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AbstratWe onstrut families of supersymmetri solutions of type IIB andD = 11supergravity that are invariant under the non-relativisti onformal alge-bra for various values of dynamial exponent z � 4 and z � 3, respetively.The solutions are based on �ve- and seven-dimensional Sasaki-Einsteinmanifolds and generalise the known solutions with dynamial exponentz = 4 for the type IIB ase and z = 3 for the D = 11 ase, respetively.
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1 IntrodutionThere has reently been muh interest in �nding holographi realisations of systemsinvariant under the non-relativisti onformal algebra starting with the work [1℄,[2℄ and disussed further in related work [3℄-[32℄. Suh systems are invariant underGalilean transformations, generated by time and spatial translations, spatial rota-tions, Galilean boosts and a mass operator, whih is a entral element of the algebra,ombined with sale transformations. If x+ is the time oordinate, and x denotes dspatial oordinates, the saling symmetry ats asx! �x; x+ ! �zx+ ; (1.1)where z is alled the dynamial exponent. When z = 2 this non-relativisti onformalsymmetry an be enlarged to an invariane under the Shr�odinger algebra whihinludes an additional speial onformal generator.The solutions found in [1℄, [2℄ with d = 2 and z = 2 were subsequently em-bedded into type IIB string theory in [8℄,[9℄,[10℄ and were based on an arbitrary�ve-dimensional Sasaki-Einstein manifold, SE5. The work of [9℄ also onstrutedtype IIB solutions with d = 2 and z = 4 and again these were onstruted using anarbitrary SE5. It was also shown in [9℄ that the solutions with z = 2 and z = 4an be obtained from a �ve dimensional theory with a massive vetor �eld after aKaluza-Klein redution on the SE5 spae [9℄. This proedure was generalised tosolutions of D = 11 supergravity in [31℄: using a similar KK redution on an arbi-trary seven-dimensional Sasaki-Einstein spae, SE7, solutions with non relativistionformal symmetry with d = 1 and z = 3 were found.The type IIB solution of [8℄,[9℄,[10℄ with z = 2 do not preserve any supersymmetry[9℄. One aim of this note is to show that, by ontrast, the type IIB solutions of [9℄with z = 4 and the D = 11 solutions of [31℄ with z = 3 are both supersymmetriand generially preserve two supersymmetries. A seond aim is to generalise bothof these supersymmetri solutions to di�erent values of z. We will onstrut newsupersymmetri solutions using eigenmodes of the Laplaian ating on one-forms onthe SE5 or SE7 spae. If the eiegenvalue is � then we obtain type IIB solutions withz = 1 +p1 + � and D = 11 solutions with z = 1 + 12p4 + �. This gives rise to typeIIB solutions with z � 4 and D = 11 solutions with z � 3, respetively. For the aseof S5 we get solutions with z = 4; 5; : : : while for the ase of S7 we get solutions withz = 3; 312 ; 4; : : : and both of these preserve 8 supersymmetries.Our onstrutions have some similarities with the onstrution of type IIB solu-tions in [24℄ that were based on eigenmodes of the Laplaian ating on salar funtions1



on the SE5 spae. Our IIB solutions preserve the same supersymmetry and we showhow our solutions an be superposed with those of [24℄ while maintaining a salingsymmetry. An analogous superposition is possible for the D = 11 solutions, whihwe shall also desribe.2 The type IIB solutionsThe ansatz for the type IIB solutions we shall onsider is given byds2 = dr2r2 + r2 �2dx+dx� + dx21 + dx22�+ ds2(SE5) + 2r2Cdx+F5 = 4r3dx+ ^ dx� ^ dr ^ dx1 ^ dx2 + 4V ol(SE5)� dx+ ^ ��CY3dC + d(r4C) ^ dx1 ^ dx2� (2.1)where SE5 is an arbitrary �ve-dimensional Sasaki-Einstein spae and the metrids2(SE5) is normalised so that the Rii tensor is equal to four times the metri(i.e. the same normalisation as that of a unit radius �ve-sphere). Reall that themetri one over the SE5, ds2(CY3) = dr2 + r2ds2(SE5) ; (2.2)is Calabi-Yau. The K�ahler form on the CY3 is denoted !ij and the omplex strutureis de�ned1 by Jij = !ikgkj, where gij is the Calabi-Yau one metri. We will de�nethe one-form �, whih is dual to the Reeb vetor on SE5 by�i = �Jij (d log r)j : (2.3)The one-form C is a one-form on the CY3 one. When C = 0 we have the standardAdS5 � SE5 solution of type IIB whih, in general, preserves eight supersymmetries(four Poinar�e and four superonformal), orresponding to an N = 1 SCFT in d = 4.More generally, we an deform this solution by hoosing C 6= 0 provided that dC iso-losed on CY3: d �CY dC = 0 : (2.4)With this ondition, F5 is losed and in fat it is also suÆient for the type IIBEinstein equations to be satis�ed. As we will show these solutions preserve one1While this is standard in the physis literature, often in the maths literature Jij = �!ikgkj .
