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Mixed Integer PDE Constrained Optimization
for the Control of a Wildfire Hazard

Fabian Gnegel, Michael Dudzinski, Armin Fügenschuh, and Markus Stiemer

Helmut Schmidt Universität/Universität der Bundeswehr Hamburg,
Holstenhofweg 85, 22043 Hamburg, Germany

Abstract. We derive an optimization problem for a mission planning
problem of a firefighting department challenged by a wildfire. Here the
fire is modeled using partial differential equations (PDEs), and the re-
sponse from the firefighters is modeled as a dynamic network flow. The
firefighters influence the spread of the wildfire, and vice versa, the fire
restricts the movement options of the firefighters. These mutual interac-
tions have to be incorporated into the model. The presented approach to
formulate this problem mathematically is to replace the infinite dimen-
sional constraints imposed by the PDE by a finite dimensional system.
These systems however tend to be very large even for a moderate reso-
lution of the approximation. This causes a direct approach using a finite
difference method to be outperformed by a new method, in which the
PDE is solved in a pre-optimization step. We demonstrate the superior-
ity of this approach in a computational study, where both methods are
compared for various approximation resolutions.

Keywords: Mixed Integer Programming, PDE Constrained Optimiza-
tion.

1 Introduction

In a forest close to inhabited regions is an ongoing wildfire spread. Leaving it
burning uncontrolled might endanger the local population and their properties,
hence the firefighters are trying to plan their response in an optimal way, without
endangering themselves. A road network is passing through the forest that can
now be used for firefighting operations. The forest itself cannot be crossed; all
movements are restricted to the said road network. In order to prevent endanger-
ing the firefighters, no movement should take place on roads leading through or
too close to burning territory. The resources necessary to control the fire (water,
equipment, and manpower) are limited, therefore an optimal resource allocation
and proper scheduling might make the difference between getting the fire under
control or a major disaster.

In this situation an optimal planning has to take two different types of dy-
namics into account: Firstly, the physics of the fire, which allows to predict the
spread direction and velocity, and secondly, the movement of the firefighters
and their extinguishing agents (water). Those two systems cannot be consid-
ered separately. The ultimate goal of any firefighter mission is to influence the
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spread of the fire, but during this mission, the fire might temporarily prevent
the firefighters from reaching certain areas.

For the modeling of the fire a time dependent PDE is used, and a dynamic
network flow is used to model the movements of the firefighters, or more precisely,
the water that they use. In order to express the interdependencies, the flow
variables of the network are used as control variables for the PDE and additional
constraints are imposed on the network flow which include the state of the PDE.
The inclusion of these interdependencies make our model unique in comparison
to other recent work. For example, Göttlich et al. [3] studied an evacuation
planning problem in response to a gas hazard, where the latter is modeled by
a PDE, which is independent of the network dynamics (i.e., flows of evacuating
people). Frank et al. [2] consider the coolest path problem, where an object
traverses a network graph while being heated or cooled on the arcs. Here the
heat PDE gives rise to objective function coefficients for a shortest path problem,
but does not constrain the combinatorial decisions.

2 The Mathematical Model

In order to solve the planning problem of the response to the wildfire, an inte-
grated model for the spread of the fire and for the movement of the firefighters
is formulated. We define the sets and variables of this model, and then the con-
straints and the objective function.

For the dynamic flow of the water used by the firefighters we assume that
the road network is given in form of a graph G := (V,A) with capacities ci,j and
traversing times δi,j for all arcs (i, j) ∈ A. Graph G is embedded in the plane
by endowing each vertex i ∈ V with a coordinate xi ∈ Ω, where Ω := [0, L]2 is
a square area of interest. The arcs (i, j) ∈ A are associated with a straight lines
between the coordinates of their respective incident vertices. The flow can start
in source nodes, denoted by S ⊂ V , and ends in demand nodes D ⊂ V , which
are nodes suitable for extinguishing the fire. We introduce a discretization of the
time horizon [0, T ] by the set of time T := {0, ∆t, . . . , nt∆t = T}.

The variables vi,j,t ∈ R+ represent the flow (of water) on arc (i, j), starting
in i at time t ∈ T. In nodes i ∈ S the flow can enter the network, and the
intensity at time t ∈ T is specified by the variables wi,t ∈ R−. Vice versa, the
flow leaves the network in nodes i ∈ D at time t ∈ T, with an intensity given
by wi,t ∈ R+. The temperature in the forest at location x ∈ Ω at time t ∈ T
is given by u(x, t). Finally, binary decision variables zi,t ∈ {0, 1} for i ∈ V and
t ∈ T are introduced to link the temperature to the flow, with zi,t = 0 if and
only if the temperature at xi at time t exceeds a certain threshold UB , at which
further firefighter operations have to be terminated for safety reasons, that is,
the area is burning.

