
HELMUT-SCHMIDT-UNIVERSITÄT
UNIVERSITÄT DER BUNDESWEHR HAMBURG

LEHRSTUHL FÜR BETRIEBSWIRTSCHAFTSLEHRE,
INSBES. LOGISTIK-MANAGEMENT

Prof. Dr. M. J. Geiger

Arbeitspapier / Research Report
RR-11-02-01 · February 2011 · ISSN 2192-0826

The cover scheduling problem arising
in wireless sensor networks

André Rossi1,2, Marc Sevaux1,3,∗, Alok Singh2 and Martin Josef Geiger3

1Université de Bretagne-Sud, Lab-STICC, Lorient, France.
2University of Hyderabad, Department of Computer and Information Sciences, Hyder-
abad, India.
3Helmut-Schmidt-University, Logistics Management Department, Hamburg, Germany.
∗Corresponding author: marc.sevaux@univ-ubs.fr

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-11-02-01

Contents
1 Introduction 1

1.1 Example . 2
1.2 Problem definition and notations . 2
1.3 Organization of the paper . 3

2 A non-linear mathematical formulation for the WSN-CSP 3

3 Complexity analysis 5
3.1 The cover scheduling problem in a particular case 5
3.2 The cover scheduling problem is NP-hard in the strong sense 6

4 Properties 7
4.1 Lower bounds . 7
4.2 Inner symmetry property . 7
4.3 Full covers . 8
4.4 Highlighting three symmetry properties 8

5 A MILP formulation of the WSN-CSP 9
5.1 Breaking symmetry . 10
5.2 Ideas for addressing the problem . 11

6 A heuristic approach (CSH) 12

7 A memetic algorithm (CSMA) 13

8 Computational experiments 16

9 Conclusion and perspectives 17

References 18

I

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-11-02-01

Abstract

One critical problem in wireless sensor networks is to assemble the sensors in
different covers in order to solve different objectives such as maximum duration
of the network lifetime of minimizing the coverage breach. The output of these
problems is a set of covers with a duration of usage. Another problem coming just
after is how to schedule the covers. Most of the time, this part is left unsolved
as the challenges appear less important than generating the covers. Our current
work will describe the wireless sensor network cover scheduling problem (WSN-
CSP), a non-linear mathematical model, a MILP model and a heuristic (CSH)
that solves this problem. To improve the quality of the solutions, we also propose
a memetic algorithm (CSMA). Both approaches will be tested on a large set of
instances. Moreover, some complexity results and theorical properties are also
given in the paper.

1 Introduction

The use of wireless sensor networks (WSNs) has been increasing at a rapid pace in
remote or hostile environments for data gathering [1]. This includes battlefield surveil-
lance, fire monitoring in forests, or undersea tsunami monitoring. In such environments,
sensors are usually deployed in an ad hoc manner or at random when it is not possible
to place them precisely. To compensate for this random deployment, a greater number
of sensors are deployed than what is actually required. This also increases the fault
tolerance as some targets are redundantly covered by multiple sensors.

Several objectives are usually aimed in WSN. The most two important are “minimizing
the cover breach under bandwidth constraint” (MCBB) or its dual problem “maximize
the network lifetime under bandwidth constraint” (MNLB). Both problems are very
efficiently solved in a previous framework based on column generation [8]. Sensors are
gathered into a number of subsets (not necessarily disjoint) such that sensors in each
subset cover the targets. Such subsets are referred to as covers. Covers are activated
sequentially in a mutually exclusive manner, i.e., at any instant of time only sensors
belonging to the active cover are used, whereas all other sensors are not. Using covers
significantly increases network lifetime for two main reasons. First, sensors consume
much more energy in an active state than in an inactive state [7]. Second, a sensor
battery has been shown to last longer if it oscillates frequently between active and
inactive states [2, 3].

The output of the previous framework [8] is the design of the covers and the time
these covers should be used to satisfy one of the two objectives. Once the covers are
determined, another problem appears and it consists in scheduling these covers. Most
the time, this schedule part is left unanswered since producing the covers is much more
important and difficult than scheduling them. While trying to solve the scheduling
problem we observed that some of the targets where not covered for quite a significant
time.

1

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-11-02-01

1.1 Example

In a small example depicted on figure 1, five covers have been generated. Gray boxes
represent the coverage of the targets. In the current scheduling (in natural order),
target T4 is not covered for 8 consecutive time units. Of course, this can be improved
by changing the scheduling order. Figure 2 gives, for the same example, another order
for which the objective value is 5 (due to targets T2 and T3).

0 2 4 6 8 10

T1

T2

T3

T4 s1

s2

s3

s3

s4

s5

Target T4 not covered for 8 time units

Figure 1: A first scheduling whose objective value is 8. Target T4 is not covered for 8
consecutive time units because of successive scheduling of covers C3, C4 and C5 (in any
order).

0 2 4 6 8 10

T1

T2

T3

T4 s1

s2

s3

s3

s4

s5

T3 not covered for 5 time units

T2 not covered for 5 time units

Figure 2: An improved scheduling of the same covers gives the objective value of 5. Two
targets T2 and T3 are concerned.