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half of the Poinar�e supersymmetries. Note that the solution is invariant under thetransformation x� ! x� � �; C ! C + d� (2.5)for some funtion � on the CY one. Thus, if dC = 0, we an remove C, at leastloally, by suh a transformation.We will look for solutions where the one-form C has weight � under the ationof r�r. Then it is straightforward to hek, following [1℄ and [2℄ that our solution isinvariant under non-relativisti onformal transformations with two spatial dimen-sions x1, x2 and dynamial exponent z = 2 + �. For example the saling symmetryis ating as in (1.1) ombined with r ! ��1r, x� ! �2�zx�. Following the analysisof losed and o-losed two forms on ones (suh as dC) in appendix A of [33℄ weonsider solutions onstruted from a o-losed one-form � on the SE5 spae that isan eigenmode of the Laplaian �SE = (dyd+ ddy)SE:C = r��; �SE� = ��; dy� = 0 : (2.6)It is straightforward to hek that dC is o-losed providing that � = �(� + 2). Forour appliations we hoose the branh � = �1 +p1 + � leading to solutions withz = 1 +p1 + � : (2.7)A general result valid for any �ve-dimensional Einstein spae, normalised as we have,is that for o-losed 1-forms � � 8 and � = 8 holds i� the 1-form is dual to a Killingvetor (see setion 4.3 of [34℄). Thus in general our onstrution leads to solutionswith z � 4 : (2.8)Sine all SE5 manifolds have at least the Reeb Killing vetor, dual to the one-form �,this bound is always saturated. Indeed the solution of [9℄ with z = 4 is in our lass.Spei�ally it an be obtained by setting C = �r2� (and rede�ning x� ! �x�=2):one an expliitly hek that � is o-losed on SE5 and is an eigenmode of �SE witheigenvalue � = 8. Note that for this solution the two-form dC is proportional to theK�ahler-form of the Calabi-Yau one: dC = 2�!.On S5 the spetrum of �S5 ating on one-forms is well known and we have � =(s+1)(s+3) for s = 1; 2; 3 : : : (see for example [35℄ eq (2.20)) leading to � = s+1 andhene new lasses of solutions with z = 4; 5; 6 : : : . Note that these solutions ome infamilies, transforming in the SO(6) irreps 15, 64, 175, : : : . To obtain similar resultsfor T 1;1 one an onsult [36℄. 3



We now disuss a onstrution that an be used when the spetrum of the Lapla-ian ating on funtions is known, but not ating on one-forms. For example, thesalar Laplaian was studied in [40℄ for the Y p;q metris [41℄, but as far as we knowit has not been disussed ating on one-forms. Spei�ally we onstrut (1; 1) formsdC on the CY one using salar funtions � on the one as follows. We writeCi = Jij�j� (2.9)for some funtion � on CY3. A short alulation shows that ifr2CY� = � (2.10)for some onstant � then dC is o-losed. The two-form dC is a (1; 1) form on CY3and it is primitive, J ijdCij = 0, if and only if � = 0. Observe that the solution of[9℄ with z = 4 �ts into this lass by taking � = ��r2=2 and � = �6�, leading toC = �r2�.We now onsider solutions with � = 0, orresponding to harmoni funtions2 onthe CY one with dC (1; 1) and primitive. We next write� = r�f (2.11)where f is a funtion on the SE5 spae satisfying�r2SE5f = kf (2.12)with k = �(� + 4) (see e.g. [37℄). For the solutions of interest we hoose the branh� = �2 + p4 + k leading to z = p4 + k. For the speial ase of the �ve-spherewe an hek with the results that we obtained above. The eigenfuntions f on the�ve-sphere are given by spherial harmonis with k = l(l+4), l = 1; 2; : : : and henez = l + 2. The l = 1 harmoni