
HELMUT-SCHMIDT-UNIVERSITÄT
UNIVERSITÄT DER BUNDESWEHR HAMBURG

LEHRSTUHL FÜR BETRIEBSWIRTSCHAFTSLEHRE,
INSBES. LOGISTIK-MANAGEMENT

Prof. Dr. M. J. Geiger

Arbeitspapier / Research Report
RR-10-03-01 · March 2010 · ISSN 2192-0826

New Instances for the Single Machine
Total Weighted Tardiness Problem

Martin Josef Geiger

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-10-03-01

Contents
1 Problem description 1

2 Other (old) benchmark data from the literature 2

3 New instances 3
3.1 Large instances . 3
3.2 ‘Prime’ instances . 3

4 Computation of upper bounds 4
4.1 Local search approach . 4
4.2 Results . 4

5 Conclusions 6

A Sets W and P for the ‘prime’ instances 6

References 9

I

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-10-03-01

Abstract

Previous research in the single machine total weighted tardiness problem
(SMTWTP) has led to the proposition of effective local search strategies. At
least existing benchmark instances from the literature do not pose a challenge for
state-of-the-art algorithms.

This paper describes the proposition of two classes of novel instances for the
single machine total weighted tardiness problem. In response to preceding re-
search, they are larger, thus harder to search by local search algorithms. Besides,
they are computed w. r. t. control parameters that lead to comparable difficult
data sets.

In addition to providing novel instances, we report best known results, which
have been computed by a Variable Neighborhood Descent algorithm.

1 Problem description

In the SMTWTP, a set of jobs J = {J1, . . . , Jn} needs to be processed on a single
machine. Each job Jj consists of a single operation only, involving a processing time
pj > 0 ∀j = 1, . . . , n. The relative importance of the jobs is expressed via a nonnegative
weight wj > 0 ∀j = 1, . . . , n. Processing on the machine is only possible for a single
job at a time, excluding parallel processing of jobs. Each job Jj is supposed to be
finished before its due date Dj. If this is not the case, a tardiness Tj occurs, measured
as Tj = max {sj + pj − Dj; 0}, where sj denotes the starting time of job j. The overall
objective of the problem is to find a feasible schedule x minimizing the total weighted
tardiness TWT , i. e. min TWT =

∑n
j=1 wjTj .

A schedule for a particular problem can be interpreted as a vector of starting times of
the jobs, x = (s1, . . . , sn). We assume that processing starts at time 0, thus sj � 0 ∀j =
1, . . . , n. A possible overlapping of jobs on the machine is avoided by the formulation
of disjunctive side constraints: sj � sk + pk ∨̇ sj + pj � sk ∀j, k = 1, . . . , n, j �= k.

As the objective function of the single machine total weighted tardiness problem is a
regular function [1], it is known that at least one active schedule exists which is also
optimal. A schedule is called active if, for a given sequence of jobs, all operations are
started as early as possible, thus avoiding all unnecessary in-between waiting times
(delays). The problem of finding an optimal schedule may therefore be reduced to the
problem of finding an optimal sequence of jobs. A given sequence is represented by
a permutation π = {π1, . . . , πn} of the job indices. Each element πi in π stores the
index of the job which is to be processed as the ith job in the processing sequence.
The permutation of indices is then ‘decoded’ into a schedule by assigning sπ1 = 0 and
computing the values of sπi

= sπi−1
+ pπi−1

∀i = 2, . . . , n.
Obviously, this leads to an active schedule without any waiting times between jobs.

1

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-10-03-01

2 Other (old) benchmark data from the literature

Optimization approaches for the SMTWTP are commonly verified using the benchmark
instances of [4]. The authors presented 375 data sets with varying characteristics. For
values of n = 40, n = 50, and n = 100, 125 instances are each proposed. The
computation of the processing times pj is randomly drawn from a uniform distribution
[1, 100], while the weights are taken from [1, 10]. Depending on the relative range of
due dates RDD and the average tardiness factor TF , the due dates are randomly
computed as integer values within