1.2 Problem definition and notations

From this simple example, one can see that the problem is rather simple to understand.
Given a set of covers, an usage duration of these covers, and the targets covered, find the
best schedule that minimize the longest period of an uncovered target. This problem
will be refereed as the wireless sensor network cover scheduling problem (WSN-CSP).

More formally, the WSN-CSP can be defined as follows. Let m be the number of targets,
and q the number of covers. For all j ∈ {1, . . . , q} the duration of cover sj is denoted
by pj , and we refer to it as a processing time like in the scheduling problems. For all
k ∈ {1, . . . , m}, Ck is the set of all covers that cover target k. For all j ∈ {1, . . . , q},
Dj is the set of the targets that are covered by cover sj. The cover scheduling problem
is to schedule the covers so as to minimize Δmax, the maximum period of time during
which a target is not covered.

In our small example, m = 4, q = 5, p = {2, 1, 3, 2, 3}, C1 = {s3, s5}, C2 = {s2, s4, s5},
C3 = {s2, s3, s4} and C4 = {s1, s2}. We have also D1 = {4}, D2 = {2, 3, 4}, D3 =

2

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-11-02-01

{1, 3}, D4 = {2, 3} and D5 = {1, 2}.

1.3 Organization of the paper

The rest of the paper is organized as follows. Section 2 will formally define the problem
as a non-linear programming formulation. Section 3 will present some complexity
results of the problem. Section 4 will then give some important properties that can be
stated. A MILP formulation of the problem is given in section 5. A heuristic together
with a memetic algorithm will be presented in sections 6 and 7. Section 8 will report
the numerical experiments and the last section will conclude the paper and give some
perspectives.

2 A non-linear mathematical formulation for the WSN-
CSP

For the sake of clarity, we introduce two dummy covers s0 and sq+1 with a zero duration
(p0 = pq+1 = 0) and that are part of Cl for all l ∈ {1, . . . , m}. s0 starts at time
0, sq+1 ends at time LT . The sets Q, Q′ and M will be also used in the model:
Q = {0, . . . , q + 1}, Q′ = {1, . . . , q + 1} and M = {1, . . . , m}.
The following variables will be used in the model: xj,i is a boolean variable that is set
to 1 if and only if cover j is in position i in the solution (the solution is a semi-active
single-machine schedule) for all (j, i) ∈ Q × Q, pseqi is the duration of the cover in
position i, cseqi is the completion time of the cover in position i, di,l is the distance of
the cover in position i to the next coverage occurrence of target l, for all (i, l) ∈ Q×M
and Δmax is the maximum duration over all the targets during which a target is not
covered by a cover.

The model below will solve the WSN scheduling problem.

3

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-11-02-01

Minimize Δmax (1)
q+1∑
i=0

xj,i = 1 ∀j ∈ Q (2)

q+1∑
j=0

xj,i = 1 ∀i ∈ Q (3)

pseqi =

q+1∑
j=0

xj,ipj ∀i ∈ Q (4)

cseqi − pseqi ≥ cseqi−1 ∀i ∈ Q′ (5)
di,l = min

z∈Cl|z≤i−1
(cseqi − pseqi − cseqz) ∀(i, l) ∈ Q′ ×M (6)

Δmax ≥ di,l ∀(i, l) ∈ Q×M (7)
x0,0 = 1 and cseq0 = 0 (8)

xq+1,q+1 = 1 and cseqq+1 = LT (9)
xj,i ∈ {0, 1} ∀(j, i) ∈ Q×Q (10)

pseqi ≥ 0 ∀i ∈ Q (11)
cseqi ≥ 0 ∀i ∈ Q (12)

di,l ≥ 0 ∀(i, l) ∈ Q×M (13)
Δmax ≥ 0 (14)

Constraint (2) states that cover sj is allocated exactly one position, for all j ∈ Q and
constraint (3) that each position i is allocated exactly one cover, for all i ∈ Q. The
duration of the cover in position i, pseqi is defined by constraint (4). Constraint (5)
states that the cover in position i starts after the completion of the cover in position
i− 1 for all i in Q′. For all (i, l) ∈ Q′ ×M , di,l is defined as the time elapsed between
completion time of the last cover in Cl and the starting time of the cover in position
i as presented in constraint (6). Constraint (7) imposes that Δmax is larger than any
di,l. Cover s0 is in position 0 in the solution and starts at time 0 (Constraint (8)) and
cover sq+1 is in position q + 1 in the solution and starts at time LT , Constraint (9).
Constraint (10), (11), (12), (13) and (14) fixes the integrality and signs of variables.

It can be seen that this model is non-linear because of constraint (6) that defines di,l.
Due to this constraint, the model will not be used in practice to solve the WSN-CSP
instances that are definitively too large.

4

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-11-02-01

3 Complexity analysis

3.1 The cover scheduling problem in a particular case

We consider the following particular case of the cover scheduling problem: m = 2
targets, the q sensors are partitioned in O1 + O12 where O1 is the set of all covers that
cover target t1 only, and O12 is the set of all covers that cover targets t1 and t2. We
assume that O1 ∪O12 = {1, . . . , q}, with O1 ∩O12 = ∅. The cardinality of these sets is
defined by q1 = |O1| and q12 = |O12|, so q = q1 + q12.