appears to violate the bound (2.8). However, it isstraightforward to see that the onstrution for l = 1 leads to dC = 0 for whih C anbe removed by a transformation of the form (2.5). Thus for S5 we should onsiderl � 2 leading to solutions with z = 4; 5; : : : , as above. It is worth pointing out thatfor higher values of l some of the eigenfuntions will also lead to losed C: if weonsider the harmoni funtion on R6 given by xi1 : : : xili1:::il where  is symmetriand traeless then, with J = dx1 ^ dx2 + dx3 ^ dx4 + dx5 ^ dx6 we see that dC = 0 ifJ[ijk℄ji3:::il = 0.2Note that in general the one-form C de�ned in (2.9) has a omponent in the dr diretion, unlikein (2.6). However, loally we an remove it by a transformation of the form (2.5). Also, one andiretly show that the resulting one-form � is o-losed on the SE5 spae.4



2.1 SupersymmetryWe introdue the frame e+ = rdx+e� = r(dx� + C)e2 = rdx1e3 = rdx2e4 = drrem = emSE; m = 5; : : : ; 9 (2.13)where emSE is an orthonormal frame for the SE5 spae. We an writeF5 =B5 + �10B5 (2.14)B5 =4e+ ^ e� ^ e2 ^ e3 ^ e4 � re+ ^ dC ^ e2 ^ e3 (2.15)where we have hosen �+�23456789 = +1. The Killing spinor equation an be writtenDM� + i16=F�M� = DM�+ i2=B�M� = 0 : (2.16)We are using the onventions for type IIB supergravity [42℄[43℄ as in [44℄ and inpartiular, �11 = �+�23456789 with the hiral IIB spinors satisfying �11� = ��.If � are the Killing spinors for the AdS5�SE5 solution, then we �nd that we mustalso impose that �+�23� = i��+� = 0 : (2.17)The �rst ondition maintains the Poinar�e supersymmetries but breaks all of thesuperonformal supersymmetries (this an be expliitly heked using, for example,the results of [45℄). The seond ondition breaks a further half of these3. Thus whendC 6= 0, we preserve two Poinar�e supersymmetries for a generi SE5 and this isinreased to eight Poinar�e supersymmetries for S5.3That we preserve the Poinar�e supersymmetries suggests that we an extend our solutions awayfrom the near horizon limit of the D3-branes. This is indeed the ase but we won't expand uponthat here.
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3 The D = 11 solutionsThe onstrution of the D = 11 solutions is very similar. We onsider the ansatz forD=11 supergravity solutions:ds2 = d�24�2 + �2 �2dx+dx� + dx2�+ ds2(SE7) + 2�2Cdx+G = �3�2dx+ ^ dx� ^ d� ^ dx+ dx+ ^ dx ^ d(�3C) (3.1)where SE7 is a seven-dimensional Sasaki-Einstein spae and ds2(SE7) is normalisedso that the Rii tensor is equal to six times the metri (this is the normalisation of aunit radius seven-sphere). It is onvenient to hange oordinates via � = r2 to bringthe solution to the formds2 = dr2r2 + r4 �2dx+dx� + dx2�+ ds2(SE7) + 2r4Cdx+G = �6r5dx+ ^ dx� ^ dr ^ dx+ dx+ ^ dx ^ d(r6C) : (3.2)In these oordinates the one metrids2CY = dr2 + r2ds2(SE7) (3.3)is a metri on Calabi-Yau four-fold. We will use the same notation for the CY spaeas in the previous setion.When the one-form C is zero we have the standard AdS4�SE7 solution of D = 11supergravity that, in general, preserves eight supersymmetries. We again �nd thatall the equations of motion are solved if C is a one-form on CY4 and the two-formdC is o-losed d �CY dC = 0 : (3.4)The solutions are again invariant under the transformation (2.5). We will onsidersolutions where the one-form C has weight � under the ation of r�r, orrespondingto dynamial exponent z = 2 + �=2. As before, using the results in appendix A of[33℄, we onsider solutions onstruted from a o-losed one-form � on the SE7 spaethat is an eigenmode of the Laplaian �SE:C = r��; �SE� = ��; dy� = 0 : (3.5)One an hek that dC is o-losed providing that � = �(�+4). For our appliationswe hoose the branh � = �2 +p4 + � leading to solutions withz = 1 + 12p4 + � : (3.6)6



