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Abstract

In participation with North Atlantic Treaty Organization (NATO) the German
Armed Forces provide a German operation contingent to support the NATO
Response Force (NRF). Therefore, a camp for accommodation, food supply, med-
ical care, spare parts, and more has to be available. Such a camp is restricted
in weight and size in order to be quickly movable in an upcoming deployment
situation. To ensure an optimal use of such a restricted camp, this thesis intro-
duces the optimization program OPtimizing software for Spare Parts INventory
(tOPSPIN) to optimize the storage of a warehouse for an upcoming deployment
situation.

Als Beitragspartner der North Atlantic Treaty Organization (NATO), stellt die
deutsche Bundeswehr ein Kontingent zur Unterstüzung der NATO Response
Force (NRF). Das benötigte Einsatzlager muss dabei Unterkünfte, Verpflegung,
medizinische Versorgung, Ersatzteile und weiteres bereitstellen. Ein solches
Lager is begrenzt in Gewicht und Größe, um schnell verlegt werden zu können
bei einem möglichen Einsatz. Um sicherzustellen, dass dieses begrenzte Lager
optimal genutzt wird, stellt die Masterarbeit das Optimierungsprogramm OPti-
mizing software for Spare Parts INventory (tOPSPIN) vor, dass das Einsatzlager
für solche Einsätze optimiert.
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1 Introduction

In 2002, the North Atlantic Treaty Organization (NATO) launched the NATO
Response Force (NRF) as a highly ready and technologically advanced, multina-
tional force made up of land, air, maritime, and Special Operations Force (SOF)
components that the Alliance can deploy quickly, wherever needed. The NRF
is able to react in a very short time to the full range of security challenges from
crisis management to collective defense [10].
The Federal Republic of Germany takes part in the NRF with their forces in
2017. Thus, the German Armed Forces stands by for upcoming deployments
with their expertise, technology, and manpower. To provide a German operation
contingent, many things has to be considered and planned to ensure a quick
reaction in case of a deployment. The base of every deployment is an operation
camp for accommodation, food supply, medical care, and mission planning. To
insure a quick reaction, the capability of every part of this camp is highly limited
in weight and size. Nevertheless, every part has to work smoothly and correctly
to ensure a successful participation in the NRF. After the supply of all essential
requirements, the remaining capacity is used for spare parts to be able to repair
operational vehicles.
Therefore, the thesis is focused on the development of optimization for the stor-
age of a warehouse in case of a deployment. By using the methods of Operations
Research (OR) and the programming tool AIMMS, the software OPtimizing soft-
ware for Spare Parts INventory (tOPSPIN) is developed to support the planning
and preparation of the German Armed Forces’ participation to the NRF or fur-
ther deployments. The software tOPSPIN includes a pessimistic, one-staged
model and optimistic two-staged model to optimize the storage. The following
chapters describes the logistical and mathematical foundations, the mathemati-
cal models of tOPSPIN, declaration of the used data, comparisons and results of
both models, and a conclusion.
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2 Logistical Foundations

A well-working warehouse is important for every company, because Logistics
is a part of each link of the supply chain. The supply chain describes the whole
system of organizations, people, activities, information, and resources to move
products or services from suppliers to customers. A warehouse serves as a buffer
to store overproduction and to balance underproduction caused by variations in
demand cite3. This chapter gives a introduction to the goals of logistics, storage
tasks, and the impact of logistics in the military.

2.1 Supply Chain Management

This section presents information from [2]. The term logistics is also known un-
der the term Supply Chain Management (SCM), which describes the tasks of
logistics even better. The SCM pursues intelligent planning and control of all
sections of the supply chain. Their primary goal is to ensure the right amount of
a product or service in the right quantity and quality at the right time and place
for every section of the supply chain. The goals supply chain management is the
minimization of cost and maximization of service. On one hand, the SCM should
provides a full service for every request and, on the other hand, the service cost
rises if all possible materials, parts, and modules for the production are available
every time. The SCM strives to balance both parts, high service, and low costs.
One section of SCM deals with optimal warehousing to fulfill the mentioned
goals and balance the conflict of a high service under low costs. A warehouse
stores and saves goods in a provided building or area. Furthermore, it is a de-
sired interruption of the material flow to build buffer stocks. Typical stored
goods include tools, products, aids, and means of production and transport.
Warehousing performs three main functions. The secure function takes place
if all information on demand and delivery time are unavailable. Storage bal-
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ances seasonal fluctuations and supply bottlenecks of products, which must be
available at any time. Storage also has a bridging function to store overpro-
ductions in times of lower demand or to store finished products until they get
delivered. In times of high price fluctuations or especially low prices, storage has
a speculation function to store larger procurement quantity, and furthermore,
discounts of large order quantities can be used if the storage costs are lower than
the savings.

2.2 Military Logistics

This paragraph presents information from [6]. In antiquity, armies had to move
from place to place to secure supplies of fresh resources and operational capa-
bility. Eventually, they started to carry their board. Alexander the Great was the
first to load ships with fresh resources and plan the route of his troops along
the coast to ensure close access to the goods. The system made it possible to
move large troops over a long time and distance. Up to the middle of the nine-
teenth century, the two options - obtain and carry - were the principal methods
of supplying and sustaining the troops. The Industrial Revolution put forth a
third option - send. Trains were employed for military uses and affected the
way logistics were implemented. Supplies could now be sent fast from the rear
area to the front over a long distance. Today the military uses a mix of all three
options - obtain, carry, and send - to achieve an optimal operational capability.
In contrast to civilian companies, the military has its highest priority in opera-
tional capability instead of reducing costs. Storage in deployment is simple, less
automated, and restricted in space. The main decision deals with the conflict
of a high operational capability and the low storage capacity. The goal is to de-
termine the best mix of resources within a certain area of logistic infrastructure.
That includes an operational capability for a long time without supply to be in-
dependent in different cases, like being marooned. Transport routes and airports
have to be developed or built. Furthermore, cooperation with foreign countries,
their customs regulations, and laws must be taken into account.

3
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2.3 Levels of Logistics

The military operates on three levels - strategic, operational, and tactical; logistics
is separated into the same levels. They pursue different targets, but they are not
necessarily disjointed. The following subsections are based on the references [6]
and [4].

2.3.1 Strategic Logistics

The strategical level deals with major defense-related decisions that have long-
lasting impacts. Decisions like investments in research and development, pro-
curement and replenishment policies, and decision issues related to the physical
infrastructure, result in significant and long range economic and operational im-
plications. In particular, economic constraints affect logistic capabilities. Strate-
gic logistics deals with building up and maintaining the national military and
military-related infrastructure, like technology, industry, inventory, storage ca-
pacity, and transportation capabilities. It is characterized by standardization,
uniformity, and relative predictability, because of its sheer size. Since German
reunification, the German Armed Forces have been in a continuous process of
adjustments and reforms. The mission of a purely national defense has changed
to an operational mission to perform in a fast-packed security policy environ-
ment. New investments in training, equipment, and deployment with a limited
budget leads to an economical view of the German Armed Forces. A measurable
input, like the budget, contrasts with a difficult to measure output, like efficiency
and benefits of armaments. Therefore, a new part of the conflict occurs. Besides
the high operational capability with a small capacity in a deployment, also an
decrease of costs have to take into account.

2.3.2 Operational Logistics

On a lower level, operational logistics describes active operations to seize, retain,
and exploit the initiative to gain and maintain a position of relative advantage in
sustained land operations. The supporting logistic is called operational logistics.
Operational logistics deals with the economic and industrial base of a nation

4
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and the combat units to set up the logistic system in the theater of operations.
Furthermore, the missions forecast, analyze, and prioritize future demands for
logistics assets according to the operational objectives. The implementation of
these entities must be in accordance with the time and space parameters of the
operation. Operational logistics supports theater-level activities and operational
moves, and not directly combat units - like the tactical logistics level. Conse-
quently, the objectives of operational logistics are specified by the operational
goals rather than by military units. If the operational goals are determined in
terms of time and space, operational logistics capabilities must also be specified
by tactical parameters.

2.3.3 Tactical Logistics

The last level, tactical logistics, is used to affect the battle in progress and sustain
the troops, providing them with production material and maintains their equip-
ment. Tactical logistics is focused on three important characteristics - protection,
mobility, and firepower - of tactical warfare. The main activities of tactical lo-
gistics are technical and apply directly to the combat units. The conditions to
operate are disturbed by enemy actions, and may change its course of action
abruptly and unexpectedly and leads to a complex and challenging logistical
task. Tactical logistics is unpredictable and variable, and heavily depends on the
random outcome of the tactical battle.

