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Abstract. A multistatic sonar system consists of one or more sources
that are able to emit underwater sound, and receivers that listen to the
direct sound as well as its reflected sound waves. From the differences
in the arrival times of these sounds, it is possible to determine the loca-
tion of surrounding objects. The propagation of underwater sound is a
complex issue that involves several factors, such as the density and pres-
sure of the water, the salinity and temperature level, as well as the pulse
length and volume and the reflection properties of the surface. These ef-
fects can be approximated by nonlinear equations. Furthermore, natural
obstacles in the water, such as the coastline, need to be taken into consid-
eration. Given a certain area of the ocean that should be endowed with
a sonar system for surveillance, we consider the task of determining how
many sources and receivers need to be deployed, and where they should
be located. We give an integer nonlinear formulation for this problem,
and several ways to derive an integer linear formulation from it. These
formulations are numerically compared using a test bed from coastlines
around the world and a state-of-the-art MIP solver (CPLEX).

Keywords: Integer Nonlinear Programming, Multistatic Sonar, Quadratic
Constraints, Linearization, Integer Linear Programming.

1 Introduction to Sonar

Sonar is a technique to detect objects that are under water or at the surface using
sound propagation. In active sonar systems, a sound is emitted from a source
and its echoes are detected by a receiver, revealing information about nearby
objects. Active sonar has been in use for nearly 100 years and has become a
key component of undersea detection. The basic operating principle of active
sonar is that acoustic energy is emitted from a source and its echoes are de-
tected by a receiver; these echoes reveal information about surrounding objects.
In a monostatic system, the source and the receiver are collocated in the same
place. Bistatic sonar uses a source and a receiver pair in different locations. Mul-
tistatic sonar uses several sources and receivers simultaneously as a network. For
the surveillance of a large area of the ocean, a number of both types of devices
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must be deployed. This leads to an optimization problem to find the least costly
multistatic network that is able to cover all of a desired area. No algorithm cur-
rently in the literature provides an optimal placement of an arbitrary number of
sources and receivers. In a discretized setting, we describe mathematical models
designed to determine the minimum-cost sensor layout that will cover a portion
of the ocean (a tile) by sonar surveillance, with adequate detection probability
throughout the tile. We model the physical properties of sound traveling between
sources, target, and receivers, the ocean (temperature, density, salinity) as well
as geometrical considerations (obstacles such as islands or coastlines). Details
are given in Section 2. We formulate an integer nonlinear program for the mul-
tistatic sonar source-receiver location problem and discuss several linearizations
in Section 3. We compare these formulations empirically using topological data
from coastal areas around the world and a state-of-the-art solver MIP solver and
give concluding remarks in Section 4.

2 Input Data

We obtain ocean topography data from [10]. At present, we do not use sea level
information and only distinguish in a binary fashion between the ocean (negative
elevation value) and the dry land (positive elevation value). A desired part of the
ocean and shoreline (a tile) is taken from the database. Since the resolution of the
data is too fine to let each data pixel become a possible target/source/receiver
location, we aggregate the raw input data into larger rectangular areas (also
called grid cells). We then average the elevation data from all pixels within a cell
and apply the resulting elevation to the entire cell. Denote the set of rectangles
with negative elevation (i.e., those that are underwater) by G (for grid) and the
number of elements in G by n := |G].

The sonar signal is characterized by the range of the day g, which indicates
how quickly the signal diminishes as the target, source, and receiver become
farther apart. In a definite range (“cookie-cutter”) sensor model, a target in a
cell k£ € G is detected by a source placed in cell i« € G and a receiver placed in
cell j € G with probability p; ;1 € {0,1}. Denote by d; ; the Euclidean distance
between (the centers of) cell ¢ and j. Necessary for detection (p; ; = 1) is that
the target k is inside the Cassini oval defined by the equation d; . - di ; < 03,
c.f. [7]. If the target is too close to the line from source to receiver, then the
original signal and its reflection at the target become indistinguishable at the
receiver. This phenomenon is known as the direct blast effect. The pulse length
Kp determines the severity of this effect, since longer pulses are more prone to
overlapping with the reflected signal. The direct blast zone is defined by the
ellipsoid d;  +dk,; < d; j +2ky, c.f. [6]. To account for the direct blast effect, we
say that p; j r = 0, if the target lies within the direct blast zone. Additionally, if
an obstacle lies on either straight-line path of source to target, target to receiver,
or source to receiver, then p; ; = 0.
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The cost for each source is ¢y, and the cost for each receiver is ¢,. Typically,

cs > ¢, i.e., a source is much more costly than a receiver, usually by a factor
of 5.