[
P

(
1 − TF − RDD

2

)
, P

(
1 − TF + RDD

2

)]
, where

P =
∑n

j=1 pj. Five instances have been computed for each combination of RDD and
TF : RDD ∈ {0.2, 0.4, 0.6, 0.8, 1.0}, TF ∈ {0.2, 0.4, 0.6, 0.8, 1.0}.
All data sets are available in the OR-Library under http://people.brunel.ac.uk/
~mastjjb/jeb/info.html. For the ones with n = 40 and n = 50, optimal solutions are
known, while for the ones of size n = 100, at least to our knowledge, only best-known
solutions are reported in the literature, lacking their final proof of optimality. It should
be noticed however, that the results for the larger data sets are commonly assumed
to be optimal, as, despite rather active research in this area, there has not been any
improvement of the best-known upper bounds within past ten years.

It has been pointed out that available benchmark instances are comparably easily
solvable by local search [6]. A particularly successful neighborhood search technique
for the SMTWTP is Iterated Dynasearch [3], which uses dynamic programming to
determine an optimal series of moves to be executed simultaneously. More recently,
several different metaheuristics have been developed for the SMTWTP, successfully
solving benchmark instances from the scientific literature. Important work includes
simple local search [9], Evolutionary Algorithms [4], Ant Colony Optimization [5, 10, 2],
Iterated Local Search [6], and Simulated Annealing [11].

Reviewing previous research in the SMTWTP, we may conclude that the well-known
benchmark instances of [4] do not present a challenge for state-of-the-art algorithms
any longer. Future research should therefore be able to make use of harder data sets,
and the following section describes the proposition of new ones.

2

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-10-03-01

3 New instances

3.1 Large instances

New instances have been proposed using the control parameters described in Section 2.
We chose n = 1000, thus creating considerable larger data sets. In order to decrease
the similarity of the jobs, we chose to draw the processing times pj from uniform
[1, 1000], and wj from uniform [1, 100]. TF has been set to TF = 0.5, and RDD ∈
{0.2, 0.4, 0.6, 0.8, 1.0}. The choice of TF = 0.5 is based on experimental results, which
indicate that instances based on this value are relatively more difficult to solve [7].

Five instances have been computed for each combination of TF and RDD, leading to
a total of 25 data sets. The following Table 1 gives an overview about the proposed
instances and the control parameters used for their computation.

Table 1: Overview about the proposed large benchmark instances

TF RDD Instances
0.5 0.2 wt_1000_1, ..., wt_1000_5
0.5 0.4 wt_1000_6, ..., wt_1000_10
0.5 0.6 wt_1000_11, ..., wt_1000_15
0.5 0.8 wt_1000_16, ..., wt_1000_20
0.5 1.0 wt_1000_21, ..., wt_1000_25

3.2 ‘Prime’ instances

In addition to the large instances presented above, novel data sets have been generated
that employ prime numbers for the weights and processing times. By ensuring that
each combination of weight and processing time values is unique for all jobs of an
instance, symmetries, such as otherwise present, can be avoided.

The weight values wj are randomly drawn from a set W of 100 prime numbers, starting
with 101, and the processing times pj are drawn from the set P of 1061 prime numbers
between 1009 and 9973. Both sets are documented in appendix A.

Again, TF has been set to TF = 0.5, and RDD ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. Contrary
to the instances from section 3.1, n is here n = 100. The following table 2 gives an
overview about the obtained data sets.

3

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-10-03-01

Table 2: Overview about the proposed ‘prime’ benchmark instances

TF RDD Instances
0.5 0.2 wt_100_prime_1, ..., wt_100_prime_5
0.5 0.4 wt_100_prime_6, ..., wt_100_prime_10
0.5 0.6 wt_100_prime_11, ..., wt_100_prime_15
0.5 0.8 wt_100_prime_16, ..., wt_100_prime_20
0.5 1.0 wt_100_prime_21, ..., wt_100_prime_25

4 Computation of upper bounds

4.1 Local search approach

We did use the Variable Neighborhood Descent algorithm as described in [7] to compute
local optima for the above introduced benchmark instances. The algorithm is primar-
ily based on Variable Neighborhood Search (VNS) [8]. Contrary to VNS however, a
random restart is carried out once a solution is reached which is a local optimum with
respect to all employed neighborhoods.