5
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2.4 Summary

Military logistics pursue different targets than civilian companies, but the eco-
nomical aspects gain in importance. Consequently, all level of the military lo-
gistics are impacted. All three levels of logistics are not strictly disjointed and
may overlap between two adjacent levels. To find an optimal interaction of the
logistics goals, mathematical optimization can be used. This thesis investigates
the optimal interaction of the operational capability with limited capacities of
space for an upcoming deployment, but not for a specific combat. Thus, the the-
sis moves on the level of operational logistics to support theater-level activities
and operational moves.

6



3 Mathematical Foundations

Operations Research (OR) is a scientific discipline that deals with the formula-
tion of mathematical models to describe real world optimization problems and
the development of computational techniques (algorithms) to find solutions (i.e.,
to solve them). The mathematical subdomain, mathematical optimization, will
be presented in this chapter and explains the mathematical foundations of linear,
integer, mixed-integer, and stochastic optimization. Furthermore the chapter ex-
plains the simulation foundations and the current solving procedures to solve
optimization models.

3.1 Operations Research

The following information is taken from [3]. In the twentieth century, progressive
technical and economic development challenged companies to solve complex
optimization questions with simple methods, which do not need a high number
of calculation steps. It was necessary to find mathematical methods to solve
problems such as reducing production costs with a high output of goods. During
World War II, OR developed as a new mathematical method in the military sector.
For example, it was used to calculate the optimal size of convoys or optimal
distribution of tenders for submarine defense. Another example was the optimal
work distribution for mine laying that resulted in a time saving of about 25 %
for the German Army [5]. Today the methods of OR are essential for business
and also military sections.
To solve problems, OR includes the three following characteristics:

• Decision preparation,

• striving for an optimal solution, and

• use of mathematical methods.

7
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3.1.1 Linear Programming

The following information is taken from [1]. One tool of OR is linear program-
ming. Linear optimization problems are one of the most thoroughly explored
mathematical programming problems. They are well-known for economic and
business applications and have been studied for years. The objective is to opti-
mize a linear function of one or more variables. Therefore, the constraints are
given by equations and inequations. A simplified model economizes the pro-
cessing power for thousands of variables and constraints. Based on that, "non-
linearities" are mostly replaced by linear approximations and binary variables
[1]. Assuming a linear optimization problem, the model is formulate by, the
following steps:

• Set and parameters from the real-world application as input data,

• Derived sets and parameter, based on the input data,

• specification of variables,

• formulation of the constraints as linear equations or inequalities, and

• specification of the objective function to minimize or maximize.

For example, consider a minimization problem which is given as:

minimize
m∑

j=1

cj · xj, (3.1)

subject to
m∑

j=1

ai,j · xj ≤ bi (i = 1, ..., n), (3.2)

xj ≥ 0 (j = 1, ...,m). (3.3)

Given are the costs cj for n products (j = 1, ..., n), the production factor ai,j for
utilization of machine i to produce a unit of product j, and the capacity bi of
machine (i = 1, ...,m). The quantity unit of product j is described with decision
variable xj . A point xj that satisfies the aforementioned constraint (3.2) is part of

8
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the solution. Furthermore, if the point fulfills the non-negative constraint (3.3) it
is part of the feasible solution. An optimal solution for a minimization problem
is found if a feasible solution x∗ has the lowest value of the objective function.

3.1.2 Simplex Algorithm

This subsection is based on the source [1]. The Simplex Algorithm is a clas-
sic solution procedure for linear optimization problems. The algorithm moves
along a polyhedron, built by the constraints, to find an edge with an optimal
solution. With assistance of a Simplex Tableau in Figure 3.1, simple linear op-
timization problems can be solved manually. First, the inequations are trans-
formed to equations using slack variables. The slack variables get transfered
into a Simplex-Tableau. Therefore, the last row shows the basic solution of the
objective function. This row is called, in the following result F-row.
To find an optimal solution, the following three steps are sufficient:

Step 1: Choice of the pivot column s

If the F-row in the tableau contains only nonnegative values, the current basic so-
lution, an edge of the polyhedron, is optimal. The algorithm can be terminated.
Otherwise choose a row s with the smallest negative value in the F-row. The
associated nonbasic variable xs enters in the base and is called the pivot column.

Step 2: Choice of the pivot row z

If all a′is ≤ 0, there is no optimal solution for the current problem. The problem
is unbounded. The algorithm can be canceled. Otherwise, choose a row z, given
for:

b′z
a′zs

= min
{
b′i
a′is

i = 1, ...,m with a′is > 0

}
(3.4)

The row z is called pivot row and the element a′zs pivot element.

Step 3: Calculation of the new basic solution
To calculate the new basic solution, the previous basis variable of the pivot row z
has to be replaced by the previous nonbasic variable xs. By using linear transfor-
mation of the constraint-system and the new basic variable a unit vector a′zs = 1

9
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is created as following:

• Divide the pivot row by pivot element.

• Multiply for all pivot rows i (except s) the new pivot row with −ais and
add it to the respective row i.

non-basic variable basic variable
x1 ... xn−m xn−m+1 ... xn F bi

ba
si

c
va

ri
ab

le xn−m+1 a11 ... a1,n−m 1 ... 0 0 b1

. . ... . . ... . . .

. . ... . . ... . . .

xn am1 ... am,n−m 0 ... 1 0 bm

−c1 ... − cn−m 0 ... 0 1 cur.Val.

Figure 3.1: Exemplary Simplex Tableau.

3.1.3 Integer Programming

In linear programming, it is assumed that all variables are continuous. However,
not every problem is writable with non-integer variables. In the real world, some
variables can only assume integer values x ∈ Z+. Moreover, decisions about the
state of a variable, for example accept or reject an order for production planning,
binary variables x ∈ {0, 1} are used:

x =





1, order accepted,

0, else.
(3.5)

3.1.4 Branch and Bound

The branch and bound method is one possible way of solving an integer opti-
mization problem. The algorithm uses the concept of branching and bounding
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the decision tree. The continuous branching of the primary problem in many sub-
sets results in a tree structure, called the branch and bound tree [7]. A complete
enumeration of every branch provides an opportunity to solve the optimization
problem, but is only useful for small number of nodes n, because a large num-
ber of n causes long calculation times. For example, a set P ∈ P is given. If all
binary values x ∈ {0, 1} are successively generated and they belong to the set
P the current value of the objective function get solved,and furthermore, the
"best" value so far get saved. Finally, the last "best" value is the best solution for
x∗. For integer programming with big n the implied enumeration is used. The
method finds and eliminates successive subsets without any optimal solution.
The algorithm generates a tree; its nodes include subsets of the requested set P .
Every branch corresponds to a new subset of P . The upper and lower bound
skips non-relevant subsets [7]. An example branch and bound tree is represented
in Figure 3.2. x0 is the first "best" value. The algorithm starts to investigate the
first generated branch. x1 results in no better value, so the branch is bounded.
Because x2 results in a new "best" value, the stage algorithm goes further to the
next branched variables to find a better value of the objective function until all
branches are bounded or all variables are investigated.

x0

x1 x2

x3 x4

Figure 3.2: A Branch and Bound Tree.

3.2 Stochastics

"Stochastics" refers to the domains of probability theory and statistics. A stochas-
tic method investigates the mathematical modeling of random events and is
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used in nearly any empirical discipline; for example, strategies for gambling,
climate research, quality controls, and quantum physics. The probability theory
investigates random processes with known probabilities; in contrast, the statistic
draws conclusions out of observed data for unknown probabilities. Therefore,
the probability theory builds the base for theoretical investigation of statistical
procedures.

3.2.1 Decision Tree

Nobody can predict on which side a falling coin will land: heads or tails. How-
ever, there is a probability for both sides. The decision tree shows the decision
making process for the 50-50 chance. The final decision is a composition of all
independent decisions of each single step. Based on a single root, all nodes of
the first decision get drawn, for every follower the next nodes and so on. A fi-
nal decision corresponds to the way from the root to a leaf (Head or Tail). The
number of possibilities of any way from the root to the leafs are the product of
all nodes. Figure 3.3 shows a example of a two staged decision tree and their
probabilities of all occurrences. If the order of the occurrences is irrelevant, the
probabilities of (Tail - Head) and (Head - Tail) can be summed to: 1/4 + 1/4 = 1/2.