3 Model Formulations

All model formulations below have in common the binary decision variables
si,r; € {0,1} for each ¢ € G, which model the decision whether to place a source
(s; = 1) or a receiver (r; = 1) in cell 7. The objective (in all formulations) is to
minimize the total deployment cost, which we calculate as follows:

csZsi—i-cTZ?"j. (1)

ieG jea

An Integer Nonlinear Model. In the first nonlinear formulation the binary
variables s; and r; are multiplied in order to represent the joint decision of
placing a source at ¢ and a receiver in j:

Z Zpi,j,ksirj >1, VkeG. (2)

i€G jEG

Each constraint of (2) is a quadratic knapsack constraint. In general, for any
given k € G the non-negative matrix (p; jx): ; is indefinite. The solver CPLEX
is able to process constraints of this form since version 12.6 [2]. Thus, the base run
for comparison with the other reformulation approaches is to solve the model:

min{(1)|(2);s,7 € {0,1}G}. 3)

The Oldest Linearization Technique. The first documented linearization
of a product of binaries s;7; by [3,1] (and independently by others later on)
introduces a new binary variable h; ; € {0,1} with h; ; =1 if and only if s; =1
and r; = 1. In this method the constraints 2h; ; < s; +r; and s; +7; < 14 h;
(for all 7,5 € G) are a linear description of this relationship. In our case, because
of the non-negativity of all p; ; 1., only the first constraint is necessary. Thus the
first linear version of (3) is

min (1)7 s.t. Z Zpi,j,khi_j >1, Vk € G, (4&)
i€G jeG
2h1‘7j < s+ Tj, Vi, j € G, (4b)
s€ {0,139 r e {0,1}% h € {0,1}9%C, (4c)

Compared to the nonlinear integer formulation (3), this binary linear model has
an additional n? binary variables and n? constraints.

Standard Linearization of the Model. A linearization for s;r; similar to
the previous one from [5] introduces continuous auxiliary variables h; ; € [0, 1]
together with the constraints h; ; < s;,h;; < 7; and s; +7; < 1+ h; ;. This is
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perhaps the first and most natural formulation to come to mind (and for good
reason: Padberg [9] showed that the constraints are facet defining), and is hence
called “standard linearization.” As before, the third constraint is not required
in our case. Then, the second linear version of (3) is

min (1), s.t. Z Zpi’j’khi’j >1, Vkea, (5&)
i€Gjeq
hij < s
, Vi,jeaq, (5b)
h@j S Tj
s€{0,1}¢ 7€ {0,1}% h € [0,1]9%C, (5¢)

Compared to the nonlinear binary formulation (3), this mixed-integer linear
model has an additional n? continuous variables and 2n? constraints.

Glover’s Linearization. To adapt a linearization technique from Glover [4],
we set Ljr =) ;cqDijk for all j,k € G, and the model reads:

min (1), s.t. Y zx>1, VkeG, (6a)
jeG
icG Dij,kSi = Zj
LieaPigksi Z 5k | iy o (6b)
Ljrrs = zjk,
s €{0,1}% r €{0,1}9 2 e R§*C. (6¢)

This model introduces n? additional continuous variables and 2n2? additional
constraints (compared to (3)).

