhmn;l�2hmlhnhR lhmn + �2hlmhl nFmhF nh + �2hmnhlhFlmFhn�12h mm (�2 +D2)h nn + T2 �2(h mm )2pg=G Æ(X2 � Y2)� ;S(0)(V; V ) = �12 Z d6Xp�G [��Vm��V m + Vm;nV m;n+12RVmV m + �22 F 2VmV m� ;S(0)(�; �) = 14�2 Z d6Xp�G �� ��2 +D2 � 4r20� �� ;S(0)(V2; V2) = Z d6Xp�G � 116Vij(�2 +D2)Vij + 116Vmn(�2 +D2)V mn��2
232 (VmnFmn)2� ;S(0)(h; V ) = Z d6Xp�G h�Vn;mh nl F lmi ;S(0)(h; �) = 18 Z d6Xp�GF 2 � h mm ;S(0)(V; �) = Z d6Xp�G �4Fmn(Vm;n � Vn;m);S(0)(V; V2) = ��4
 Z d6Xp�GVmnFmnV ;ll ; (C.125)where we have used the light 
one gauge relation h ii + h mm = 0 in S(0)(h; h) and theproperty FmlF nl = GmnF 2=2 in S(0)(V; V ) and S(0)(h; �), whi
h is a 
onsequen
e of (5.77).We now want to use a te
hnique similar to that explained in the spin-1 se
tor, in orderto transform the above di�erential problem into an algebrai
 one. Note that the methodprovided in Subse
tion 5.2.2 
an be already applied to perform this transformation in theterms S(0)(V; V ), S(0)(�; �), S(0)(V2; V2), S(0)(V; �) and S(0)(V; V2) as they only involve 2Ds
alars and 2D ve
tors36. What we have done there is to identify appropriate mass-squaredoperators from the diagonal part of the bilinear a
tion, whi
h are Hermitian on
e the HCsare imposed. In this way we were able to de�ne 
omplete sets of 2D s
alar and ve
torharmoni
s. Then we fo
used on the 
ases in whi
h the derivative relation, Eq. (5.89),between s
alar and ve
tor harmoni
s holds. That relation is what allowed us to deal withthe derivative 
ouplings between s
alars and ve
tors and transform the spin-1 di�erentialproblem into an algebrai
 one, whi
h 
ould easily be solved.36The analysis of the Vmn-EOMs shows that Vmn=p�G is a 2D s
alar.40



Here we generalize the above pro
edure to in
lude the 2D tensor 
u
tuations in hmn.Indeed, hmn 
an be de
omposed into its tra
e, h mm , and tra
eless part, ~hmn � hmn �Gmnh ll =2, so that the �rst entry in (C.125) de
omposes into the two terms:S(0)(h mm ; h mm ) = 18�2 Z d6Xp�G �h mm ��2 +D2 � �24 F 2�h nn � ;S(0)(~hmn; ~hmn) = 14�2 Z d6Xp�G h~hmn ��2 +D2 �R� ~hmni ; (C.126)where we used the following identities:Rpmqn = R2 (GpqGmn �GmqGpn); FlmFhn = F 22 (GlhGmn �GmhGln): (C.127)Observe that h mm is in fa
t a 2D s
alar �eld, and we 
an expand it in terms of the 2D s
alarharmoni
s found in Subse
tion 5.1.2. The 
u
tuations ~hmn are instead genuine 2D tensor
u
tuations, and the appropriate mass-squared operator is �D2 +R. Thus, we would liketo solve the eigenproblem: ��D2 +R� ~hmn = �2T ~hmn; (C.128)with the given NCs and HCs, where �2T are the 
orresponding mass-eigenvalues.In a general basis, Eq. (C.128) is a set of two 
oupled di�erential equations (the tra
elessproperty removes one out of the three 
omponents of a rank two symmetri
 tensor in twodimensions). However, by writing down Eq. (C.128) in the � basis de�ned in (5.86):��D2 +R�h�� = �2T h��; (C.129)where we used h�� = ~h��, and by expli
itly evaluatingD2h��, one �nds that the equationsfor h++ and h�� are de
oupled, like those of the h+i and h�i �elds in the spin-1 se
tor.After a long but straightforward 
al
ulation we �nd� �2�f�� + _B2 ��f�� + m2e�B � 2m _Be�B=2 + _B22 � �B2 ! f�� = r204 �2Tf��; (C.130)where a dot represents a derivative with respe
t to � and f�� is the wave fun
tion of h��,de�ned by a KK expansionh��(X) =Xn;mh��nm(x)f��nm(�)eim'; with m = generi
 integer (C.131)and in (C.130) the KK numbers n and m are understood. The eigenvalues �2T 
an befound by using the te
hnique dis
ussed in Ref. [6℄: one 
an put the equations into thehypergeometri
 form, 
onsider the general solution to the hypergeometri
 equation andthen impose the HCs and NCs. We �nd� For jmj! � 2 �2T = 4r20 [(n+ jmj!)(n+ jmj! + 1)� 2℄ (C.132)41