Root

Head

Head = 1/2 · 1/2 = 1/41/2

Tail = 1/2 · 1/2 = 1/4

1/2
1/2

Tail

Head = 1/2 · 1/2 = 1/41/2

Tail = 1/2 · 1/2 = 1/4

1/2

1/2

Figure 3.3: Decision Tree.
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3.2.2 Random Experiment

A random experiment can be single- or multi-staged. For a single-staged ran-
dom experiment the coin is thrown only one time. If a gambler rolls a four with
a normal dice in the first try, he could assume that he will roll a four every time,
because of that single observation. Such an observation is not mostly meaning-
ful. Therefore, in a multi-staged random experiment the attempt repeats [9]. In
a real experiment a gambler can get more tails or heads in the first rounds. How-
ever, if the number of repetitions rise the results get closer to the probability of
50 %. That leads to the law of large numbers; the law of large numbers states
that the relative frequency of a random occurrence converges to the theoretical
probability when the random experiment is repeated under the same conditions.
If possibilities of a random experiment have the same probabilities to occur, the
experiment is called a Laplace experiment [9].

3.2.3 Random Variable

A stochastic term sasy that, a random variable X : Ω→ E is a measurable func-
tion from a set of possible outcomes Ω to a measurable space E . If the mapped
outcome X is real-valued, its called a random number. A random variable does
not return a probability. The probability of a measurable set of outcomes is
given by the probability measure P . The most used notation is P (X = a) or
P (a ≤ X ≤ b) for the probabilities of outcomes "X maps to a" or "X maps to the
interval [a, b]" [8].

3.3 Stochastic Programming

Stochastic programming is the part of OR that studies how to integrate un-
certainty into decision problems. Some decisions lack important information
to solve the problem until the decision is made. Problems like this are found
in transportation, logistic, supply chain management, and other related fields.
Some necessary figures, such as demand, cost, and quality, are unknown. The
common practice of solving such an optimization problem is:

• Use statistics or experts to get information about the parameter.

13



Master Thesis

• Solve the model with expected values.

• Observe whether an optimal solution x̃ depends on the used parameter.

• Use sensitivity analysis to determine whether x̃ depends on the parame-
ters.

The sensitivity analysis estimates the degree to which parameter values can
vary without changing the fundamental character of the solution. In practice, a
uncertain parameter does not affect the stability of the solution related to the
variations in the parameter. Otherwise, constant parameters cause an unstable
solution. Overall the stability effecting parameters determine the usability of the
solution. A scenario analysis generates a set of possible futures and is useful to
explore different trendlines in fundamental parameters. All techniques investi-
gate a variety of future states and generate a set of possible solutions for the next
step of the decision process.
The following information is taken from [1]. The decision process has different
information stages. An information stage is an important concept that distin-
guishes stochastic programming. A stage is a moment when decisions are made
within a model. Stages can follow naturally from the problem setting or are
modeling approximations. In the first stage the unknown parameters are set.
The values of the unknown parameters can be determined by a simulation of
random values. Therefore, the simulation follows a best suitable distribution to
reflect the real world. The second stage shows the results of the decision and
evaluates the worth of the placed parameters. The same decisions in the first
stage can lead to different states in the next stage. One of the possible scenarios
of parameters occurs and results in a state in the second stage. The number of
different scenarios causes big models. To find an optimal solution for a model
is almost impossible if the distribution of parameters depends on a large num-
ber of scenarios or follows a continuous distribution. For example, a two-stage
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optimization problem with a penalty for overweight:

maximize
n∑

i=1

ci · xi − d
∑

s∈S
ps · zs, (3.6)

subject to
n∑

i=1

wsi · xi − zs ≤ b, ∀s ∈ S, (3.7)

zs ≥ 0, ∀s ∈ S, (3.8)

xi ∈ {0, 1}, i = 1, ..., n. (3.9)

The parameter ci is the value of item i, wi its weight and b the capacity. Assum-
ing that the weights are uncertain with a vector of random variables [w1,...,wn].
Let S be the set of scenarios describing the uncertainty of the weights. d is the
unit penalty for overweight. The parameter ps and zs describes the penalty for
every scenario. The actually weight is known, after the decision of the used
item is made. For an exceed of the capacity a penalty has to be paid. The goal
is to maximize the value of the items selected minus the excepted penalty for
overweight.

3.4 Simulation

Simulation predicts the states of single parts of a whole system. Those states
depend on the probability distribution. There are few types of probability distri-
butions to describe various types of discrete and continuous random variables.
In this thesis the triangular and geometric distributions are used. In the contin-
uous triangular distribution all values of the random variable occur between
a fixed minimum min[x] and a fixed maximum max[x], but with a most likely
value, and its position β is not necessarily in the middle of the interval. It is quite
common to use the triangular distribution for a little knowledge about an un-
certain parameter except that its value has to lie anywhere within fixed bounds
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and that there is a most likely value. The triangular distribution is defined as:

f(β,0,1)(x) =





2x/β, for 0 ≤ x ≤ β.

2(1− x)/(1− β), for β ≤ x ≤ 1.
(3.10)

The discrete geometric distribution shows the probability to get a success after n
repetitions of a Bernoulli experiment. The geometric distribution is defined as:

P (X = i) = (1− p)i · p (3.11)

3.4.1 Monte Carlo Simulation

The eponym of Monte Carlo Simulation is the famous casino in the city of Monte
Carlo. The game of roulette inspires the method to draw samples with a com-
puter. The following two characteristics of roulette are important for Monte
Carlo Simulation:

• The possibility that the ball lands on a specific number is equal for all
numbers.

• The possibility that the ball lands on a specific number does not depend
on the occurrence before.

Monte Carlo Simulation analyzes static and stochastical systems by means of
sample experiments. Moreover, it is applicable for known probability distribu-
tions of the parameters and independently consecutive events [1].

3.4.2 Generation of Random Numbers

For a simulation, a lot of random numbers are necessary. To create these ran-
dom numbers, picking real random numbers from an urn takes too much time.
Instead the simulation uses pseudo-random numbers. Those numbers can be
created in serval ways [1]:

• The sequence of numbers are arhythmically determined by a random-
number-generators.
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• By making use of irregular sequence of numbers in the decimal represen-
tation, like e, π and

√
2.

• By making use of a natural noise, like radios.

A random-number-generator has to meet the following requirements [1]:

• It represents a good approximation of the pseudo-random numbers distri-
bution to the desired distribution function.

• The sequence of numbers has to be reproducible for repetitions under the
same conditions.

• The sequence of numbers should have a long period length.

• The generation time should be short with low memory requirements.

The programming tool AIMMS generates random numbers by different distribu-
tions, like triangular-, geometric-, or normal distribution. The command "option
seed" placed before the function gets called makes a reproduction of the random
numbers possible.
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4 Mathematical Models

In tOPSPIN the formulated optimization model is a mixed-integer linear pro-
gram (MILP). The goal of the software is to fill a limited warehouse with spare
parts for an optimal supply for a successful deployment. The software has two
mathematical models. The first version, Model 1, is a one-staged problem and
more pessimistic. The second version Model 2 is a two-stage problem and more
optimistic. In this chapter the mathematical formulation, simulation, and the
user interface of the model will be presented for both versions.

4.1 Model 1: "Fixed Parts to Systems Assignment"

Model 1 assumes that each part can only appear in each system once and is
committed before it leaves to the deployment. Thus, it is a one stage problem
and more pessimistic.

4.1.1 Sets and indices

The following sets and indices were defined for the problem:

s, system, for s ∈ S.
e, part, for e ∈ E .
c, scenario, for c ∈ C.
z, state of system, for z ∈ Z .
r, priority of system, for r ∈ R.
t, state of part, for t ∈ T .
l, loop, for l ∈ L.
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4.1.2 Parameters

The following parameters describe the significant data about every system and
contain the necessary information for the simulation and the optimization.

Simulation Parameters

TLe, lowest probability of success, for part e.
THe, highest probability of success, for part e.
TBe, displacement factor, for part e.
Mc,s,e, probability of success, for part e in system s in scenario c.
Gc,s,e, random value, for part e in system s in scenario c.
kl,c,s,e, binary value, in loop l for part e in system s and scenario c

with a range of t.