The following constraints are now used to ensure the desired behavior of the
firefighter operations (i.e., the flow of water), where we use a dynamic maximum
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flow formulation (see [6] for a survey):

vi,j,0 = 0 ∀(i, j) ∈ A, (1a)
∑

i∈V :(i,k)∈A,δi,k≤t
vi,k,t−δi,k =

∑

j∈V :(k,j)∈A
vk,j,t + wk,t ∀k ∈ V, t ∈ T, (1b)

u(xi, t)− (1− zi,t)M ≤ UB ∀i ∈ V, t ∈ T, (1c)
∑

s∈T:s≤min(δi,j ,T−t)
vi,j,t+s ≤ ci,jzj,t ∀(i, j) ∈ A, t ∈ T. (1d)

The initial condition (1a) guarantees that no flow is inside the network at
t = 0. The flow conservation is ensured by (1b). Constraints (1c) and (1d) prevent
flow from passing through a burning area, where the first sets the binary switch
variable zi,t to zero if the threshold temperature is reached, and the second only
allow for flow (w.r.t. to the capacity restriction) as long as zj,t = 1.

The dynamics of the fire is modeled by the following PDE system:

ut(x, t)− c · ∇u(x, t)− d∆u(x, t) = y(x, t, w) ∀ (x, t) ∈ Ω × (0, T ), (2a)

∂

∂n
u(x, t) = hR(uR − u(x, t)) ∀ (x, t) ∈ ∂Ω × (0, T ), (2b)

u(x, 0) = f(x) ∀x ∈ Ω, (2c)

u(x, t) ≥ 0, ∀(x, t) ∈ Ω × (0, T ). (2d)

This is a convection-diffusion equation with Robin type boundary conditions
on the spacial domain Ω and the time domain [0, T ]. The fire model is able to
express the effect of the wind and the diffusive behavior of fire, while still being
a linear PDE (which we need later for computational reasons1). Condition (2b)
imposes that the normal derivative at the boundary is directly proportional to
the difference of the temperature on the boundary and the temperature UR.
Parameter d is the coefficient of the diffusion term, it determines the speed
of the fire spread. Parameter c is the velocity-vector of the wind. Furthermore
condition (2d) ensures that, when the fire is exitinguished (at temperature zero),
the control function cannot push the temperature any lower thereafter.

The term in this PDE that represents an outer influence is y(x, t, w), which
depends on the outflow of water wi,t for i ∈ D of a nearby node (x ≈ xi)
as follows: The controls at the different vertices and different points in time
are independent of each other, hence y is the sum of several individual control
functions. It is further assumed that each outflow variable wi,t (i ∈ D) has only a
local effect with a peak at the coordinate of its vertex and acts only for a certain
duration TE . We assume that the spatial effect follows a Gaussian distribution

1 We remark that there are more complex fire models known, for example [4], where a
further nonlinear term expresses the consumption of fuel (here: wooden trees), but on
such models our presented computational techniques do not work. Their adaptation
is a direction for future research.
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with the coordinates of the vertex xi at its center:

y(x, t, w) = λ
∑

τ∈T

∑

i∈D
−wi,τχ[t,t+TE)(t) exp

(
−‖x− xi‖

2
2

σ2

)
, (3)

where λ and σ are parameters that represent the spatial influence of the outflow
of water on the surrounding fire (more precisely, its temperature), and χI is the
characteristic function (i.e., χI(t) = 1 for t ∈ I and 0 otherwise) that restricts
the duration of the influence to a time interval of size TE .

The objective is to minimize the damage caused by the fire. We assume that
the damage is proportional to a weighted integral of the temperature u(x, t) in
Ω over a time horizon [0, T ].

min

∫ T

0

∫

Ω

ω(x)u(x, t) dxdt,

s.t.(1a)− (1d), (2a)− (2d).

(4)

We present two approaches to solve (4). Neither of them solves this model di-
rectly. Instead, we derive suitable finite dimensional systems that approximate
(4), which turn out to be linear mixed-integer problems (MILP) and thus can
be solved using a state-of-the-art MILP solver.