Three neighborhoods are implemented: Exchange EX, swopping the position of two
jobs, and forward FSH and backward shift BSH, which shift the position of a single
job.

1000 random restarts were done for the ‘prime’ instances, each time starting search
from a random permutation of jobs. In case of the larger instances with n = 1000,
computing a local optimum turns out to be very time consuming, taking several weeks/
months on an Intel Xeon X5550 processor, running at 2.67 GHz. Here, the obtained
results are those of a single run only.

4.2 Results

The best results of all test runs are given in table 3. Clearly, the best value of the
total weighted tardiness decreases with increasing RDD, which is to be expected and
also observed for the old data sets of [4]. On the other hand, and contrary to several
instances from [4], no instance appears to exist for which all jobs finish before their
due date.

4

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-10-03-01

Table 3: Best known results for the new benchmark instances

Instance best upper bound instance best upper bound
wt_1000_1 661,554,849 wt_100_prime_1 802,910,360
wt_1000_2 685,100,253 wt_100_prime_2 755,883,602
wt_1000_3 579,874,750 wt_100_prime_3 772,936,285
wt_1000_4 632,097,650 wt_100_prime_4 772,242,365
wt_1000_5 667,684,534 wt_100_prime_5 772,266,246
wt_1000_6 468,054,238 wt_100_prime_6 584,502,396
wt_1000_7 397,169,788 wt_100_prime_7 651,160,845
wt_1000_8 428,824,156 wt_100_prime_8 485,031,706
wt_1000_9 398,764,545 wt_100_prime_9 600,247,834
wt_1000_10 479,737,599 wt_100_prime_10 538,889,310
wt_1000_11 229,786,779 wt_100_prime_11 217,962,855
wt_1000_12 224,986,621 wt_100_prime_12 441,851,304
wt_1000_13 227,899,643 wt_100_prime_13 317,231,662
wt_1000_14 212,283,556 wt_100_prime_14 295,071,692
wt_1000_15 220,489,886 wt_100_prime_15 248,660,251
wt_1000_16 67,354,310 wt_100_prime_16 292,956,061
wt_1000_17 69,668,511 wt_100_prime_17 212,953,095
wt_1000_18 74,724,105 wt_100_prime_18 189,128,175
wt_1000_19 68,685,125 wt_100_prime_19 111,382,882
wt_1000_20 52,528,847 wt_100_prime_20 138,182,878
wt_1000_21 11,134,727 wt_100_prime_21 166,716,374
wt_1000_22 8,843,784 wt_100_prime_22 147,222,671
wt_1000_23 13,831,801 wt_100_prime_23 58,998,980
wt_1000_24 8,102,595 wt_100_prime_24 108,268,446
wt_1000_25 15,287,150 wt_100_prime_25 163,480,751

5

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-10-03-01

5 Conclusions

In this article, we introduced two new sets of benchmark instances for the single ma-
chine total weighted tardiness problem. The data sets have been formulated in response
to previous research, which indicated that existing benchmarks may easily be solved
with state-of-the-art algorithms. In contrast to these older data sets, our instances are
larger, and considerable less symmetric.

First, and thus currently best-know results have been computed on the basis of Variable
Neighborhood Search Descent, given reference values for further comparisons.

All benchmark instances may be obtained from http://logistik.hsu-hh.de/SMTWTP.

A Sets W and P for the ‘prime’ instances

W = {101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179,
181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277,
281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389,
397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499,
503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617,
619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691}
P = {1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087,
1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187,
1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289,
1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409,
1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489,
1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597,
1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697,
1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801,
1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913,
1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027,
2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131,
2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251,
2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351,
2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447,
2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591,
2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689,
2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789,
2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897,
2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019,
3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163,
3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259,
3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371,
3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499,
3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593,
3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701,

6

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-10-03-01

3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823,
3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929,
3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051,
4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159,
4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273,
4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421,
4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523,
4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651,
4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787,
4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919,
4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009,
5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119,
5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273,
5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407,
5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503,
5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641,
5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741,
5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851,
5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987,
6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113,
6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229,
6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337,
6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469,
6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599,
6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719,
6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841,
6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967,
6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079,
7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219,
7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351,
7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507,
7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591,
7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717,
7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867,
7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993,
8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117,
8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243,
8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377,
8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527,
8537, 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647,
8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747,
8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863,
8867, 8887, 8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007,
9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137,
9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257,
9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391,
9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479,
9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629,

7

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-10-03-01

9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749,
9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859,
9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973}

References

[1] Kenneth R. Baker. Introduction to Sequencing and Scheduling. John Wiley &
Sons, New York, London, Sydney, Toronto, 1974.