Oral-Kettani’s Linearization. Oral and Kettani [8] proposed two formula-
tions that come with n? additional continuous variables, but fewer constraints
compared to Glover’s formulation; namely, only n? (not counting the trivial
bound on zj as constraint). The first of the two formulations is:

min (1), s.t. Y (Ljxrj — 2zjx) 21, Vk€G, (Ta)
jeG
Zjk > Ljpry —> . 0.5,k Si
w2 L = seaPiaksi |y a oy
Ljr > 2k,
s€{0,1}% r€{0,1}9, 2 € R§*C. (7c)

The second Oral-Kettani linearization is:

min (1), s.t. Z (Zpi7j7ksi — Zj,k> > 1, Vk € G, (83)

jea \ieG@

(8b)

Zjk = Dieq PigkSi — LjkT; .
' , VikeG,
Ljk = 2k,

s€{0,1}% r €{0,1}9, 2 € RF*C. (8¢)
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4 Computational Results and Conclusions

We compare the above six formulations on a test set of 22 instances. The ocean
topography data from various regions all over the world were extracted from
a global map, collected by Ryan et al. [10]. The computations were carried
out on a 2014 MacBookPro with 16 GB RAM and a 2.8 GHz Intel Core i7
processor. We set a time limit of 1,000 seconds and default settings of the solver
IBM ILOG CPLEX 12.7.1 otherwise. The results can be found in Table 1, with
the second Oral-Kettani formulation slightly ahead that of Glover, and CPLEX
failing to solve most instances within the time limit. An example result appears
in Figure 1.

Instance n (3) (4) (5) (6) (7) (8)
BabAlMandabStrait 29 1000.01 2.03 1.02 0.85 1.76 0.53
ChoctawhatcheeBay 31 1000.01 2.5 0.8 0.53 1.9 0.49

Dardanelles 19 3.04 0.24 0.07 0.1 0.07 0.04
EnglishChannel 48 1000.35 11.32 944 4.1 13.24 7.5
Falklandsund 57 1005.49 66.23 296.46 65.5 36.6 59.9
GulfOfAkaba 22 39.74 0.15 0.1 0.09 0.16 0.07
GulfOfFinland 37 1000.09 582.37 4.65 1.91 12.58 2.29
GulfOfSirte 45 1002.06 295.68 70.69 16.04 48.42 9.71
KarkinytskaGulf 34 1000.01 3.5 0.33 0.69 195 0.38
KerchStrait 36 1000.01 1.05 0.25 0.33 0.55 0.29
LagoDeMaracaibo 48 1000.02 4.45 146 144 235 1.6
Lesbos 30 1000.02 1.88 0.43 0.4 1.09 0.69
MontereyPeninsular 45 1000.26 12.19 5.06 4.29 12.74 2.66
NewYork 38 1000.52 6.59 1.25 1.57 827 283
OpenSea-Biscaya 54 1002.77 22.52 151.63 24.59 22.34 30.56
Oresund 71 1000.84 33.69 20.45 40.03 37.98 16.08
Ruegen 37 1000.02 34 7.3 2.94 4532 1.19
Smalandsfarvandet 58 1000.73 229.88 31.74 26.09 32.02 7.53
Storebaelt 40 1000.25 57.58 10.63 2.26 12.66 2.57

StraitOfGibraltar 52 1000.49 28.66 43.62 7.72 70.45 15.63
StraitOfHormuz 41 1000.02 0.97 0.58 0.99 264 0.5

TaedongGang 39 1000.02 6.76 2.8 1.77 488 3.13
SUM 20056.77 1404.24 660.76 204.23 369.97 166.17
RANK 6 5 4 2 3 1

Table 1. Computational Results.

When facing a bilinear constraint of the type 27 Ay < b with binary variable
vectors z,y and an indefinite matrix A, several techniques for their linearization
were developed by researchers over the last five decades. Today, classical MILP
solvers (such as CPLEX) offer features to automatically deal with such nonlinear
constraints, lifting the burden of going to the library from the user. As our results
demonstrate, it is still worthwhile to consider the knowledge of the past, and not
to blindly rely on the solver. Since it is unclear to determine a priori which of
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Fig. 1. Left: The Monterey Peninsula area tile [10] as raw input data (365 cols, 285
rows). Right: Optimal placement of 2 sources (red circles) and 4 receivers (blue trian-
gles) on a 9x7 grid. Numbers > 1 at each coordinate show multiplicity of coverage.

the method outperforms the others, it is necessary to implement and test all of
them.
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