Simulation of the broken parts is based on a triangular and geometric function.
For the triangular function the parameters TLe ∈ [0, 1] and THe ∈ [0, 1] contain
the lowest and highest probability of success for every single part. Furthermore,
the parameter TBe ∈ [0, 1] describes the displacement factor between the low-
est and highest value. The parameter Mc,s,e ∈ [0, 1] stores the values from the
triangular function. The parameter Gc,s,e ∈ N0 stores the resulting values of the
geometric function. A further description for the functions are in chapter 4.1.6.
The values of the simulation have a range of set t and are written in the element
parameter kl ,c,s,e . The parameter shows the broken and unbroken parts e for
every system s in different scenarios c over all loops l.
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Optimization Parameters

bs,e, binary value for built-in state, for system s and part e.
ps,z, priority, for system s in state z with a range of r.
qs,e, priority, for system s of part e.
ue, unit size, for part e.
we, weight, for part e.
ve, volume, for part e.
CW , weight capacity.
CV , volume capacity.
RW , residual weight.
RV , residual volume.
DSs,z=0, non-operational system s in state z = 0.
RSs,z=1, operational system s in state z = 1.
SG, service level.
oc, probability of occurrence, for scenario c.

The following parameters are necessary for the optimization model and contain
all relevant values. The binary parameter bs,e ∈ {0, 1} contains the information
about the built-in parts for every system. If the part is build in the binary pa-
rameter takes the value bs,e = 1, otherwise bs,e = 0. Every system has a different
priority in a deployment. The priorities of every system s are stored in the ele-
ment parameter ps,z ∈ R+ and can take a value from the range of set r from 4
(highest priority) to 1 (lowest priority). The binary parameter qs,e ∈ {0, 1} stores
the priorities of the parts e for every system s. Some parts are necessary to run
a system at all (qs,e = 1) and some are just good to have, but does not effect
the operational capability of a system (qs,e = 0). The unit size of every part is
stored in the parameter ue ∈ N. The parameter we ∈ R+ and ve ∈ R+ contains
the weight and volume of any part e. The entire capacity of weight and volume
are stored in the parameters CW and CV and can be manually changed over the
user interface to allows third parties a quick change of the restrictions. After the
calculation the parameters RW and RV stores the residual weight and volume.
To get an overview of the optimization, the parametersDSc,z=0 andRSc,z=1 show
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the broken systems after the simulation and the operational systems after the
optimization, respectively. The percentage of the operational systems relative to
all systems is presented in the parameter SG. The parameter oc gives a probabil-
ity of occurrence for every scenario. It depends on the environmental influences
and circumstances of the deployment.

4.1.3 Variables

xc,s,z =





1, if system s in scenario c has state z after repairs are complete.

0, otherwise.

(4.1)

ys,e =





1, if part e is designated to repair system s.

0, otherwise.
(4.2)

The state z of every systems s in the different scenarios c is described in the
binary variable xc,s,z ∈ {0, 1} (4.1). The binary variable ys,e ∈ {0, 1} (4.2) contains
the storage of the optimal warehouse and shows which part e can be used to
repair a system s. The total number of every part will be summed up in the
variable ne ∈ R+.

4.1.4 Constraints

The following constraints define a feasible assignment of the warehouse storage
and the current state of every system.

System State

∑

z∈Z
xc,s,z = 1 ∀s ∈ S, c ∈ C, (4.3)

xc,s,1 ≤ ys,e ∀s ∈ S, c ∈ C, e ∈ E , l ∈ L : qs,e = 1, bs,e = 1, kl,c,s,e = 1, (4.4)

1− ys,e ≤ xc,s,0 ∀s ∈ S, c ∈ C, e ∈ E , l ∈ L : qs,e = 1, bs,e = 1, kl,c,s,e = 1. (4.5)
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In Equation (4.3), the system s ∈ S has only one current state for every scenario
c ∈ C. Equation (4.4) represents that the system s ∈ S has the current state 1
(operational system), if the part is available in the warehouse and if the following
points meet the requirements: The part is built-in the system, the part is broken
and the replacement is necessary to run the system. In Equation (4.5), the system
s ∈ S has the current state 0 (non-operational system), if the part is not available
in the warehouse and if the following points meet the requirements: The part is
built-in the system, the part is broken, and the replacement is necessary to run
the system.

Capacity
∑

e∈E
we · ne ≤ CW . (4.6)

∑

e∈E
ve · ne ≤ CV . (4.7)

Equations (4.6) and (4.7) describe the capacities for the storage. The total weight
of the spare parts e must not exceed the capacity of weight CW and the total
volume of the spare parts e must not exceed the capacity of volume CV .

Demand
∑

s∈S,e∈E
ys,e · ue = ne. (4.8)

Equation (4.8) calculates the total demand of all spare parts e.

4.1.5 Objective

max
∑

s∈S,z∈Z,e∈E,c∈C
oc · ps,z · xc,s,z + 10−4 · ys,e − 10−6 · ne. (4.9)

The primary goal of the objective function (4.9) is to maximize the number of
high priority operational systems. On a subordinate point we attempt to fill the
rest capacity with other spare parts, which are broken, but can not repair the
whole system. Finally, we subtract a small influence to take the smaller storage
in case of a solution with the same value of the objective function.
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4.1.6 Simulation

The simulation generates different failure scenarios for the mathematical model.
Based on a triangular function random numbers are generated and decide over a
part’s breakdown. The triangular function works with three parameters, TLe ∈
[0, 1], THe ∈ [0, 1], and TBe ∈ [0, 1] for every part. The parameters TLe and
THe contain the lowest and highest probability of success for every single part.
Success means that the part is not broken. Furthermore, the parameter TBe de-
scribes the displacement factor between the lowest and highest value. The trian-
gular function issues a randomly picked probability of success to the parameter
Mc,s,e ∈ [0, 1]. The geometric function generates, based on the probability of suc-
cess Mc,s,e , a random number. So far, the stored random numbers in parameter
Gc,s,e ∈ N0 have higher values than 1 and does not fit to the set ofZ . A procedure
changes every value > 1 to a 1 and passes them to the parameter kl ,c,s,e . Now,
the parameter kl ,c,s,e contains only elements of {0, 1} and decides if a part fails
(kl ,c,s,e = 1) or not ( kl ,c,s,e = 0). For example, consider following extract from the
model:
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Figure 4.1: Example for a simulation with l = 1, c = 1, e = 67671967, and s =

56613− 1039855.

The blue boxes show the values of the parameters TLe , THe , TBe . The value of
the part e is equal for every system s. For example, the triangular function moves
for the part e = 67671967 within limits of TL67671967 = 72 % and TL67671967 =

92 % with a displacement factor of TB67671967 = 0.5. The red box shows the
graph of the triangular function for every system s for part e = 67671967. The
accurate values of the triangular function are displayed in the first box on the
lower left side. The value of success M1 ,56613−1039855 ,67671967 = 84 .9 % shows the
probability for the survival of the part. The lower box in the middle displays the
generated random numbers of geometric function based on parameter kl ,c,s,e . Un-
filled fields have the value kl ,c,s,e = 0. The lower box on the right side shows the
converted random numbers kl ,c,s,e ∈ {0, 1}. The values are only shown if the part
e is built in the system s and if it is broken, such as k1 ,1 ,56613−1039855 ,67671967 = 1.

24



Master Thesis

4.1.7 Procedure

In the optimization tool AIMMS different procedures have to be declared. The
main procedures run the model to simulate the random values or to minimize or
maximize the objective function. Other procedures can be created to automate
calculation and analysis. For example, to initialize a high number of sets and pa-
rameters, AIMMS offers functions to read Excel sheets. Furthermore, the results
can be written in Excel to use Excel tools for stochastic or other analyses. The
simulation of the default parts is an upstream procedure to the main procedure
to maximize the objective function.

4.1.8 User Interface

Within the optimization tool AIMMS offers the option to create a user interface
for an easy handling for third parties. The interface allows a quick and easy
initialization of the parameters, like CW and CV . Different buttons run all pos-
sible procedures. Therefore, third parties do not need any specific know-how of
the model to change parameters or run procedures. Furthermore, it shows the
important results of the optimization in overview. Figure 4.2 shows an example
of the user interface after an optimization run.
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Figure 4.2: Example of the user interface "Calculation" with an optimum solution
for the Real Data, with CW = 11300 and CV = 10000.