� For �2 <m! < 2 �2T = 4r20 [(n+ 2)(n + 3)� 2℄ (C.133)where n = 0; 1; 2; 3; ::: . In this way we have found a 
omplete set of 2D tensor harmoni
s.We now remember that, in the spin-1 se
tor analysed in Subse
tion 5.2.2, one 
an gen-erate the 2D ve
tor harmoni
s by a
ting with derivatives over the 2D s
alar harmoni
s (seeEq. (5.89) and the dis
ussion right above). We 
an imagine that something similar happenshere and the 2D tensor harmoni
s (C.129) 
an be generated by a
ting with derivatives over2D ve
tor harmoni
s. This is indeed the 
ase and in order to see it let us 
onsider the 2Dve
tor harmoni
s for Vm: ��D2 + R2 �Vm = �2V Vm; (C.134)where �2V are the 2D ve
tor mass-eigenvalues. From now on we shall assume Condition(5.88), so that �2V = �2, with �2 the 2D s
alar mass-eigenvalues given in (5.85). After somemanipulation it is easy to show that if Vm satis�es the previous equation then we also have�D2 ~Vm;n +R( ~Vm;n + ~Vn;m) + 12(R;mVn +R;nVm �GmnR;lV l) = �2 ~Vm;n; (C.135)where ~Vm;n � Vm;n�GmnV ;ll =2. This equation is valid for any unwarped 
ompa
ti�
ation,but in the rugbyball 
ase it 
an be simpli�ed. Although the Ri

i s
alar is not 
onstanteverywhere like in the sphere limit as it 
ontains delta-fun
tions, these additional deltafun
tion terms 
an be dis
arded in Eq. (C.135) be
ause they are dominated by strongersingularities37, whi
h emerge from D2 ~Vm;n. This allows us to write (C.135) as follows:�D2 ~Vm;n +Rs( ~Vm;n + ~Vn;m) = �2 ~Vm;n; (C.136)where Rs is the Ri

i s
alar of the sphere (Rs = 8=r20), or, in the � basis,��D2 + 2Rs�V�;� = �2V�;�; (C.137)where we used V�;� = ~V�;�. Now, 
omparing the eigenproblems for h�� and V�;�, Eqs.(C.129) and (C.137), we see that their eigenfun
tions will belong to the same orthogonalset provided that: �2T = �2 �Rs = �2 � 8=r20 : (C.138)By 
omparing the 2D ve
tor mass-eigenvalues, �2 given in (5.85), with the 2D tensor eigen-values, �2T given in Eqs. (C.132) and (C.133), we �nd that Condition (C.138) is indeed truein the following 
ases:� For m = 0 or jmj � 2=!, whi
h we denote by 0 6< jmj! 6< 2, with the 
onstraintfn;mg 6= f0; 0g ; f1; 0g.� For jmj! = 1, with the 
onstraint n 6= 0.37This is a quite generi
 property of rugbyball 
ompa
ti�
ations [6, 9℄.42



� The sphere 
ase (! = 1), with the 
onstraint fn;mg 6= f0; 0g ; f1; 0g ; f0;�1g. Thisresult is in agreement with that obtained by using the Wigner fun
tions [31℄.When (C.138) is true a derivative relation between the 2D tensor and 2D ve
tor wavefun
tions holds: D�(f�nm(�)eim') = 
T nmf��nm(�)eim'; (C.139)where 
T nm are normalization 
onstants whi
h, having 
hosen a 
onvenient normalizationfor the wave fun
tions, 
an be �xed to be 
T nm =p�2T nm=p2.It remains to expand the 6D �elds in the a
tion (C.125) into their harmoni
s on therugbyball and integrate over the extra dimensions. Thanks to the derivative relations(5.89,C.139), and F 2 = 
onst, the mass-squared operator redu
es to an algebrai
 matrixwith 
onstant entries, whi
h 
an easily be diagonalized. We note that the mass-matrix turnsout to be well-de�ned despite the singularities mentioned in Subse
tion 4.2.3.We end with the resulting spe
trum for spin-0 �elds (whi
h 
an be trusted when Eq.(C.138) holds). For de�niteness we fo
us here on the 6D supergravity setup, but thereare no problems in deriving the squared masses in the EYM� 
ase as well. We split thespe
trum a

ording to the values of l � n+ jmj!:� For l = 0 r204 M2 = 0; 0; 2; [2℄� For l = 1 r204 M2 = 2; 6; [2℄; [2℄; [2℄; [6℄� For l > 1M2 = �2nm with multipli
ity 1[+3℄M2 = 4r20 �1 + r204 �2nm �q1 + r20�2nm� with multipli
ity 1[+1℄M2 = 4r20 �1 + r204 �2nm +q1 + r20�2nm� with multipli
ity 1[+1℄where the square bra
kets denote heli
ity-0 
omponents of higher spin �elds and the remain-ing modes are physi
al spin-0 �elds. We observe that there are neither ghosts nor ta
hyonsand we re
over the two massless �elds dis
ussed in Subse
tion 5.4.2.As an e�e
tive 
he
k of the above spe
trum we observe that it 
orre
tly redu
es, when! = 1, to the sphere result obtained by dire
tly expanding the bulk �elds over the Wignerfun
tions [27℄.
43
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