Moreover, the time during which cover j is used (it is denoted by pj) is integer for all
covers j ∈ {1, . . . , q}, it is equal to 1 for all the covers in O1, it is greater than or equal
to 1 for the covers in O12.

As a consequence, the network lifetime LT is also integer and is equal to

LT = q1 +
∑

j∈O12

pj

Target t1 is covered by all the covers, but t2 is covered by the covers in O12 only. The
total amount of time during which t2 is not covered is equal to q1. This duration can
be split in at most q12 + 1 time intervals. Since all the covers duration are integer,
the minimum duration of the maximum time interval during which t2 is not covered is⌈

q1

q12+1

⌉
.

Lemma 1 If we assume that the covers in O12 are numbered in {1, . . . , q12}, an optimal
schedule to the covering scheduling problem in this particular case is returned by setting
the starting time sj of cover j in O12 as follows:

sj = j

⌈
q1

q12 + 1

⌉
+

∑
z<j

pz ∀j ∈ {1, . . . , q12}

The covers in O1 are scheduled in between, in any order.

Proof 1
⌈

q1

q12+1

⌉
is the minimum value for the maximum duration during which t2 is

not covered. It can be seen that the first cover in O12 stats at time
⌈

q1

q12+1

⌉
, and that the

time elapsed between two consecutive covers in O12 is
⌈

q1

q12+1

⌉
by construction. Now,

we can checked that the time elapsed between the completion time of the last cover in
O12 and LT is also less than or equal to

⌈
q1

q12+1

⌉
. This duration can be written as

5

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-11-02-01

LT − q12

⌈
q1

q12+1

⌉
+

∑q12

z=1 pz = q1 − q12

⌈
q1

q12+1

⌉
= (q12 + 1) q1

q12+1
− q12

⌈
q1

q12+1

⌉
= q12

(
q1

q12+1
−

⌈
q1

q12+1

⌉)
+ q1

q12+1

Since
(

q1

q12+1
−

⌈
q1

q12+1

⌉)
is negative or zero, we have

LT − q12

⌈
q1

q12+1

⌉
+

∑q12

z=1 pz ≤ q1

q12+1

≤
⌈

q1

q12+1

⌉

�

Remark 1 It may happen that the computed starting time of the last cover in O12 is
equal to LT . In that case this cover should start at any time t ≤ LT − pq12 provided it
does not overlap another cover.

Finally, as all the covers in O1 have a duration of one unit of time, they can be scheduled
in the q12 +1 time intervals, that all have an integer duration that is less than or equal
to

⌈
q1

q12+1

⌉
.

3.2 The cover scheduling problem is NP-hard in the strong
sense

In order to show that the cover scheduling problem is NP-hard in the strong sense,
we consider the following instance: m = 2 targets, the covers in O12 all have a one
duration, the network lifetime is LT = q12 + (q12 + 1)B, where B is a given integer
with B > 1. The covers in O1 have an integer duration pj ≤ B for all j ∈ O1, such
that

∑
j∈O1

pj = (q12 + 1)B. This implies that the q12 + 1 time intervals during which
t2 is not covered have a minimum maximum duration of B.

Determining whether or not the covers in O1 can be scheduled in those q12 + 1 time
intervals which duration is B is equivalent to answer the decision problem version of
the bin packing problem: does there exists a partition of O1 in q12 + 1 sets such that
the sum of the durations of the covers in each set does not exceed B?

Since a particular instance of the cover scheduling problem is equivalent to the bin
packing problem, the WSN-CSP is NP-hard in the strong sense.

6

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-11-02-01

4 Properties

4.1 Lower bounds

First, it can be observed that Δmax is lower bounded by the duration of any cover that
does not cover all the targets:

Δmax ≥ max
j∈{1,...,q}
|Dj |<m

pj

This lower bound is likely to be efficient for instances in which the breach rate is low.
We remind that the breach rate is the ratio of non-covered targets at any time in a
solution. A breach rate equal to zero means that all the targets are covered.

Furthermore, for a specific target, the duration for which this target is not covered
is equal to the lifetime of the network minus the time this target is covered. This
maximum time can be split, using the covers of that target in an equally distributed
separation. In Figure 1, target T1 is not covered for 5 units of time. Hence, by
positioning wisely covers s3 and s5, the maximum continuous time of non-covering T1

is 5/3 ≈ 1.67 time units. If we repeat this computation for all target and take the
maximum, we can deduce that Δmax is lower bounded by

Δmax ≥ max
k∈{1,...,m}

(
LT −∑

j∈Ck
pj

|Ck|+ 1

)

This bound is likely to perform well for instances in which the breach rate is high.

So in conclusion, Δmax is lower bounded by Δ

Δ = max

⎛
⎝ max

j∈{1,...,q}
|Dj |<m

pj , max
k∈{1,...,m}

(
LT −∑

j∈Ck
pj

|Ck|+ 1

)⎞
⎠ (15)

Obviously, this bound is not tight.