4.2 Model 2: "Flexible Parts to Systems Assignment"

The second version of the software tOPSPIN is a two-stage problem and more
optimistic, based on the addition of index c to the binary variable yc,s,e. In the first
stage Model 2 decides which parts to include in the storage, given a collection
of possible failure scenarios. In the second stage the actual failure scenario is
revealed and the model optimally allocates the parts it chose in stage one. This
subsection only describes the differences with respect to Model 1 in variables,
constraints and objective.
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4.2.1 Variables

xc,s,z =





1, if system s in scenario c has state z after repairs are complete.

0, otherwise.

(4.10)

yc,s,e =





1, if part e is designated to repair system s in scenario c.

0, otherwise.
(4.11)

The state z of every system s in the different scenarios c is described in the binary
variable xc,s,z ∈ {0, 1} (4.10). The binary variable yc,s,e ∈ {0, 1} (4.11) contains the
storage of the optimal warehouse and shows which part e can be used to repair
a system s in different scenarios c. The addition of index c allows the use of parts
to repair the systems over the different scenarios. The total number of every part
will be summed in the variable ne ∈ R+.

4.2.2 Constraints

The following constraints define a feasible assignment of the warehouse storage
and the current state of every system.

System State

∑

z∈Z
xc,s,z = 1 ∀s ∈ S, c ∈ C, (4.12)

xc,s,1 ≤ ys,e ∀s ∈ S, c ∈ C, e ∈ E , l ∈ L : qs,e = 1, bs,e = 1, kl,c,s,e = 1,

(4.13)

1− ys,e ≤ xc,s,0 ∀s ∈ S, c ∈ C, e ∈ E , l ∈ L : qs,e = 1, bs,e = 1, kl,c,s,e = 1.

(4.14)

In Equation (4.12), the system s ∈ S has only one current state for every sce-
nario c ∈ C. Equation (4.13) represents that the system s ∈ S has the current
state 1 (operational system), if the part is available in the warehouse and if the
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following points meet the requirements: The part is built-in the system, the part
is broken and the replacement is necessary to run the system. In Equation (4.14),
the system s ∈ S has the current state 0 (non-operational system), if the part
is not available in the warehouse and if the following points meet the require-
ments: The part is built-in the system, the part is broken, and the replacement is
necessary to run the system.

Demand
∑

c∈C,s∈S,e∈E
yc,s,e · ue ≤ ne. (4.15)

Equation (4.15) calculates the total demand ao all spare parts e. In contrast to the
first version the total demand can be less or equal in case a scenario c results in
a smaller demand compared to other scenarios.

4.2.3 Objective

max
∑

s∈S,z∈Z,e∈E,c∈C
oc · ps,z · xc,s,z + 10−4 · yc,s,e − 10−6 · ne. (4.16)

Also in Model 2, the primary goal of the objective function (4.16) is to maximize
the number of high prioritized operational systems with an optimal storage of
spare parts. On a subordinate point to fill the rest capacity with other spare
parts, which are broken, but cannot repair the whole system. Finally, we subtract
a small influence to take the smaller storage in case of a solution with the same
value of the objective function.
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5 Data

The following chapter explains the different data sets for the Real Data and
Sim Data.

5.1 Real Data

The Real Data are based on records over past orders and storage movements
in 2016 and 2017 of the logistic center of the German Armed Forces in Wil-
helmshaven, Germany.

5.1.1 Sets

The set of systems s in the Real Data contains 108 systems. They are the result
of a ranking of all 2643 systems and their replacements of parts based on the
master data. The master data includes all systems and parts the are registered.
The 108 systems have 7 to 36 built-in parts based on the last orders in 2016
and 2017. We have information only for parts which break down at least once.
Information remaining all built-in parts, which possible can break down, are
missing. The top 108 systems represent the systems in a possible deployment
and are used for the basic analysis of the mathematical program. Because of
secrecy towards unauthorized personal the data sets of systems and parts are
encrypted. The identification number of a system is spit into two parts. The first
digits describe the type of vehicle. The second digits describe the equipment of
every system. The possible storable parts are based on the last orders of the top
108 systems, which corresponds to a total value of 708 parts. The whole logistic
center holds up to 18062 different parts in weight categories up to 17600 kg.
8322 parts have no weight information on file. The leftover 9740 parts with
stored weight information contains 87 % of parts with a weight of less than
3.8 kg, shown in Figure 5.1.
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Figure 5.1: Weight distribution of Master Data.

Figure 5.2 shows that the 708 parts of the top 108 systems have a similar weight
distribution to the master data, with a heaviest part of 3600 kg.

Figure 5.2: Weight distribution of Real Data.

5.1.2 Parameter

The binary parameter bs,e ∈ {0, 1} contains the information about the built-in
parts for every system. A binary matrix over all 108 systems and 708 parts de-
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clares a 1 for a built-in part e in system s and a 0 for non-built-in parts. The
top 108 systems have different priorities in a deployment and are separated into
combat and support vehicles. This information is stored in the parameter ps,z
and can take values from 4 (highest priority) to 1 (lowest priority). The priorities
of 4 and 3 are for combat vehicles and priorities 2 and 1 for support vehicles. If
more systems of a type are on deployment, one half of the group get the higher
priority to make sure that at least 50 % of the systems of any group are preferably
repaired. The priorities can set for every state z of a system s. The parameter
qs,e describes the necessity of every part for a system. Some parts are important
to run a system at all, some are useful to have but not necessary. Currently all
parts are important for their systems. Every system contains different quantities
of a part. This information is stored in the ue ∈ N and are based on the quantity
of last orders for every system in the last two years. The parameter we ∈ R+

and ve ∈ R+ contains the weight and volume of any part e. The information of
both parameters are based on the master data for every part. Missing weight
information is randomly picked using all master data information to generate
a similar weight distribution. Caused by a higher amount of missing and mis-
leading volume information, this parameter is set for all parts equal and does
not affect the mathematical program. The weight and volume capacities are set
in parameters CW and CV . The weight capacity for a possible deployment is
100000 kg. The volume capacity is set high enough to contain all parts as has no
influence on the objective function. The parameter oc gives a probability of occur-
rence for every scenario. Currently, no explicit scenarios are set. Therefore, the
parameter oc has the equal probability of occurrence oc = 1/c for every scenario.
The scenarios are generated by a simulation. The parameters of the triangular
function TLe , THe and TBe are based on the last orders of parts from the top 108
systems. If parts were ordered more frequently, the borders of the probability
of success in the triangular function are lower valued than the borders for infre-
quently ordered parts. The calculated probabilities of success based on the data
base correspond to the higher bound THe of the triangular function. The lower
bound TLe contains probabilities with 20 % less than the values of THe in order
that the simulation results in more broken parts that primary were ordered. The
probability of a part, to not break down, lies in a range of 63.3 %-91.7 %. The
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displacement factor TBe = 0.5 is equal for every part and generates a balanced
movement between the borders. A comparison with the results of the simula-
tion and the calculated probabilities of the data base shows, that a displacement
factor of TBe = 0.5 and a wide between the higher and lower bound of 20 %,
leads to lower probabilities of success with a mean of 6.83 % lower success and
a standard deviation of 3.15 %. Standard deviation is a measure that is used to
quantify the amount of variation or dispersion of a set of data values. If the dis-
tance between the borders is 10 % the mean gets smaller by 3.24 % less success
as well with a less standard deviation with 3.07 %. Overall, in the calculation
more parts are broken with a mean of 6.83 % than the data base yield.

5.2 Sim Data

Because of the fact that only parts which break down once are accounted by the
parameter bs,e, the settings of Sim Data represent a more realistic number built-in
parts per system. The Sim Data gives another point of view of the mathematical
program and makes the results more comparable. The Sim Data are fictitious
and are not based on any previous data.

5.2.1 Sets

The Sim Data settings contain an total number of 100 systems and 700 parts. The
100 systems are split in equal groups of 5 systems, like trucks, tanks, or airplanes.
Every system has 53 built-in parts. Every part is built-in at least in one group
of systems. The weight of the parts have a similar distribution with more low-
weighted parts and a few heavy parts, simular to the Real Data. The heaviest
part of the Sim Data has a weight of 5000 kg.
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Figure 5.3: Weight distribution of Sim Data.

