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Abstra
tWe 
onstru
t families of supersymmetri
 solutions of type IIB andD = 11supergravity that are invariant under the non-relativisti
 
onformal alge-bra for various values of dynami
al exponent z � 4 and z � 3, respe
tively.The solutions are based on �ve- and seven-dimensional Sasaki-Einsteinmanifolds and generalise the known solutions with dynami
al exponentz = 4 for the type IIB 
ase and z = 3 for the D = 11 
ase, respe
tively.
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1 Introdu
tionThere has re
ently been mu
h interest in �nding holographi
 realisations of systemsinvariant under the non-relativisti
 
onformal algebra starting with the work [1℄,[2℄ and dis
ussed further in related work [3℄-[32℄. Su
h systems are invariant underGalilean transformations, generated by time and spatial translations, spatial rota-tions, Galilean boosts and a mass operator, whi
h is a 
entral element of the algebra,
ombined with s
ale transformations. If x+ is the time 
oordinate, and x denotes dspatial 
oordinates, the s
aling symmetry a
ts asx! �x; x+ ! �zx+ ; (1.1)where z is 
alled the dynami
al exponent. When z = 2 this non-relativisti
 
onformalsymmetry 
an be enlarged to an invarian
e under the S
hr�odinger algebra whi
hin
ludes an additional spe
ial 
onformal generator.The solutions found in [1℄, [2℄ with d = 2 and z = 2 were subsequently em-bedded into type IIB string theory in [8℄,[9℄,[10℄ and were based on an arbitrary�ve-dimensional Sasaki-Einstein manifold, SE5. The work of [9℄ also 
onstru
tedtype IIB solutions with d = 2 and z = 4 and again these were 
onstru
ted using anarbitrary SE5. It was also shown in [9℄ that the solutions with z = 2 and z = 4
an be obtained from a �ve dimensional theory with a massive ve
tor �eld after aKaluza-Klein redu
tion on the SE5 spa
e [9℄. This pro
edure was generalised tosolutions of D = 11 supergravity in [31℄: using a similar KK redu
tion on an arbi-trary seven-dimensional Sasaki-Einstein spa
e, SE7, solutions with non relativisti

onformal symmetry with d = 1 and z = 3 were found.The type IIB solution of [8℄,[9℄,[10℄ with z = 2 do not preserve any supersymmetry[9℄. One aim of this note is to show that, by 
ontrast, the type IIB solutions of [9℄with z = 4 and the D = 11 solutions of [31℄ with z = 3 are both supersymmetri
and generi
ally preserve two supersymmetries. A se
ond aim is to generalise bothof these supersymmetri
 solutions to di�erent values of z. We will 
onstru
t newsupersymmetri
 solutions using eigenmodes of the Lapla
ian a
ting on one-forms onthe SE5 or SE7 spa
e. If the eiegenvalue is � then we obtain type IIB solutions withz = 1 +p1 + � and D = 11 solutions with z = 1 + 12p4 + �. This gives rise to typeIIB solutions with z � 4 and D = 11 solutions with z � 3, respe
tively. For the 
aseof S5 we get solutions with z = 4; 5; : : : while for the 
ase of S7 we get solutions withz = 3; 312 ; 4; : : : and both of these preserve 8 supersymmetries.Our 
onstru
tions have some similarities with the 
onstru
tion of type IIB solu-tions in [24℄ that were based on eigenmodes of the Lapla
ian a
ting on s
alar fun
tions1



on the SE5 spa
e. Our IIB solutions preserve the same supersymmetry and we showhow our solutions 
an be superposed with those of [24℄ while maintaining a s
alingsymmetry. An analogous superposition is possible for the D = 11 solutions, whi
hwe shall also des
ribe.2 The type IIB solutionsThe ansatz for the type IIB solutions we shall 
onsider is given byds2 = dr2r2 + r2 �2dx+dx� + dx21 + dx22�+ ds2(SE5) + 2r2Cdx+F5 = 4r3dx+ ^ dx� ^ dr ^ dx1 ^ dx2 + 4V ol(SE5)� dx+ ^ ��CY3dC + d(r4C) ^ dx1 ^ dx2� (2.1)where SE5 is an arbitrary �ve-dimensional Sasaki-Einstein spa
e and the metri
ds2(SE5) is normalised so that the Ri

i tensor is equal to four times the metri
(i.e. the same normalisation as that of a unit radius �ve-sphere). Re
all that themetri
 