4.2 Inner symmetry property

Let sol be a solution to the WSN-CSP (sol is a permutation of {1, . . . , q}, and let solk be
the index of cover in the kth position in sol). Then, solution sol′ where the covers have
reversed positions has the same objective value as sol. Example: sol = (1, 3, 2, 5, 4)
and sol = (4, 5, 2, 3, 1).

This symmetry can be avoided in the MILP described in section 5 by limiting the
search to solutions into which the index of the first cover is less than the index of the
last cover:

q∑
j=1

jxj,1 ≤ 1 +

q∑
j=1

jxj,q (16)

Then cover q cannot be allocated position 1, nor can cover 1 be allocated position q,
with no inconvenience.

7

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-11-02-01

4.3 Full covers

A cover is said to be a full cover if and only if it covers all the targets. Let F ⊂
{1, . . . , q} be the set of full covers. F is defined by

F = {j ∈ {1, . . . , q}, |Dj| = m}

For any instance of the cover scheduling problem, we can consider that there exist two
additional dummy covers (out of the set {1, . . . , q}) that are scheduled at time 0 and
at time LT (they both have a zero duration). These two covers s0 and sq+1 have been
used in the NLP formulation of section 2.

In addition, it can be seen that the actual duration of full covers has no impact on
the objective function value (even though the numerical value of LT depends on the
duration of full covers) because Δmax is set by non-full covers only.

Lemma 2 If |F | ≤
⌊

q − 1

2

⌋
, then there exists an optimal solution with no two con-

secutive full covers, and no full-cover in position 1 nor in position q.

Proof 2 As |F | ≤
⌊

q − 1

2

⌋
, the number of non-full covers is large enough for building

a solution with no consecutive full covers, and no full covers in first or last position. Let
sol be an optimal solution to the cover scheduling problem with either two consecutive
full covers, or a full cover in the first position, of a full-cover in the last position. Then,
one of these full covers can be scheduled between two non-full covers. By performing
this modification, the objective function value can only decrease, as moving a full cover
cannot enlarge the period of time during which a target is not covered. �

4.4 Highlighting three symmetry properties

Without loss of generality, we now assume that 1 ≤ |F | ≤
⌊

q − 1

2

⌋
, and that the

covers have been re-indexed so that cover sj is a full cover if and only if j ≤ |F |. In
other words, F = {1, . . . , |F |}. Since the duration of full covers has no impact on the
solution, they can be interchanged freely.

Let sol be a solution to the cover scheduling problem. We assume that full covers have
been interchanged so that solj < solj+1 for all j ∈ {1, . . . , |F | − 1}. The solution is
split into |F |+ 1 contiguous intervals as follows:

Interval 1: covers in position {1, . . . , sol1}
Interval 2: covers in position {sol1 + 1, . . . , sol2}
Interval 3: covers in position {sol2 + 1, . . . , sol3}

8

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-11-02-01

· · ·
Interval |F |: covers in position {sol|F |−1 + 1, . . . , sol|F |}
Interval |F |+ 1: covers in position {sol|F | + 1, . . . , solq}

The following three symmetry properties are operations that leave the objective func-
tion unchanged, and generate solutions that are all considered equivalent to sol:

Symmetry 1 Swap two full covers

Symmetry 2 Reverse the non-full covers of an interval

Symmetry 3 Swap two intervals

The Symmetry 2 property is the global symmetry property mentioned earlier in section
4.2.

These operations performed on sol can be seen as undesirable symmetry properties,
that any optimization approach (whether exact of approximate) would attempt to avoid
them for shortening the size of the solution space to explore.

5 A MILP formulation of the WSN-CSP

The solution to this problem can be modeled as a permutation of {1, . . . , q}. Unlike
in section 2, the set Q is re-defined such as Q = {1, . . . , q}. For all (j, i) ∈ Q ×Q, let
xj,i be a binary variable that is set to one if and only if cover sj is in position i in the
solution, and which is set to zero otherwise. The numerical value for Δmax is fixed by
the total duration of a subset of consecutive covers such that none of them is covering
at least one target.

The WSN-CSP of finding a schedule (i.e. a permutation of {1, . . . , q}) that minimizes
Δmax can be stated as follows:

Minimize Δmax (17)
q∑

i=1

xj,i = 1 ∀j ∈ Q (18)

q∑
j=1

xj,i = 1 ∀i ∈ Q (19)

Δmax ≥ Δ (20)
∑
j∈S

|S|∑
i=1

pjxj,i+r ≤ Δmax ∀S ⊆ Q, |S| > 1,

|∪j∈SDj| < m, ∀r ∈ {0, . . . , q − |S|} (21)
xj,i ∈ {0, 1} ∀(j, i) ∈ Q×Q (22)

Δmax ≥ 0 (23)

9

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-11-02-01

The objective function is to minimize Δmax. Constraints (18), (19) and (22) are those
of the assignment problem. They enforce that x is a valid permutation of {1, . . . , q}.
Constraint (20) is enforcing the lower bound on Δmax defined in equation (15) and (23)
is a (useless) non-negativity constraint on Δmax.