5.2.2 Parameter

The matrix of the parameter bs,e is more dense with a higher number of built-in
parts per system and leads to more solving steps in the mathematical program.
The groups of 5 systems are equally divided into combat and support vehicles.
The parameter ps,z has the same possible values of priority, 4 (highest priority) to
1 (lowest priority), like the Real Data. The first 3 vehicles of a group get a higher
priority than the last 2 vehicles, to make sure at least 50 % of a group have a
value to the objective function to be repaired. The necessity of every part for
a system in parameter is equal with qs,e = 1. The information over every unit
size per part in parameter ue varies between 1 and 4 parts per unit and depends
on the weight of the part. Mostly, a big and heavy part is built-in only once, in
contrast to wheels or screws. The weight per part we has the same distribution,
like the Real Data. The parameter we contains more low-weighted parts and a
few heavy parts. The volume ve is disregarded and set to a value of ve = 1 for
every part. The influence of the generated scenarios to the objective function are
equal for every scenario with a setting of parameter oc = 1/c. The parameters of
the triangular function TLe , THe and TBe are not based on collected data. To
keep the Sim Data simple, all parts have the same probability to success. Success

33



Master Thesis

means to have an operational state after the simulation. The lower - TLe- and
upper - THe - bound have a range from 30 % to 70 % and an equal movement
within the bounds of TBe = 0.5.
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6 Results

This chapter shows different analyses of both models of tOPSPIN and data sets
to investigate the behavior of the optimal storage of a warehouse. The results
give an assessment of the important parameters, which influence the simulation
and the calculation of an optimal storage.

6.1 Level of Service

The parameter SG displays a level of service for every optimization run. It shows
the percentage of parameter RSs,z=1 over all systems s, reflecting the perfor-
mance of an optimal warehouse. The first analysis tests the changes of the SG
for different weight capacities for both data sets.
Figure 6.1 shows the service levels for Model 1 and Model 2 for different weight
capacities based on the dataset Real Data. For both models, the service levels
of the Real Data decreases really slow compared to the weight capacities. Even
with a weight capacity of 2825 kg, 2.5 % of the total weight, both models can
repair up to 71 % of the broken systems. The high level of service with a low
weight capacity is caused by the high range of low-weighted parts in the dataset.
For example, 71 % of all parts in Real Data have a weight up to 5 kg, therefore
the models can store a lot of parts with a small weight capacity. In comparison
of the models, the two-staged Model 2 can reach a higher service level for all
weight distributions.
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Figure 6.1: SG of Real Data for different weight capacities for Model 1 and
Model 2.

The Sim Data, shown in Figure 6.2, decrease in their level of service faster than
the Real Data. With a weight capacity of 3500 kg, 2.5 % of the total weight, Model 2
can repair only up to 30 % of the broken systems, and Model 1 even less with a
service level of 22 %. To have a service level close to the lowest service level of
the Real Data, it needs at least a weight capacity of 10 % of the total weight for
Model 2 and at least 15 % for Model 1. This effect is caused by the higher amount
of parts per system. After the simulation, more parts have to be replaced which
leads to a higher demand of weight capacity.
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Figure 6.2: SG of Sim Data for different weight capacities for Model 1 and
Model 2.

6.2 Number of Scenarios

The following analysis shows how many scenarios c are necessary to get a repre-
sentative result for an optimal warehouse in an acceptable solving time based on
Model 1. To show if the solution is representative, Model 1 solves an additional
c + 1 scenario after the original optimization. If the storage of the warehouse
is optimal, the next scenario is solved as good as the other scenarios before.
The analysis, shown in Figure 6.3, was implemented over 10 repetitions for all
different weight capacities CW and number of scenarios. The analysis for the
Real Data shows that the number of necessary scenarios depends on the weight
capacity. For a capacity of 2825 kg, 2.5 % of the total weight of all parts, the mean
of RSs,z=1 of the c+ 1 scenario, for an optimal solution with 5 solved scenarios
before, is under 40 RSs,z=1 compared to the optimal solution with a mean of 65
RSs,z=1. For the 2825 kg weight capacity it needs as least 50 scenarios for the
calculation to get a representative result to solve the c+ 1 scenario with a close
number of RSs,z=1 compared to the service level of the optimal solution. If the
weight capacity is higher, fewer scenarios are necessary to get a representative
result. For a weight capacity of 56500 kg, 50 % of the total weight, it only needs at
least 15 scenarios to get a representative result of RSs,z=1 around RSs,z=1 = 107.
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With a higher weight capacity the warehouse stores more parts and can more
easily solve new upcoming scenarios.

Figure 6.3: Analysis of necessary numbers of scenarios with weight capacity and
total weight percentage for Model 1.

The analysis was implemented over 10 repetitions for each weight capacity CW
and number of scenarios c. Figure 6.4 shows the standard deviation to the mean
of RSs,z=1 for the 10 repetitions for the different CW and c. The standard devia-
tion stabilize with a higher number of scenarios and a higher CW .

Figure 6.4: Standard deviation for 10 analysis repetitions over different CW -
total weight percentage for Model 1.

38



Master Thesis

Similar, the analysis of the Sim Data in Figure 6.5. The main difference between
the Real Data and the Sim Data is the built-in parts per system and the distribu-
tion. The analysis shows that the equal distribution of the built-in parts have an
impact on the number of necessary number of scenarios. For a CW = 3500, 2.5 %
of the total weight, it only needs a number of 15 scenarios to get a representative
result, compared to the need of 50 scenarios of the Real Data analysis. For a 50 %
capacity of the total weight leads even only 5 scenarios to a representative result.
The comparison shows, that the number of necessary scenarios depends on the
weight capacity and furthermore on the distribution of the built-in parts.

Figure 6.5: Analysis of necessary numbers of scenarios with weight capacity and
total weight percentage for Model 1.

The analysis of the standard deviation (6.6) underlines the impact of the distri-
bution of the built-in parts. With a equal distribution of all parts the standard
deviation decreases fast to a low level for every CW .
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Figure 6.6: Standard deviation for 10 analysis repetitions over different CW -
total weight percentage for Model 1.

6.3 Solving Time

Figure 6.7 shows the solving time for an optimal storage over different number
of scenarios, datasets and models. The CW for both sets are set by 10 % of their
total weights with CW = 11300 kg and CW = 14500 kg. The solving time raises
for both datasets with a higher number of scenarios from 1 up to nearly 60
second (sec) for Model 1. In comparison with the necessary number of scenarios
shown in Figures 6.3 and 6.5 the solving time acceptable with under 60 sec. The
two-staged Model 2 takes more time to calculate the optimal storage, caused
by a higher number of constraints and variables based on adding the index c
to variable yc,s,e. For example, the solving time of Model 2 for Sim Data with a
weight capacity of 14500 kg and 50 scenarios took over 5 hours. To reduce the
solving time, the calculates were terminated at a gap of 0.01 % of the optimal
objective value. The stopping criteria decreases the solving time down to 17
minutes for CW = 14500 and c = 200 for an almost optimal solution.
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Figure 6.7: Solving time for Real Data and Sim Data with a weight capacity of
10 % over different numbers of scenarios and both models.

6.4 Home/Worst Case Analysis

The following analysis shows the solutions of the optimization Model 1 and the
weight distribution of a "home"– and "worst-case"–point of view. The "home"–
settings represent the conditions of national operations. Those conditions are
predictable and well-known on basis of long-term views. The national territory
and military bases have a good infrastructure and gentle weather conditions.
Consequently, all parts break less. This factor can be taken into account over
the parameter TBe . The parameter describes the displacement factor between
the lowest and highest value of the triangular function. A value of TBe = 0.99

causes a shift to the higher value of the function and leads to a higher probabil-
ities of success for the simulation. Therefore, less parts get broken during the
simulation. In contrast, the "worst-case"–point of view simulates the conditions
in a deployment with bad infrastructure and weather conditions and hostile at-
tacks. A value of TBe = 0.01 causes a shift to the lower bound of the triangular
function to produce more broken parts in the simulation. Figure 6.8 shows the
number of DSs,z=0 after the simulation and the RSs,z=1 after the optimization
with CW = 11300, TBe = 0.99 and c = 50. From the origin, 108 systems 70 to
90 systems are broken after the simulation. On average, the optimization can
replace 80 % of the systems with a weight capacity of 11300 kg.
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Figure 6.8: Optimal solution of Real Data with CW = 11300, TBe = 0.99, c = 50

in Model 1.

Figure 6.9 shows the related weight distribution of all stored parts after the opti-
mization and the ordered quantity of all weight groups. Compared to the weight
distribution of all parts (Figure 5.2) less heavy parts are stored in the warehouse.
In a case of a lower weight capacity the optimization stores fewer or no heavy
parts up to 500 kg to "save" the capacity for broken systems with low-weighted
parts.