[2] Andreas Bauer, Bernd Bullnheimer, Richard F. Hartl, and Christine Strauss. An
ant colony optimization approach for the single machine total tardiness problem. In
Proceedings of the 1999 Congress on Evolutionary Computation CEC99, volume 2,
pages 1445–1450, Piscataway, NJ, 1999. IEEE Service Center.

[3] Richard K. Congram, Chris N. Potts, and Steef L. van de Velde. An iterated
dynasearch algorithm for the single-machine total weighted tardiness problem.
INFORMS Journal on Computing, 14(1):52–67, 2002.

[4] H. A. J. Crauwels, C. N. Potts, and L. N. Van Wassenhove. Local search heuristics
for the single machine total weighted tardiness scheduling problem. INFORMS
Journal on Computing, 10(3):341–350, 1998.

[5] Matthijs den Besten, Thomas Stützle, and Marco Dorigo. Ant colony optimization
for the total weighted tardiness problem. In M. Schoenauer, K. Deb, G. Rudolph,
X. Yao, E. Lutton, J. J. Merelo, and H.-P. Schwefel, editors, Parallel Problem
Solving from Nature-PPSN VI, volume 1917 of Lecture Notes in Computer Science,
pages 611–620, Berlin, Heidelberg, New York, 2000. Springer Verlag.

[6] Matthijs den Besten, Thomas Stützle, and Marco Dorigo. Design of iterated local
search algorithms – an example application to the single machine total weighted
tardiness problem. In E. J. W. Boers, J. Gottlieb, P. L. Lanzi, R. E. Smith,
S. Cagnoni, E. Hart, G. R. Raidl, and H. Tijink, editors, Applications of Evo-
lutionary Computing, volume 2037 of Lecture Notes in Computer Science, pages
441–451, Berlin, Heidelberg, New York, 2001. Springer Verlag.

[7] Martin Josef Geiger. On heuristic search for the single machine total weighted
tardiness problem – some theoretical insights and their empirical verification. Eu-
ropean Journal of Operational Research, 207(3):1235–1243, 2010.

[8] Pierre Hansen and Nenad Mladenović. Developments of variable neighborhood
search. In Celso C. Ribeiro and Pierre Hansen, editors, Essays and Surveys in
Metaheuristics, chapter 19, pages 415–439. Kluwer Academic Publishers, Boston,
Dordrecht, London, 2002.

[9] R. Maheswaran and S. G. Ponnambalan. An investigation on single machine total
weighted tardiness scheduling problems. The International Journal of Advanced
Manufacturing Technology, 22(3–4):243–248, 2003.

8

Helmut-Schmidt-Universität · Lehrstuhl für BWL, insbes. Logistik-Management · RR-10-03-01

[10] Daniel Merkle and Martin Middendorf. An ant algorithm with a new pheromone
evaluation rule for total tardiness problems. In S. Cagnoni, R. Poli, G. D. Smith,
D. Corne, M. Oates, E. Hart, P. L. Lanzi, E. J. Willem, Y. Li, B. Paechter,
and T. C. Fogarty, editors, Real-World Applications of Evolutionary Computing,
volume 1903 of Lecture Notes in Computer Science, pages 287–296, Berlin, Hei-
delberg, New York, 2000. Springer Verlag.

[11] A. C. Nearchou. Solving the single machine total weighted tardiness scheduling
problem using a hybrid simulated annealing algorithm. In 2nd IEEE International
Conference on Industrial Informatics INDIN’04, pages 513–516, Berlin, Germany,
June 2004.

9