Constraint (21) states that the duration of any subset of covers such that there exists at
least one target that is not covered by any of them, and that are scheduled consecutively,
is less than Δmax. More precisely, any subset S of covers that do not cover at least
one target and that are scheduled consecutively can occupy positions 1 to |S|, or 2 to
|S| + 1 . . . up to positions q − |S| to q. Note that the actual order of the covers in
S does not matter. In constraint (21), r is an offset that allows to track the starting
position of the corresponding subset of consecutive covers in the solution: i + r is in
{1, . . . , q − |S|} for i = 1. The case where |S| = 1 is dealt with, with constraint (20).
In short, this constraint removes all possible pairs, triplets, quadruplets, etc at any
position in the sequence.

Finally, this formulation can be seen as a combination of the assignment problem along
with an exponential set of constraints, which is a similar situation to what happens
when addressing the Travelling Salesman Problem with a MILP formulation for exam-
ple.

5.1 Breaking symmetry

We can attempt to break the three symmetry properties by adding the following con-
straints to the MILP formulation.

Symmetry 1 Swap two full covers

The full covers are indexed in {1, . . . , |F |}, and we enforce that they appear in
the same order in the solution:

q∑
i=1

ixj,1 + 1 ≤
q∑

i=1

ixj+1,i ∀j ∈ {1, . . . , |F | − 1} (24)

Symmetry 2 Reverse the non-full covers of an interval

The following constraint, which is too global, may prevents such swapings for
intervals 1 and |F + 1| only.

q∑
j=1

jxj,1 + 1 ≤
q∑

j=1

jxj,q (25)

Then cover q cannot be allocated position 1, nor can cover 1 be allocated position
q, with no inconvenience.

Symmetry 3 Swap two intervals

We use the same idea as in graph coloring, where the stables are sorted by non
decreasing cardinality.

10

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-11-02-01

- The number of non-full covers in the first interval is
∑q

i=1 ix1,i − 1.

- The number of non-full covers in interval j ∈ {2, . . . , |F |} is given by∑q
i=1 ixj,i −

∑q
i=1 ixj−1,i − 1.

- The number of non-full covers in the last interval (i.e. interval |F | + 1) is
q −∑q

i=1 ix|F |,i − 1.

Then the constraints are as follows

The number of non-full covers in the first interval is less than in the second one.
q∑

i=1

ix1,i ≤
q∑

i=1

ix2,i −
q∑

i=1

ix1,i (26)

The number of non-full covers in interval j − 1 is less than in interval j, for all
j ∈ {2, . . . , |F |}.

q∑
i=1

ixj,i −
q∑

i=1

ixj−1,i ≤
q∑

i=1

ixj+1,i −
q∑

i=1

ixj,i ∀j ∈ {2, . . . , |F |} (27)

The number of non-full covers in interval |F | is less than in the last interval (i.e.
interval |F |+ 1).

q∑
i=1

ix|F |,i −
q∑

i=1

ix|F |−1,i ≤ q −
q∑

i=1

ix|F |,i (28)

Of course, if two intervals have the same cardinality, these constraints won’t help
in breaking that symmetry.

In total, Equation (17)-(28) can be used for solving the WSN-CSP. But in practice,
this complete model cannot be addressed directly because of constraints (21) whose
number is exponential.

5.2 Ideas for addressing the problem

As for the TSP, it is intractable to enumerate all the constraints in (21) and new strong
inequalities or facets should be defined to be able to solve the problem to optimality.
Nevertheless, it might be interesting to consider (from a theoretical point of view) the
following approach.

1. The master problem is defined by equations (17)−(20), (22) and (23).

2. Solve the master problem. Let x be its optimal solution (it is a permutation) and
Δmax be its optimal objective value.

3. Let Δx
max be the actual value of the maximum period of time during which a

target is not covered in solution x.

11

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-11-02-01

4. If Δmax < Δx
max, then the current solution to the master problem is not optimal

to the original problem, as some constraints of type (21) are missing. Generate
the most violated constraint of type (21) and add it to the master problem. Go
to step 2.

5. Otherwise (i.e. if Δmax = Δx
max), and the current solution to the master problem

is optimal. Return x, Δmax and stop.

At step 3, the most violated constraint of type (21) is the one corresponding to the
covers that are responsible for Δx

max, so this constraint is easy to find for a given
solution x.

An additional constraint Let Δmax be the objective value of any feasible solution.
Then it can be deduced that any subset S of covers which total duration is strictly
greater than Δmax cannot be scheduled consecutively:

∑
j∈S

|S|∑
i=1

xj,i+r < |S| ∀S ⊆ Q, |S| > 1,
∑
j∈S

pj > Δmax ∀r ∈ {0, . . . , q − |S|} (29)

This new set of constraints (29) can be used in an interactive manner at step 4 of the
previous method or with any other solution given by a heuristic or a metaheuristic (see
section 6 and 7).