one over the SE5, ds2(CY3) = dr2 + r2ds2(SE5) ; (2.2)is Calabi-Yau. The K�ahler form on the CY3 is denoted !ij and the 
omplex stru
tureis de�ned1 by Jij = !ikgkj, where gij is the Calabi-Yau 
one metri
. We will de�nethe one-form �, whi
h is dual to the Reeb ve
tor on SE5 by�i = �Jij (d log r)j : (2.3)The one-form C is a one-form on the CY3 
one. When C = 0 we have the standardAdS5 � SE5 solution of type IIB whi
h, in general, preserves eight supersymmetries(four Poin
ar�e and four super
onformal), 
orresponding to an N = 1 SCFT in d = 4.More generally, we 
an deform this solution by 
hoosing C 6= 0 provided that dC is
o-
losed on CY3: d �CY dC = 0 : (2.4)With this 
ondition, F5 is 
losed and in fa
t it is also suÆ
ient for the type IIBEinstein equations to be satis�ed. As we will show these solutions preserve one1While this is standard in the physi
s literature, often in the maths literature Jij = �!ikgkj .
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half of the Poin
ar�e supersymmetries. Note that the solution is invariant under thetransformation x� ! x� � �; C ! C + d� (2.5)for some fun
tion � on the CY 
one. Thus, if dC = 0, we 
an remove C, at leastlo
ally, by su
h a transformation.We will look for solutions where the one-form C has weight � under the a
tionof r�r. Then it is straightforward to 
he
k, following [1℄ and [2℄ that our solution isinvariant under non-relativisti
 
onformal transformations with two spatial dimen-sions x1, x2 and dynami
al exponent z = 2 + �. For example the s
aling symmetryis a
ting as in (1.1) 
ombined with r ! ��1r, x� ! �2�zx�. Following the analysisof 
losed and 
o-
losed two forms on 
ones (su
h as dC) in appendix A of [33℄ we
onsider solutions 
onstru
ted from a 
o-
losed one-form � on the SE5 spa
e that isan eigenmode of the Lapla
ian �SE = (dyd+ ddy)SE:C = r��; �SE� = ��; dy� = 0 : (2.6)It is straightforward to 
he
k that dC is 
o-
losed providing that � = �(� + 2). Forour appli
ations we 
hoose the bran
h � = �1 +p1 + � leading to solutions withz = 1 +p1 + � : (2.7)A general result valid for any �ve-dimensional Einstein spa
e, normalised as we have,is that for 
o-
losed 1-forms � � 8 and � = 8 holds i� the 1-form is dual to a Killingve
tor (see se
tion 4.3 of [34℄). Thus in general our 
onstru
tion leads to solutionswith z � 4 : (2.8)Sin
e all SE5 manifolds have at least the Reeb Killing ve
tor, dual to the one-form �,this bound is always saturated. Indeed the solution of [9℄ with z = 4 is in our 
lass.Spe
i�
ally it 
an be obtained by setting C = �r2� (and rede�ning x� ! �x�=2):one 
an expli
itly 
he
k that � is 
o-
losed on SE5 and is an eigenmode of �SE witheigenvalue � = 8. Note that for this solution the two-form dC is proportional to theK�ahler-form of the Calabi-Yau 
one: dC = 2�!.On S5 the spe
trum of �S5 a
ting on one-forms is well known and we have � =(s+1)(s+3) for s = 1; 2; 3 : : : (see for example [35℄ eq (2.20)) leading to � = s+1 andhen
e new 
lasses of solutions with z = 4; 5; 6 : : : . Note that these solutions 
ome infamilies, transforming in the SO(6) irreps 15, 64, 175, : : : . To obtain similar resultsfor T 1;1 one 
an 
onsult [36℄. 3