Figure 6.9: Weight distribution of "home"–solution for Real Data.
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In the "worst case"–point of view, Figure 6.10 shows the expected, higher amount
of DSs,z=0 with 85 to 100 systems. On average, the optimization can replace 70 %
of the systems with a weight capacity of 11300 kg.

Figure 6.10: Optimal solution of Real Data withCW = 11300, TBe = 0.01, c = 50

in Model 1.

The related weight distribution (Figure 6.11) shows that the stored parts in the
"worst case"–scenario are even less heavy and contains only parts up to 200 kg.
Instead, the "saved" weight capacity gets used for more parts up to 50 kg.

Figure 6.11: Weight distribution of "worst case"–solution for Real Data.
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In contrast, we shall compare the "home" and "worst case" analysis of the Sim Data.
The equal distribution of the built-in parts per systems causes the effect of total
break-down of all systems in the "home"–scenario. With a number of 53 parts
per system, even a shift to the higher bound of the triangular function and a
resulting higher probability of success for not-breaking down, the probability
for at least one broken part was too high. For that reason the analysis runs over
two different bounds of the triangular function to show the difference between
the "home"– and "worst case"–scenarios. The first run simulates with a TLe = 0.3

and THe = 0.7 and the second run with TLe = 0.9 and THe = 1. The first anal-
ysis shows a total break down, DSs,z=0 = 100, of all 100 systems. At least one
built-in in every systems fails and has to be replaced. With the weight capacity
of 14500 kg, 10 % of the total weight, 60 to 77 systems can be repaired in different
scenarios.

Figure 6.12: Optimal solution of Sim Data with CW = 14500, TBe = 0.99, TLe =

0.3, THe = 0.7, c = 50 in Model 1.

The weight distribution in Figure 6.13 shows compared to the total weight distri-
bution in Figure 5.3 the same behavior like the Real Data. The optimized ware-
house contains mostly light parts and no heavy parts over 200 kg.
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Figure 6.13: Weight distribution of "home 1"–solution for Sim Data.

The "worst case" analysis of the first run (Figure 6.14) illustrates the need for a
second analysis with different borders of the triangular function. Likewise, all
100 systems break down after the simulation. However, the number of repaired
systems is lower with a range of 58 to 68 systems, caused by the shift to the
lower bound of the triangular function. Therefore, in total more broken parts per
systems have to be replaced.

Figure 6.14: Optimal solution of Sim Data with CW = 14500, TBe = 0.01, TLe =

0.3, THe = 0.7, c = 50 in Model 1.
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The weight distribution in Figure 6.15 changed to a smaller number of low-
weighted parts and includes parts up to a weight of 500 kg. With a higher number
of broken parts even more low-weighted parts were expected, but this depends
on the broken parts in every simulation. If a heavy part of an important system
gets broken in every scenario, it can increase the value of the objective function
to store it in the warehouse.

Figure 6.15: Weight distribution of "worst case 1"–solution for Sim Data.

Figure 6.16 shows the second run of the "home"–scenario. Because of the higher
valued borders of the triangular function, fewer systems get broken after the
simulation. The total number of broken parts is so low, that nearly every system
can be repaired with an optimal storage.
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Figure 6.16: Optimal solution of Sim Data with CW = 14500, TBe = 0.99, TLe =

0.9, THe = 1, c = 50 in Model 1.

Figure 6.17 shows, that a lower total number of broken parts allows two heavy
parts in the 200 to 500 kg group in the storage. If all broken systems are repaired
or weight capacity is left, the model fills up the warehouse with other parts.
This leads to even a higher amount of small parts, to decrease the value of the
objective function.

Figure 6.17: Weight distribution of "home 2"–solution for Sim Data.

The "worst case"–scenario, shown in Figure 6.18, of the second run of the analysis
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has more broken systems after the simulation in contrast to the "home"–scenario
(6.16), but still has some running systems compared to the first "worst case"-
scenario with TLe = 0.3 and THe = 0.7. With less broken parts per system the
optimized storage can repair a lot of systems even after a simulation of a "worst
case"–scenario.

Figure 6.18: Optimal solution of Sim Data with CW = 14500, TBe = 0.01, TLe =

0.9, THe = 1, c = 50 in Model 1.

The weight distribution (Figure 6.19) clearly shows a decrease of low-weighted
parts with up to 2384 parts in the 0.5 to 1 kg group and only one heavy part in the
100 to 200 kg group. The opposite to the weight distribution in Figure 6.15 hap-
pened and more different, low-weighted parts failed. The value of the objective
function decrease for more small parts.
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Figure 6.19: Weight distribution of "worst case 2"–solution for Sim Data in
Model 1.

The analysis of the "home" and "worst case" point of view shows, that the number
ofDSs,z=0 andRSs,z=1 depends on the built-in parts distribution. All "worst case"
analyses displays different weight distributions, depending on their distribution
of broken parts after the simulation. Therefore, a large number of scenarios is
even more important for a representative result.

6.5 Fixed Warehouse

The previous analyses show that more low-weighted parts are stored if the
weight capacity increases. The next analysis shows what happens if only a gen-
eral number of low-weighted parts were stored to save time and money for a
mathematical optimization. Therefore, a number of scenarios were simulated
and the results based on a fixed and a optimal storage were displayed. The first
analysis runs with a fixed storage with a quantity of 3 units for every part up to
20 kg. The total weight for the fixed storage is 9210 kg. The total number of parts
up to 20 kg is 600, 85 % of all parts. The model solves the optimization with the
same weight capacity of 9210 kg. All runs are going over 100 scenarios. For the
Real Data, Figure 6.20 shows the result of the analysis. After the simulation up
to 99 systems are broken. With a optimized storage 80 % to 90 % of the broken
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systems can be repaired. Only 50 % to 70 % of the broken systems can be repaired
by the fixed storage. On average, 15 systems less were repaired.

Figure 6.20: Performance comparison of optimal and fixed warehouse of
Real Data 1 with low-weighted parts up to 20 kg in Model 1.

The second analysis, shown in Figure 6.21, verifying the behavior of a fixed stor-
age with a weight up to 10 kg. Per part 5 unit are stored and arise to a total
weight of 10052 kg. The optimal storage with a weight capacity of 10052 kg can
repair 80 % to 90 % again. On average, the fixed storage can repair 20 systems
less than the optimal storage. Therefore, a fixed storage up to 20 kg with less
parts performs better than a fixed storage with more parts up to 10 kg.
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Figure 6.21: Performance comparison of optimal and fixed warehouse of
Real Data 2 with low-weighted parts up to 10 kg in Model 1.

For the Sim Data, more units are stored in the fixed storage for both runs, caused
by the higher number of parts per system. For the first analysis 6 units per parts
up to 20 kg are stored with a total weight of 9210 kg. Parts with a weight up
to 20 kg corresponds to 96 % of all parts. Figure 6.22 shows the following re-
sults: On average, 90 of 100 systems are broken after the simulation. An optimal
storage can repair 75 % to 85 % of them. The fixed storage only reaches 40 % to
50 % repaired systems. That corresponds to an average of 29 less systems to the
optimal solution.
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Figure 6.22: Performance comparison of optimal and fixed warehouse of
Sim Data 1 with low-weighted parts up to 20 kg in Model 1.

The second run of the analysis for the Sim Data tested a fixed storage with 10
unit per part up to 10 kg. The total weight for the fixed storage and the capacity
is 13280 kg. The results, shown in Figure 6.23, reveal the opposite behavior to
the analysis of the Real Data. A fixed storage still leads to less repaired systems
in contrast to the optimal solution, but the analysis shows that the deviation is
smaller with the settings of the fixed storage. On average, 17 systems less were
repaired compared to the optimal solution. However, the service level of the
fixed storage is still lower with 63 % to 74 % of repaired systems compared to a
service level 80 % to 90 % repaired systems with the optimal storage.
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Figure 6.23: Performance comparison of optimal and fixed warehouse of
Sim Data 1 with low-weighted parts up to 10 kg in Model 1.

Overall, a simple fixed storage with a general quantity of selected parts can
reach service levels up to 74 %. The results changes with the settings of the
fixed storage and the underlying set of data. However, all analyses still have
high disadvantages to an optimized storage. In the end it is a decision made on
priorities of time, money, and service level.