6 A heuristic approach (CSH)

The proposed cover scheduling heuristic (CSH) for WSN-CSP takes its inspiration from
the lower bound introduced in Section 4. Targets are sorted by decreasing minimum
non coverage time, i.e. the targets that are the most likely to be responsible for the
longest non coverage period of time are processed first. In this heuristic approach,
the non-overlapping constraint on covers is first relaxed. So the covers are allocated
unfeasible starting times for minimizing the longest period of non coverage time of
targets. More precisely, for each non-processed target k, the covers that cover it but
that are still unscheduled are scheduled so as to minimize the longest non coverage
duration. When all the covers have been scheduled, they are sorted by increasing
(unfeasible) starting times, and are finally scheduled according to that sequence.

We consider the cover scheduling problem in its most general form. Let Q = {0, . . . , q+
1} be the set of covers where two dummy covers s0 and sq+1 have been added to the
data. For all j ∈ Q cover sj is used pj > 0 units of time (p0 = pq+1 = 0). For all j ∈ Q
the starting time of cover sj will be denoted by stj (cover s0 starts at time 0, and cover
sq+1 starts at time LT). For all targets k ∈ M = {1, . . . , m}, Ck is the set of covers
that cover target k (The two dummy covers s0 and sq+1 cover all the targets and their
status is always scheduled).

12

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-11-02-01

First, the targets are sorted by decreasing uncovered time. For all targets k ∈ M , the
uncovered time UTk is the total time during which it is not covered divided by the
number of covers that cover it minus one.

UTk =

∑
j /∈Ck

pj

|Ck| − 1
∀k ∈M

Note that |Ck| ≥ 2 for all k because of covers s0 and sq+1. Thus, maxk∈{1,...,m} UTk is
a lower bound of the objective function.

Algorithm 1 will describe the Cover Scheduling Heuristic (CSH). We will need the
following variables in the algorithm. Let schedk be the number of covers in Ck that
have already been scheduled (for k = 1, sched1 = 2 because of the two dummy covers).
SCk is the set of the scheduled covers in Ck. Initially for k = 1, SC1 = {0, q +1}. UCk

is the set of the unscheduled covers in Ck. Initially for k = 1, UC1 = C1\{0, q +1}. Ck

is then partitioned in two disjoint subsets Ck = SCk ∪ UCk, but UCk might possibly
be empty with no inconvenience. By definition, schedk = |SCk|, for all k ∈M .

In Algorithm 1, we need to compute wz for all z ∈ {1, . . . , schedk − 1}. This value is
given by equation (30) as stated below. Note also that p0 = pq+1 = 0, SCk(0) = 0 as
cover 0 is always the very first scheduled cover. So pSCk(0) = 0. As st0 = 0, stSCk(0) = 0
too. SCk(schedk − 1) is the last element of SCk, so it is cover q + 1 as this cover
is the one having the maximum starting time. Consequently, stSCk(schedk−1) = LT .
Moreover, Addz is the set of all the covers that are to be added to time interval z, for
all z ∈ {1, . . . , schedk − 1} (initially, i.e. at the beginning of the process of target k,
Addz is empty for all z). Note that stSCk(z) is the starting time of the cover in position
z in the ordered set SCk. If some covers are overlapping, some wz will be negative, but
it does not matter.

wz = stSCk(z) −
(
stSCk(z−1) + pSCk(z−1)

)
−

∑
g∈Addz

pg ∀z ∈ {1, . . . , schedk − 1} (30)

In Algorithm 1, in line 15, Addz(h) refers to the cover index of the element in position
h in Addz.

7 A memetic algorithm (CSMA)

This section introduces a genetic algorithm based approach for WSN-CSP. The pro-
posed approach is referred to as CSGA (Cover Scheduling Genetic Algorithm) in the
sequel.

CSGA uses permutation encoding, i.e., a chromosome consists of a linear permutation
of covers. A permutation of covers specifies the order in which the covers are scheduled,
i.e., a value of j at the position i in the permutation indicates that cover j will be the
ith cover in the schedule.

The fitness function is same as the objective function of WSN-CSP. In order to compute
the fitness of a chromosome, we have to find the maximum duration for which a target

13

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-11-02-01

Algorithm 1: Cover Scheduling Heuristic (CSH)
Input: the set of covers Q and their duration
Output: a sequence of the covers

// Initialization
Compute UTk for all targets1

Sort the targets in decreasing values of UTk and re-index2

// Main loop over all targets
for k = 1→ m do3

Sort SCk by increasing order of the starting times of these covers4

Sort UCk by increasing duration of these covers5

while UCk �= ∅ do6

uc is the last cover index in UCk // i.e. with maximum duration7

compute wz as stated by equation (30)8

compute r = arg max
z∈{1,...,schedk−1}

(
wz

1 + |Addz|
)

9

allocate uc ∈ UCk such that Addr ← Addr ∪ {uc}10

UCk = UCk \ {uc}11

// Schedule the covers in Ck by setting starting times
forall z ∈ {1, . . . , schedk − 1} do12

forall g ∈ {1, . . . , |Addz|} do13

σ = Addz,g // i.e. the cover in position g in Addz14

stσ =
(
stSCk(z−1) + pSCk(z−1)

)
+ g wz

1+|Addz | +
g−1∑
h=1

pAddz(h)
15

SCk ← SCk ∪Addz16

Addz ← ∅17

// Repairing phase
Since some of the covers may overlap, sort them in increasing order of starting18

times
Output the final sequence (will be used for building a semi-active schedule of19

covers)

14

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-11-02-01

is uncovered in the schedule represented by that chromosome. The complexity of this
fitness evaluation is O(mq).