We now dis
uss a 
onstru
tion that 
an be used when the spe
trum of the Lapla-
ian a
ting on fun
tions is known, but not a
ting on one-forms. For example, thes
alar Lapla
ian was studied in [40℄ for the Y p;q metri
s [41℄, but as far as we knowit has not been dis
ussed a
ting on one-forms. Spe
i�
ally we 
onstru
t (1; 1) formsdC on the CY 
one using s
alar fun
tions � on the 
one as follows. We writeCi = Jij�j� (2.9)for some fun
tion � on CY3. A short 
al
ulation shows that ifr2CY� = � (2.10)for some 
onstant � then dC is 
o-
losed. The two-form dC is a (1; 1) form on CY3and it is primitive, J ijdCij = 0, if and only if � = 0. Observe that the solution of[9℄ with z = 4 �ts into this 
lass by taking � = ��r2=2 and � = �6�, leading toC = �r2�.We now 
onsider solutions with � = 0, 
orresponding to harmoni
 fun
tions2 onthe CY 
one with dC (1; 1) and primitive. We next write� = r�f (2.11)where f is a fun
tion on the SE5 spa
e satisfying�r2SE5f = kf (2.12)with k = �(� + 4) (see e.g. [37℄). For the solutions of interest we 
hoose the bran
h� = �2 + p4 + k leading to z = p4 + k. For the spe
ial 
ase of the �ve-spherewe 
an 
he
k with the results that we obtained above. The eigenfun
tions f on the�ve-sphere are given by spheri
al harmoni
s with k = l(l+4), l = 1; 2; : : : and hen
ez = l + 2. The l = 1 harmoni
 appears to violate the bound (2.8). However, it isstraightforward to see that the 
onstru
tion for l = 1 leads to dC = 0 for whi
h C 
anbe removed by a transformation of the form (2.5). Thus for S5 we should 
onsiderl � 2 leading to solutions with z = 4; 5; : : : , as above. It is worth pointing out thatfor higher values of l some of the eigenfun
tions will also lead to 
losed C: if we
onsider the harmoni
 fun
tion on R6 given by xi1 : : : xil
i1:::il where 
 is symmetri
and tra
eless then, with J = dx1 ^ dx2 + dx3 ^ dx4 + dx5 ^ dx6 we see that dC = 0 ifJ[ij
k℄ji3:::il = 0.2Note that in general the one-form C de�ned in (2.9) has a 
omponent in the dr dire
tion, unlikein (2.6). However, lo
ally we 
an remove it by a transformation of the form (2.5). Also, one 
andire
tly show that the resulting one-form � is 
o-
losed on the SE5 spa
e.4



2.1 SupersymmetryWe introdu
e the frame e+ = rdx+e� = r(dx� + C)e2 = rdx1e3 = rdx2e4 = drrem = emSE; m = 5; : : : ; 9 (2.13)where emSE is an orthonormal frame for the SE5 spa
e. We 
an writeF5 =B5 + �10B5 (2.14)B5 =4e+ ^ e� ^ e2 ^ e3 ^ e4 � re+ ^ dC ^ e2 ^ e3 (2.15)where we have 
hosen �+�23456789 = +1. The Killing spinor equation 
an be writtenDM� + i16=F�M� = DM�+ i2=B�M� = 0 : (2.16)We are using the 
onventions for type IIB supergravity [42℄[43℄ as in [44℄ and inparti
ular, �11 = �+�23456789 with the 
hiral IIB spinors satisfying �11� = ��.If � are the Killing spinors for the AdS5�SE5 solution, then we �nd that we mustalso impose that �+�23� = i��+� = 0 : (2.17)The �rst 
ondition maintains the Poin
ar�e supersymmetries but breaks all of thesuper
onformal supersymmetries (this 
an be expli
itly 
he
ked using, for example,the results of [45℄). The se
ond 
ondition breaks a further half of these3. Thus whendC 6= 0, we preserve two Poin
ar�e supersymmetries for a generi
 SE5 and this isin
reased to eight Poin
ar�e supersymmetries for S5.3That we preserve the Poin
ar�e supersymmetries suggests that we 
an extend our solutions awayfrom the near horizon limit of the D3-branes. This is indeed the 
ase but we won't expand uponthat here.
5



3 The D = 11 solutionsThe 
onstru
tion of the D = 11 solutions is very similar. We 
onsider the ansatz forD=11 supergravity solutions:ds2 = d�24�2 + �2 �2dx+dx� + dx2�+ ds2(SE7) + 2�2Cdx+G = �3�2dx+ ^ dx� ^ d� ^ dx+ dx+ ^ dx ^ d(�3C) (3.1)where SE7 is a seven-dimensional Sasaki-Einstein spa
e and ds2(SE7) is normalisedso that the Ri