A general result valid for any seven-dimensional Einstein spae, normalised as wehave, is that for o-losed 1-forms � � 12 and � = 12 holds i� the 1-form is dual toa Killing vetor (see setion 4.3 of [34℄). Thus in general our onstrution leads tosolutions with z � 3 (3.7)and the bound is again saturated for all SE7 spaes. Observe that the solutions of[31℄ with z = 3 �t into this lass. Spei�ally they are obtained by setting C = �r2�(after rede�ning x ! x=2 and x� ! �x�=8). On S7 the spetrum of �S7 is wellknown and we have � = s(s+6)+5 for s = 1; 2; 3 : : : (see for example [34℄ eq (7.2.5))leading to � = 1 + s and hene new lasses of solutions with z = 3; 312 ; 4; : : : . Thesesolutions ome in families transforming in the SO8) irreps 28, 160v, 567v, : : : .Results on the spetrum of the Laplaian on some homogeneous SE7 spaes an befound in [46℄,[47℄,[48℄.As before we an onstrut (1; 1) o-losed two-forms dC using salar funtions �on CY4 We write Ci = Jij�j�; r2CY� = � : (3.8)and dC is again primitive if and only if � = 0. The solutions of [31℄ with z = 3 ariseby taking � = �r2 and � = �8� leading to C = �r2�. We now fous on solutionswith � = 0, orresponding to harmoni funtions on the CY one. We take� = r�f (3.9)where f is a funtion on the SE7 spae satisfying�r2SE7f = kf (3.10)with k = �(� + 6). For our appliations we hoose the branh � = �3 + p9 + kleading to solutions with z = 12 + 12p9 + k. For example, on the seven-sphere theeigenfuntions f are given by spherial harmonis with k = l(l + 6) with l = 1; 2; : : :and hene z = 2+l=2. Exluding the l = 1 harmoni, as it an be removed by a trans-formation of the form (2.5), for S7 we are left with solutions with z = 3; 7=2; 4; : : : ,as above.
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3.1 SupersymmetryWe introdue a frame e+ = r2dx+e� = r2(dx� + C)e2 = r2dxe3 = drrem = emSE; m = 4; : : : ; 10 : (3.11)We thus have G = 6e+ ^ e� ^ e2 ^ e3 + r2e+ ^ e2 ^ dC�11G = �6V ol(SE7) + dx+ �CY dC (3.12)where we have hosen the orientation �+�23::::10 = +1.The Killing spinor equation an be written asrM�+ 1288[�MN1N2N3N4 � 8ÆN1M �N2N3N4 ℄GN1N2N3N4� = 0 : (3.13)We are using the onventions for D = 11 supergravity [49℄ as in [50℄ and in partiular�+�2345678910 = +1.If � are the Killing spinors arising for the AdS4� SE7 solution, then we �nd thatwe must also impose that �+�2� = ���+� = 0 : (3.14)The �rst ondition maintains the Poinar�e supersymmetries but breaks all of thesuperonformal supersymmetries. The seond ondition breaks a further half of these.Thus when dC 6= 0, we preserve two Poinar�e supersymmetries for a generi SE7 andthis is inreased to eight Poinar�e supersymmetries for S7.3.2 Skew-Whi�ed SolutionsIf AdS4�SE7 is a supersymmetri solution of D = 11 supergravity, then if we \skew-whi�" by reversing the sign of the ux (or equivalently hanging the orientation ofSE7) then apart from the speial ase when the SE7 spae is the round S7, allsupersymmetry is broken [51℄. Despite the lak of supersymmetry, suh solutions areknown to be perturbatively stable [51℄. Similarly, if we reverse the sign of the uxin our new solutions (3.2), we will obtain solutions of D = 11 supergravity that willgenerially not preserve any supersymmetry.8