The probabilistic binary tournament selection is used for selecting the two parents for
crossover, where the candidate with better fitness is selected with probability pb. The
reason for using probabilistic binary tournament selection is that probabilistic binary
tournament is similar to rank selection as far as selection pressure is concerned. At
the same time, it is much more computationally efficient [5]. However, with very small
probability pr, we have selected a parent randomly instead of selecting it through
probabilistic binary tournament selection. This has been done with the motive of
increasing the diversity of the population.

The crossover operator used is the cycle crossover operator CX as initially described
in [6]. This crossover operator preserves the absolute positions of the covers in the
schedule from one parent or the other and causes a proper mix of the schedules of
the two parents. Uniform order based crossover [4] was also tried, but, CX gave better
results. Three swap mutations are used inside a single mutation operator to mutate the
chromosomes. We have applied the crossover operator always to generate an offspring,
whereas mutation operator has been used only with probability pm.

CSGA relies on the steady-state [4] population replacement model instead of the com-
monly used generational model. Unlike generational replacement, where the entire
parent population is replaced with an equal number of newly created children every
generation, in the steady-state population replacement method a single child is pro-
duced in every generation and it replaces a less fit member of the population. In com-
parison to the generational method, the steady-state population replacement method
generally finds better solutions faster. This is because of permanently keeping the best
solutions in the population and the immediate availability of a child for selection and
reproduction. Another advantage of the steady-state population replacement method
is the ease with which duplicate copies of the same individuals are prevented in the
population. In the generational approach, duplicate copies of the highly fit individuals
may exist in the population. Within few generatio! ns, these highly fit individuals
can dominate the whole population. When this happens, the crossover becomes to-
tally ineffective and the mutation becomes the only possible way to improve solution
quality. Under this situation, improvement in solution quality, if any, is very slow.
Such a situation is called the premature convergence. In the steady-state approach we
can easily avoid this situation by simply checking each newly generated child against
current population members and discarding it if it is identical to any member.

Initial population is generated randomly with the restriction that each member of the
initial population should be unique. The offspring created during each generation is
checked for uniqueness with respect to the existing population members, and, if it is
unique, it is inserted into the population replacing the worst member, otherwise it is
discarded.

With the intent of improving the solution quality even further, we have applied a
local search on the best solution obtained through genetic algorithm. This local search
follows an iterative process. During each iteration, it tries to swap a cover involved
in the longest breach with a cover which covers the target involved in the longest
breach. If such a swap can decrease the longest breach then it is accepted, otherwise

15

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-11-02-01

original schedule is restored. This process is repeated till no swap move is possible
that can decrease the longest breach. We have tried this local search inside the genetic
algorithm but the resulting approach was found to be too slow. Actually, each swap
move requires evaluating the fitness of the schedule from scratch which takes O(mq)
time as mentioned above. This time complexity of a single swap move makes this local
search inappropriate for use inside the genetic algorithm.

As far as parameter settings of the CSGA are concerned, the population size is fixed
to 400 individuals, pb is set to 0.8, pr is set to 0.01, and pm is taken to be equal to
0.05. The CSGA terminates when the best solution does not improve over 20,000
iterations. CSGA can also terminate when it fails to find a solution different from
current population members in 20 consecutive trials. All these parameter settings are
chosen empirically. Though these settings provide good results, they are in no way
optimal for all instances.

8 Computational experiments

The set of instances used is taken from the output of the framework done in [8]. For the
purpose of this paper, we solved the MNLB problem for different size and parameter
values. The number of targets m is taken in {50, 100, 150, 200}. For each value of m a
corresponding value of the number of sensor is given in {30, 60, 90, 120} and the sensing
range will be fixed to 150. Note that the number of sensors and the sensing range value
are not parameters of the WSN-CSP, but will influence the number of covers and their
duration. For each value of m, the bandwidth constraint will be either 5 of 10 or
equal to the number of targets and the breach rate will be either 0.1 or 0.2. For each
combination of the parameters, we generated 30 instances. The total set counts 720
instances in total.

All experiments were carried out on an Intel Core 2 Quad computer with 4 Gb of RAM
running at 2.83 Ghz under Ubuntu 9.04. The code is developed in C and compiled
with gcc version 4. The running times are not reported in details but the heuristic
CSH running time is always less than 0.02s. The average and maximum CPU time for
the CSGA are 5.83s and 40.61s when α = 0.1 and 14.72s and 60.71s when α = 0.2. All
our approaches are executed once on each instance.