i tensor is equal to six times the metri
 (this is the normalisation of aunit radius seven-sphere). It is 
onvenient to 
hange 
oordinates via � = r2 to bringthe solution to the formds2 = dr2r2 + r4 �2dx+dx� + dx2�+ ds2(SE7) + 2r4Cdx+G = �6r5dx+ ^ dx� ^ dr ^ dx+ dx+ ^ dx ^ d(r6C) : (3.2)In these 
oordinates the 
one metri
ds2CY = dr2 + r2ds2(SE7) (3.3)is a metri
 on Calabi-Yau four-fold. We will use the same notation for the CY spa
eas in the previous se
tion.When the one-form C is zero we have the standard AdS4�SE7 solution of D = 11supergravity that, in general, preserves eight supersymmetries. We again �nd thatall the equations of motion are solved if C is a one-form on CY4 and the two-formdC is 
o-
losed d �CY dC = 0 : (3.4)The solutions are again invariant under the transformation (2.5). We will 
onsidersolutions where the one-form C has weight � under the a
tion of r�r, 
orrespondingto dynami
al exponent z = 2 + �=2. As before, using the results in appendix A of[33℄, we 
onsider solutions 
onstru
ted from a 
o-
losed one-form � on the SE7 spa
ethat is an eigenmode of the Lapla
ian �SE:C = r��; �SE� = ��; dy� = 0 : (3.5)One 
an 
he
k that dC is 
o-
losed providing that � = �(�+4). For our appli
ationswe 
hoose the bran
h � = �2 +p4 + � leading to solutions withz = 1 + 12p4 + � : (3.6)6



A general result valid for any seven-dimensional Einstein spa
e, normalised as wehave, is that for 
o-
losed 1-forms � � 12 and � = 12 holds i� the 1-form is dual toa Killing ve
tor (see se
tion 4.3 of [34℄). Thus in general our 
onstru
tion leads tosolutions with z � 3 (3.7)and the bound is again saturated for all SE7 spa
es. Observe that the solutions of[31℄ with z = 3 �t into this 
lass. Spe
i�
ally they are obtained by setting C = �r2�(after rede�ning x ! x=2 and x� ! �x�=8). On S7 the spe
trum of �S7 is wellknown and we have � = s(s+6)+5 for s = 1; 2; 3 : : : (see for example [34℄ eq (7.2.5))leading to � = 1 + s and hen
e new 
lasses of solutions with z = 3; 312 ; 4; : : : . Thesesolutions 
ome in families transforming in the SO8) irreps 28, 160v, 567v, : : : .Results on the spe
trum of the Lapla
ian on some homogeneous SE7 spa
es 
an befound in [46℄,[47℄,[48℄.As before we 
an 
onstru
t (1; 1) 
o-
losed two-forms dC using s
alar fun
tions �on CY4 We write Ci = Jij�j�; r2CY� = � : (3.8)and dC is again primitive if and only if � = 0. The solutions of [31℄ with z = 3 ariseby taking � = �r2 and � = �8� leading to C = �r2�. We now fo
us on solutionswith � = 0, 
orresponding to harmoni
 fun
tions on the CY 
one. We take� = r�f (3.9)where f is a fun
tion on the SE7 spa
e satisfying�r2SE7f = kf (3.10)with k = �(� + 6). For our appli
ations we 
hoose the bran
h � = �3 + p9 + kleading to solutions with z = 12 + 12p9 + k. For example, on the seven-sphere theeigenfun
tions f are given by spheri
al harmoni
s with k = l(l + 6) with l = 1; 2; : : :and hen
e z = 2+l=2. Ex
luding the l = 1 harmoni
, as it 
an be removed by a trans-formation of the form (2.5), for S7 we are left with solutions with z = 3; 7=2; 4; : : : ,as above.
7



3.1 SupersymmetryWe introdu
e a frame e+ = r2dx+e� = r2(dx� + C)e2 = r2dxe3 = drrem = emSE; m = 4; : : : ; 10 : (3.11)We thus have G = 6e+ ^ e� ^ e2 ^ e3 + r2e+ ^ e2 ^ dC�11G = �6V ol(SE7) + dx+ �CY dC (3.12)where we have 
hosen the orientation �+�23::::10 = +1.The Killing spinor equation 
an be written asrM�+ 1288[�MN1N2N3N4 � 8ÆN1M �N2N3N4 ℄GN1N2N3N4� = 0 : (3.13)We are using the 
onventions for D = 11 supergravity [49℄ as in [50℄ and in parti
ular�+�2345678910 = +1.If � are the Killing spinors arising for the AdS4� SE7 solution, then we �nd thatwe must also impose that �+�2� = ���+� = 0 : (3.14)The �rst 
ondition maintains the Poin
ar�e supersymmetries but breaks all of thesuper
onformal supersymmetries. The se
ond 
ondition breaks a further half of these.Thus when dC 6= 0, we preserve two Poin
ar�e supersymmetries for a generi
 SE7 andthis is in
reased to eight Poin
ar�e supersymmetries for S7.3.2 Skew-Whi�ed SolutionsIf AdS4�SE7 is a supersymmetri
 solution of D = 11 supergravity, then if we \skew-whi�" by reversing the sign of the 
ux (or equivalently 
hanging the orientation ofSE7) then apart from the spe
ial 
ase when the SE7 spa
e is the round S7, allsupersymmetry is broken [51℄. Despite the la
k of supersymmetry, su
h solutions areknown to be perturbatively stable [51℄. Similarly, if we reverse the sign of the 
uxin our new solutions (3.2), we will obtain solutions of D = 11 supergravity that willgeneri
ally not preserve any supersymmetry.8