Finite Differences. The first approach uses a one-to-one replacement of the
constraints and objective with a discrete counterpart. The PDE is replaced by
a linear system obtained from a convergent finite difference method [5] and
the integral is replaced by a quadrature formula. The domain is discretized by
replacing Ω with an equidistant grid of length ∆x = L

nx
with nx ∈ N. The

interval [0, T ] is replaced by the discrete time set T, which was already used
for setting up to the network flow. Then for each point (i∆x, j∆x, t) of the
grid a variable ui,j,t is added. The function u(x, t) is approximated at each
gridpoint, i.e., u((i∆x, j∆x), t) ≈ ui,j,t. All constraints that depend on u have
to be adjusted for those discrete variables. The PDE and its initial and boundary
conditions (2a)-(2c) are replaced by a linear system

(
A1 A2

)(u
w

)
= b, (5)

where the coefficients in the matrices A1, A2 and the vector b are derived ac-
cording to a finite difference scheme. Condition (2d) is converted by enforcing it
for the discrete variables:

ui,j,t ≥ 0, ∀i, j ∈ {0, . . . nx}, t ∈ T. (6)

From the network conditions only (1c) has to be adjusted as

uj,k,t − (1− zi,t)M ≤ UB , ∀i ∈ V, xi = (j∆x, k∆x), t ∈ T. (7)

Note that we assume here for simplicity that the coordinates xi of the nodes
i ∈ V are aligned to the grid. More generally, then one can take the weighted
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sum of the neighboring grid points according to their distance to the position of
the vertex xi, which still gives a linear constraint. The objective function can be
approximated by the trapezoidal rule applied at the grid points. Then the first
linear mixed-integer approximation of (4) is:

min (∆x)2∆t
∑

t∈T

nx∑

i,j=0

λtµiνjω(i∆x, j∆x)ui,j,t,

s.t. (1a)− (1d), (5), (6), (7),

(8)

where: λ0 = 0.5, and λt = 1 if t > 0; µ0, µnx , ν0, νnx = 0.5, and µi, νj = 1
otherwise.

Finite Elements. The second approach is based on the observation that because
of the principle of superposition for linear PDEs the continuous state u can be
defined as

u = uinh +
∑

t∈T

∑

i∈V
wi,tûi,t, (9)

where uinh is the solution of (2a) for w = 0, and ûi,t are the solutions of (2a) for
each individual summand of u and homogeneous boundary and initial conditions.
Since the summands of the control functions for a fixed vertex i can be obtained
by shifting ûi,0(t) to the right it holds for all τ ∈ T

ûi,τ (t) =

{
0, 0 ≤ t ≤ τ,
ûi,0(t− τ), τ < t ≤ T.

Therefore only |V | + 1 PDEs have to be solved in order to obtain u, and (9)
can be used to replace (2a)-(2c) in the continuous model. This also makes it
possible to separate the solution of the PDE from the optimization process,
which opens up the possibility to use adaptive finite element methods instead of
finite differences. Finite element methods in contrast to finite differences define
a linear combination of base functions and thus can be used to derive values
anywhere in Ω and not only on a grid. So independent on the meshes of the
finite element method, it is possible to define the discrete variables as:

ui,j,t = uinh(i∆x, j∆x, t) +
∑

τ∈T

∑

k∈V
wk,τ ûk,τ (i∆x, j∆x, t). (10)

With this we define the MILP for the second approach:

min (∆x)2∆t
∑

t∈T

nx∑

i,j=0

λtµiνjω(i∆x, j∆x)ui,j,t,

s.t. (1a)− (1d), (6), (7), (10).

(11)
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3 Computational Results and Conclusion

Two different MILP were derived that approximate the continuous problem (4).
The second model (11) has much less constraints and variables compared to
model (8) based on finite differences. Yet it remains to be shown that the sec-
ond model indeed outperforms the first one. For solving the required PDEs, the
object oriented software package oFEM [1] has been employed. The computa-
tional results for a problem formulated for the two models are included in the
Figures 1a and 1b. The different graphs show the runtimes for different degrees
of time and space discretizations. The figures illustrate that the finite difference
method was only able to solve problems with only a 10x10 spacial grid and up
to 60 timesteps within a time limit of 20, 000s. In contrast, the second method
still solves problems with a 45x45 spacial grid and 50 timesteps within the same
timeframe, using IBM ILOG CPLEX 12.6.3.0 on a 2014 Mac mini with a 2.6
GHz Intel Core i7 CPU and 16 GB RAM.
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Fig. 1: Computational Results.
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