Table 1 presents the results obtained by the heuristic CSH and by the Memetic Algo-
rithm CSMA. The table is organized as follows. The first column defines the instance
parameters (namely, the number of targets and the bandwidth constraint). Each row
corresponds to 30 instances for α = 0.1 and 30 instances for α = 0.2. The next five
columns are dedicated to instances where the breach rate α = 0.1 and the last five
columns where α = 0.2. For each group of five columns, the first figure is the deviation
of CSH over LB in percentage, the second figure is the number of optimal solutions
found by CSH over 30 instances (CSH=LB), the third figure is the deviation of CSMA
over LB, the fourth figure the number of optimal solution found by CSMA over 30
instances (CSMA=LB) and the last figure is the improvement of the CSMA over the
CSH. The last three lines of the table summarize these results.

16

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-11-02-01

Table 1: Results of CSH and CSMA

α = 0.1 α = 0.2
Parameters % CSH # CSH % MA # MA Imp. % CSH # CSH % MA # MA Imp.

m = 50, w = 5 66.2 2 11.0 21 31.1 107.4 0 15.4 12 42.2
m = 50, w = 10 75.3 0 8.2 22 36.1 97.0 0 14.6 14 39.8
m = 50, w = 50 61.5 2 7.9 23 30.8 110.3 0 14.4 14 42.6
m = 100, w = 5 77.4 0 1.0 28 41.2 136.1 0 10.3 7 51.1
m = 100, w = 10 89.4 1 1.1 26 43.4 127.7 0 8.8 10 50.9
m = 100, w = 100 78.4 0 0 30 41.9 132.3 0 7.5 10 50.9
m = 150, w = 5 97.8 0 1.2 25 46.9 160.0 0 13.3 3 54.2
m = 150, w = 10 102.3 0 1.1 26 47.9 165.5 0 19.6 2 53.8
m = 150, w = 150 95.6 0 0.9 27 46.6 164.2 0 12.3 4 54.5
m = 200, w = 5 107.1 0 1.3 26 49.4 183.1 0 22.7 0 56.2
m = 200, w = 10 133.9 0 0 27 55.9 201.7 0 16.4 3 59.6
m = 200, w = 200 131.4 0 1.3 24 54.9 188.6 0 18.0 2 58.2
Total opt. found 5 305 0 81
Average Deviation to LB 93.0% 2.9% 147.8% 14.5%
Average Imp. over CSH 43.8% 51.2%

From Table 1, one can observed there is a difference of the two approaches when α = 0.1
or α = 0.2. In fact, if we analyze the lower bound defined in section 4.1, we can easily
see that this bound is not tight. The different gaps observed between the two subsets of
instances might be due to the quality of the bound. This is comforted with the value in
column “Imp.” (the improvement of CSMA over CSH) which is rather constant for any
subset of instances (around 50%). Nevertheless, even with a non-tight lower bound.
We are able to prove the optimality of 386 instances over a total set of 720 instances.

9 Conclusion and perspectives

This paper, to our knowledge, is the first to properly address the Cover Scheduling
Problem in Wireless Sensor Networks (WSN-CSP). This problem appears once the
covers have been generated in a previous phase of the wireless sensor network problems
(like in MCBB or MNLB). The paper introduces a NLP model, a MILP model with an
exponential number of constraint and a theoretical study together with some interesting
properties of the problem.

Our practical approach consists of an efficient heuristic CSH and a memetic algorithm
CSMA. Both are tested on a large set of instances and give very convincing results. Our
future work will be oriented in two directions. First we plan to improve the memetic
algorithm with dedicated operators for the WSN-CSP and also look for different and
more efficient lower bounds of the problem. We are also going to investigate a preemp-
tive version of the problem where the covers can be scheduled for a duration shorter
than the total duration, interrupted and continued later.

17

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-11-02-01

References

[1] I.A. Akylidiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey of sensor
network. IEEE Communication Magazine, 40(8):102–116, 2002.

[2] L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncino, and R. Scarsi. A discrete-
time battery model for high-level power estimation. In Proceedings of the IEEE
Design Automation and Test in Europe conference, pages 35–39, Paris, France,
2000.

[3] L. Benini, D.Bruni, A. Macii, E. Macii, and M. Poncino. Discharge current steering
for battery lifetime optimization. IEEE Transaction on computers, 52(8):985–995,
2003.

[4] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.

[5] D. E. Goldberg and K. Deb. A comparative analysis of selection schemes used
in genetic algorithms. In Proceedings of the 1991 Conference on Foundations of
Genetic Algorithms, pages 69–93, Morgan Kaufmann, 1991.

[6] I. M. Oliver, D. J. Smith, and J. R. C. Holland. A study of permutation crossover
operators on the travelling salesman problem. In Proocedings of the second inter-
national conference on genetic algorithms, pages 224–230, Erlbaum, 1987.

[7] V. Raghunathan, C. Schurgers, S. Park, and M.B. Srivastava. Energy aware wireless
microsensor networks. IEEE Signal Processing Magazine, 19(2):1007–1023, 2002.

[8] A. Rossi, A. Singh, and M. Sevaux. Génération de colonnes et réseaux de capteurs
sans fil. In Proceedings of the ROADEF, 11ème congrès de la Société Française de
Recherche Opérationnelle et d’Aide à la Décision, Toulouse, France, 24-26 February
2010.

18