4 Further GeneralisationWe now dis
uss a further generalisation of the solutions that we have 
onsidered so far,preserving the same amount of supersymmetry, whi
h in
orporate the 
onstru
tionof [24℄. For type IIB the metri
 is now given byds2 = dr2r2 + r2 �2dx+dx� + dx21 + dx22�+ ds2(SE5) + r2 �2Cdx+ + h(dx+)2�(4.1)with the �ve-form un
hanged from (2.1). The 
onditions on the one-form C are asbefore and we demand that h is a harmoni
 fun
tion on the CY3 
one:r2CY h = 0 : (4.2)Choosing h to have weight �0 under r�r we takeh = r�0f 0 ; (4.3)where f 0 is an eigenfun
tion of the Lapla
ian on SE5 with eigenvalue k0�r2SE5f 0 = k0f 0 (4.4)with k0 = �0(�0 + 4). If we set C = 0 and 
hoose the bran
h �0 = �2 +p4 + k0 thenthese are the solutions 
onstru
ted in se
tion 5 of [24℄ and have dynami
al exponentz = 12p4 + k0. As noted in [24℄ an appli
ation of Li
hnerowi
z's theorem [52℄,[53℄implies that these solutions have z � 3=2 with z = 3=2 only possible for S5. Nowif there is a s
alar eigenfun
tion with eigenvalue k0 and a one-form eigenmode of theLapla
ian on SE5 with eigenvalue � that satisfy z = 12p4 + k0 = 1 + p1 + � thenwe 
an superpose the solution with h as in (4.3) and the one-form C as in (2.6) andhave a solution with s
aling symmetry with this value of z. For example on S5, usingthe notation as before, we have k0 = l0(l0 + 4), l0 = 1; 2; : : : and � = (s + 1)(s + 3),s = 1; 2; : : : and hen
e we must demand that l0 = 2(s + 2), s = 1; 2; : : : , givingsolutions with z = 3 + s.The story for D = 11 is very similar. The metri
 is now given byds2 = dr2r2 + r4 �2dx+dx� + dx2�+ ds2(SE7) + r4 �2Cdx+ + h(dx+)2� (4.5)with the four-form un
hanged from (3.2). The 
onditions on the one-form C are asbefore and we demand that h is a harmoni
 fun
tion on the CY4 
one:r2CY h = 0 : (4.6)9



Choosing h to have weight �0 under r�r we takeh = r�0f 0 ; (4.7)where f 0 is an eigenfun
tion of the Lapla
ian on SE7 with eigenvalue k0�r2SE7f 0 = k0f 0 (4.8)with k0 = �0(�0 + 6). If we set C = 0 and 
hose the bran
h �0 = �3 +p9 + k0 thenthese solutions have dynami
al exponent z = 14(1+p9 + k0). Li
hnerowi
z's theorem[52℄,[53℄ implies that these solutions have z � 5=4 with z = 5=4 only possible for S7.If there is a s
alar eigenfun
tion with eigenvalue k0 and a one-form eignemode of theLapla
ian on SE7 with eigenvalue � that satisfy z = 14(1 +p9 + k0) = 1 + 12p4 + �then we 
an superpose the solution with h as in (4.7) and the one-form C as in (3.5)and have a solution with s
aling symmetry with this value of z. For example on S7,using the notation as before, we have k0 = l0(l0+6), l0 = 1; 2; : : : and � = s(s+6)+5,s = 1; 2; : : : and hen
e we must demand that l0 = 2(s + 3), s = 1; 2; : : : , givingsolutions with z = 12(5 + s).A
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