4 Further GeneralisationWe now disuss a further generalisation of the solutions that we have onsidered so far,preserving the same amount of supersymmetry, whih inorporate the onstrutionof [24℄. For type IIB the metri is now given byds2 = dr2r2 + r2 �2dx+dx� + dx21 + dx22�+ ds2(SE5) + r2 �2Cdx+ + h(dx+)2�(4.1)with the �ve-form unhanged from (2.1). The onditions on the one-form C are asbefore and we demand that h is a harmoni funtion on the CY3 one:r2CY h = 0 : (4.2)Choosing h to have weight �0 under r�r we takeh = r�0f 0 ; (4.3)where f 0 is an eigenfuntion of the Laplaian on SE5 with eigenvalue k0�r2SE5f 0 = k0f 0 (4.4)with k0 = �0(�0 + 4). If we set C = 0 and hoose the branh �0 = �2 +p4 + k0 thenthese are the solutions onstruted in setion 5 of [24℄ and have dynamial exponentz = 12p4 + k0. As noted in [24℄ an appliation of Lihnerowiz's theorem [52℄,[53℄implies that these solutions have z � 3=2 with z = 3=2 only possible for S5. Nowif there is a salar eigenfuntion with eigenvalue k0 and a one-form eigenmode of theLaplaian on SE5 with eigenvalue � that satisfy z = 12p4 + k0 = 1 + p1 + � thenwe an superpose the solution with h as in (4.3) and the one-form C as in (2.6) andhave a solution with saling symmetry with this value of z. For example on S5, usingthe notation as before, we have k0 = l0(l0 + 4), l0 = 1; 2; : : : and � = (s + 1)(s + 3),s = 1; 2; : : : and hene we must demand that l0 = 2(s + 2), s = 1; 2; : : : , givingsolutions with z = 3 + s.The story for D = 11 is very similar. The metri is now given byds2 = dr2r2 + r4 �2dx+dx� + dx2�+ ds2(SE7) + r4 �2Cdx+ + h(dx+)2� (4.5)with the four-form unhanged from (3.2). The onditions on the one-form C are asbefore and we demand that h is a harmoni funtion on the CY4 one:r2CY h = 0 : (4.6)9



Choosing h to have weight �0 under r�r we takeh = r�0f 0 ; (4.7)where f 0 is an eigenfuntion of the Laplaian on SE7 with eigenvalue k0�r2SE7f 0 = k0f 0 (4.8)with k0 = �0(�0 + 6). If we set C = 0 and hose the branh �0 = �3 +p9 + k0 thenthese solutions have dynamial exponent z = 14(1+p9 + k0). Lihnerowiz's theorem[52℄,[53℄ implies that these solutions have z � 5=4 with z = 5=4 only possible for S7.If there is a salar eigenfuntion with eigenvalue k0 and a one-form eignemode of theLaplaian on SE7 with eigenvalue � that satisfy z = 14(1 +p9 + k0) = 1 + 12p4 + �then we an superpose the solution with h as in (4.7) and the one-form C as in (3.5)and have a solution with saling symmetry with this value of z. For example on S7,using the notation as before, we have k0 = l0(l0+6), l0 = 1; 2; : : : and � = s(s+6)+5,s = 1; 2; : : : and hene we must demand that l0 = 2(s + 3), s = 1; 2; : : : , givingsolutions with z = 12(5 + s).AknowledgementsWe would like to thank Seok Kim, James Sparks, Osar Varela and Daniel Waldram.for helpful disussions. JPG is supported by an EPSRC Senior Fellowship and aRoyal Soiety Wolfson Award.Referenes[1℄ D. T. Son, \Toward an AdS/old atoms orrespondene: a geometri realizationof the Shroedinger symmetry," Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972[hep-th℄℄.[2℄ K. Balasubramanian and J. MGreevy, \Gravity duals for non-relativistiCFTs," Phys. Rev. Lett. 101, 061601 (2008) [arXiv:0804.4053 [hep-th℄℄.[3℄ M. Sakaguhi and K. Yoshida, \Super Shrodinger in Super Conformal,"arXiv:0805.2661 [hep-th℄.[4℄ W. D. Goldberger, \AdS/CFT duality for non-relativisti �eld theory,"arXiv:0806.2867 [hep-th℄. 10
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