6.6 Comparison of Storage

Based on the different service level of both models, the question occurs: which
parts are stored that increase the service level of Model 2? The analysis of this
chapter shows the weight distribution for different weight capacities for both
models and datasets to compare them.

6.6.1 Real Data

For a small weight capacity of 2825 kg, Figure 6.24 shows the weight distribution
of the optimal storage calculated by Model 1. The storage includes mostly low-
weighted parts up to 50 kg and peaks of the order quantity in the weight groups
0.1 to 0.5 kg and 1 to 5 kg. Moreover, 108 different parts are stored with a weight
up to 0.1 kg. The service level of this storage is SG = 0.70.
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Figure 6.24: Weight distribution of Real Data with CW = 2825 by Model 1.

Figure 6.25 shows the weight distribution of the optimal storage calculated by
Model 2. For the same weight capacity of 2825 kg, the optimal storage shows a
different distribution with a single peak in the weight group 1 to 5 kg. Instead,
more heavy parts are stored up to 100 kg. The service level of this storage is
SG = 0.71.

Figure 6.25: Weight distribution of Real Data with CW = 2825 by Model 2.

The weight distribution of the storage calculated by Model 1 based on CW =

11300 is shown in Figure 6.26. Like in Figure 6.24, there are peaks in the same
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weight groups. The high weight capacity allows to store heavier parts up to
200 kg. The higher weight capacity causes a higher amount for all weight groups
and equals in a service level of 86 %.

Figure 6.26: Weight distribution of Real Data with CW = 11300 by Model 1.

In comparison, the weight distribution of the storage by Model 2 is shown in
Figure 6.27. Based on the higher weight capacity there is a increase of parts in
the weight groups 0.5 to 1 kg and 1 to 5 kg. Moreover, there is a total increase of
parts from 10 - 500 kg. Overall, the higher weight capacity is used to store more
parts over 5 kg and equals in a service level of 89 %.
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Figure 6.27: Weight distribution of Real Data with CW = 11300 by Model 2.

Figure 6.28 shows the weight distribution of the optimal storage by Model 1 for
a weight capacity of 28500 kg. The distribution shows a peak in the weight group
1 to 5 kg and a total increase of parts from 10 to 2500 kg. The service level of the
storage is 96 %.

Figure 6.28: Weight distribution of Real Data with CW = 28500 by Model 1.

The weight distribution of the optimal storage by Model 2, shown in Figure 6.29,
has a high peak in the weight group 0.5 to 1 kg for the order quantity compared
to Figure 6.28. Conversely, there is a high decrease of the order quantity for parts
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in the weight group 1 to 5 kg. Overall there is a decrease of order quantities for
parts from 50 to 2500 kg. The storage of the second model equals a service level
of 97 %.

Figure 6.29: Weight distribution of Real Data with CW = 28500 by Model 2.

The previous weight distribution of both models shows different peaks in the
weight groups and causes different service levels with a difference up to 3 % that
corresponds to three more operational systems. Overall, the second model uses
more capacity for heavy parts than the first one and can reach a higher service
level.

6.6.2 Sim Data

For a small weight capacity of 3500 kg in the Sim Data, Figure 6.30 shows the
weight distribution of the optimal storage calculated by Model 1. The storage
includes mostly low-weighted parts up to 200 kg and peaks of the order quantity
in the weight groups 0.1 to 0.5 kg and 1 to 5 kg. The service level of this storage
is SG = 0.22.
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Figure 6.30: Weight distribution of Sim Data with CW = 3500 by Model 1.

In comparison, the weight distribution of the storage by Model 2 is shown in
Figure 6.31. The storage by Model 2 includes more different parts in the low
weighted groups up to 5 kg, based on the "saved" with less heavy parts only up
to 100 kg. The storage equals in a service level of 30 %.

Figure 6.31: Weight distribution of Sim Data with CW = 3500 by Model 2.

Figure 6.32 shows the weight distribution of the optimal storage by Model 1 for
a weight capacity of 14500 kg. Over 80 % of the storage are parts of the weight
groups from 0.5 to 5 kg. Only 2 % of the storage are heavy parts from 50 to 200 kg.
The service level of the storage is 68 %.
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Figure 6.32: Weight distribution of Sim Data with CW = 14500 by Model 1.

Figure 6.33 shows the weight distribution of the storage by Model 2 with the
same weight capacity. Compared to the weight distribution in Figure 6.32, there
is a increase of parts in the weight groups from 0.5 to 1 kg and 200 to 500 kg
based on a decrease of parts in the weight groups 5 to 50 kg.

Figure 6.33: Weight distribution of Sim Data with CW = 14500 by Model 2.

Based on a weight capacity of 35500 kg, Figure 6.34 shows the weight distribu-
tion of the optimal storage calculated by Model 1. Compared to Figure 6.32, the
distribution shows a high increase of the order quantities with over 2000 parts
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for the weight group 0.5 to 5 kg. Moreover, the weight capacity is used to store a
higher amount of heavy parts up to 1000 kg.

Figure 6.34: Weight distribution of Sim Data with CW = 35500 by Model 1.

The weight distribution of the optimal storage by Model 2 is shown in Fig-
ure 6.35. The storage stores the same number of parts for each weight group,
compared to Figure 6.34, but with different order quantities. In total the storage
includes less parts in all weight groups up to 200 kg to store more parts up to
1000 kg.

Figure 6.35: Weight distribution of Sim Data with CW = 35500 by Model 2.
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The comparison of both models for Sim Data shows more agreements of the
number of parts and local peaks, but large differences in the order quantities.
Overall, Model 2 stores always more heavy parts and less parts in total com-
pared to Model 1.
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7 Conclusion and Outlook

Currently, tOPSPIN is a tool to get a first impression of an optimal warehouse.
Based on the current data, it shows that a high level of service is possible with
a small weight capacity. That is an advantage for a successful deployment and
contribution to the NRF. Model 1 is a one-staged model and more pessimistic
by assuming that each part can only appear in each system once and being com-
mitted before it leaves to the deployment. Compared to the more optimistic,
two-staged Model 2, which makes the decision for the optimal storage when
the actual failure scenario is revealed, there are significant differences in the
weight distribution of the storages under equal settings. Model 1 stores mostly
a high amount of low weighted parts up to 5 kg, because the parts a preassigned
to the systems. Therefore, more systems can be repaired with that storage. In
contrast, Model 2 stores less low weighted parts and more heavy parts from 50
to 200 kg, because the parts are assigned to the systems, when they are failed.
Consequently, equal parts in different systems can be used once and have not be
stored for every system. Overall, there is a difference of service levels for both
models, but for the Real Data, Model 1 is quite robust compared to the more
optimistic Model 2. However, the current results are based on a small data base
with some missing data, like all built-in parts. Furthermore, the simulation needs
more data to generate more realistic scenarios. All analyses give an impression
of the behavior of different parameters in both models. Moreover, the analyses
shows which parameters influence the simulation and calculations and give
advices for future users. Those have to take into account the distribution of the
weight and built-in parts for a representative result. Moreover, the analyses show
the value of an optimization, because a simple, pre-fixed warehouse shows a less
satisfying level of service, than an optimized warehouse. To make the optimiza-
tion even better and more realistic, more data has to be stored. The data about
previous orders have to be collected over a longer time, especially in situations
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of a deployment to make the simulation more realistic. Furthermore, all built-in
parts, volume of parts and necessary systems data must be collected. Only then,
optimal results can be realized. A complete dataset could be compared to the
analyses of this thesis with a further analysis of the actual stored parts and not
only over the weight distribution. With a complete dataset a clustering of the
failed parts after the simulation could identify important parts for the storage
to increase the service level. To make the simulation more realistic, one feature
can be used in further calculations; the triangular function can be replaced by a
Weibull function. The Weibull function describes the lifetime and default proba-
bility of a part based on previous data. Therefore, the function takes the history
of a part into account. The function incorporates memory the aging of a part
based on time and use. Thus, the Weibull function makes a simulation and their
generated scenarios of default parts more realistic. Nevertheless, the Weibull
function needs a big data base collected over long time. Another further option
is the extension of the mathematical models. The calculations could include the
use of parts from broken systems, where a total replacement is not possible. This
extension could increase a number of operational systems with the same or even
smaller weight capacity. Overall, the current software and results give a good
impression how an optimal warehouse looks like. Furthermore, the thesis gives
a tool and advices for further considerations and the important parameters and
data, which have to be complemented with more collected data.
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