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Abstract. The traditional approach of flight trajectory planning for commercial
airplanes aligns the routes to a finite air travel network (ATN) graph. A new al-
ternative is the free-flight trajectory planning, where routes can use the entire
4D space (3D+time) for more fuel-efficient trajectories that minimize the travel
costs. In this work, we focus on the vertical optimization part of such trajecto-
ries for a fixed horizontal trajectory, computed or manually derived beforehand.
The idea is to assign to each of the trajectory’s segments an optimal altitude and
speed for the cruise phase of the flight. We formulate this problem as a non-
linear programming (NLP) problem. As for the input of the model, information
about the airplane’s fuel consumption is provided for discrete levels of speed and
weight values. Thus a continuous formulation of this input data is required, to
meet the NLP requirements. We implement different interpolation and approxi-
mation techniques for this. Using AMPL as modeling language, along with non-
linear commercial solvers such as SNOPT, CONOPT, KNITRO, and MINOS,
we present numerical results on test instances for real-world instance data and
compare the resulting trajectories in terms of the fuel consumption and the com-
putation times.

Keywords: Nonlinear Programming, Free Flight Trajectory Optimization, Mod-
eling.

1 Introduction

In recent years free-flight trajectory planning came into the focus for the commercial
airline industry. It provides a new way to deal with the rapid growth of the air traffic in
Europe [3] and the resulting difficulties that this entails for the air traffic management
(ATM). Although the priority of the ATM is to ensure the safety of the flight operations,
other factors such as CO2 emissions and, directly related to this, fuel costs, could benefit
if all three goals are considered simultaneously by an integrating approach. This trans-
lates into computing fuel optimal trajectories that reduce the environmental degradation
due to carbon fuel combustion and might further lead to a reduction in costs given the
ever growing prices of fuel in the last years. From a computational point of view, the
challenge is to find trajectories, composed of adjacent segments connecting two points
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(on the earth’s surface), that avoid head-winds and benefit from tail-winds. Moreover, a
time constraint is always enforced in order not to incur extra costs due to early or late
arrival. This 4-dimensional problem (3 space dimensions plus time) is computationally
difficult, and it is solved in practice typically in two subsequent stages: a horizontal
phase, in which the segments of a 2-dimensional trajectory are computed, and then a
vertical phase, in which different altitudes are assigned to the segments. Moreover, fuel
consumption data is needed to optimally assign speed and altitude in order to minimize
the amount of fuel used during the flight. Fuel information is given by the aircrafts
manufactures, as a black box function which provides data only for a grid of points
depending on speed, altitude and weight levels. In general during the optimization pro-
cess, fuel consumption data is required for values that do not coincide with the given
grid points, hence some techniques must be applied to obtain the required intermedi-
ate fuel consumption values. To come up with this continuous formulation of the data,
different interpolation and approximation techniques are used. It is important to note
that these drastically affect the computation times. In this study we concentrate on the
vertical flight planning of commercial aircrafts. We propose an NLP model in which
we integrate local and global interpolation and approximation techniques as continu-
ous formulations of the problem’s input data. We discuss briefly the characteristics of
these formulations. Moreover, we compare different available commercial solvers for
nonlinear programming for our test instances.

2 Mathematical Model

Our work is based on a model for vertical flight planning [6, 2], where speed and alti-
tude are assigned to each of the segments that compose the trajectory, and the wind is
assumed to be equal in all altitudes over one segment (but can vary from segment to seg-
ment). The fuel consumption is a bivariate function that depends on the current weight
of the airplane (which is decreasing during the flight, since fuel is consumed) and the
selected speed, see Figure 1. The fuel also depends on the flown altitude, which is de-

Fig. 1. Unit fuel consumption (kg per nautical mile) for the Airbus 320. The horizontal axis is the
aircrafts speed (Mach number from optimal speed to maximal speed), and the vertical axis is the
weight (kg).
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termined in a post-processing step, once the optimal speed and weight are computed.
Hence we do not need to consider altitude as a variable in our model. The objective of
the model is to assign to each of the segments that compose the trajectory a speed and
a weight value. Let n be total number of segments, and let S = {1, . . . ,n} denote the
segment indexes. The nodes that link the segments then have the indexes N = S∪{0}.
Besides the fuel consumption data, the instance is further specified by the following
data: Li is the length of segment i ∈ S. The minimum and maximum duration of the
entire trip are given by T and T , respectively. The dry weight of the loaded airplane
including the contingency fuel is W dry.

We introduce the following variables: For each segment i ∈ S the variable vi ∈ R+

models the velocity of the airplane in this segment (the velocity can only be set once
for the entire segment). The weight of the airplane at node i ∈ N is denoted by wi ∈R+,
and wmid

i ∈R+ is the “middle weight” of the airplane within segment i ∈ S, which is an
auxiliary variable that is used in the computation of the fuel consumption fi ∈ R+. The
mathematical model reads as follows:

min w0−wn (1)
s. t. t0 = 0, T ≤ tn ≤ T (2)

∀i ∈ S : ∆ ti = ti− ti−1 (3)
∀i ∈ S : Li = vi ·∆ ti (4)

wn =W dry (5)
∀i ∈ S : wi−1 = wi + fi (6)
∀i ∈ S : wi−1 +wi = 2 ·wmid

i (7)
∀i ∈ S : fi = Li · F̂(vi,wmid

i ) (8)

The objective function (1) minimizes the fuel consumed during the trip. It is computed
as the difference between the start and arrival weight. In equation (2) the starting time
t0 is set to zero, and the final time tn is forced to be within the arrival time window.
Equation (3) enforces the time consistency, and the equation of motion is given by (4).
With equation (5) all the fuel is consumed during the flight. The weight consistency
is enforce by equation (6). The middle weight is computed in (7) which is required to
calculate the fuel consumption in each segment in (8), where F̂(vi,wmid

i ) is the continu-
ous approximation or interpolation of the discrete fuel consumption data. This function
offers intermediate data points within the corresponding ranges. Both interpolation and
approximation techniques accomplish this purpose, however, the choice between one
or the other depends on user. Nonlinear solvers require information about the first and
sometimes the second order partial derivatives of all functions used in the problem for-
mulation. In our model, equation (1)-(7) are either linear or quadratic equations, there-
fore its derivatives are easy to compute and this is done automatically by the solver.
For equation (8), we need to explicitly compute first and second derivatives so they can
be passed on to the solver. In the following we briefly describe the interpolation and
approximation techniques used in this work. Each of them yields a polynomial function
in two dimensions for the fuel consumption function. The first and second derivatives
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of the fuel function are then approximated by taking the first and second derivatives of
these approximations.

Bilinear: Bilinear interpolation is a local technique, where intermediate values com-
puted based on the four neighboring points. The interpolant is obtained by performing
a linear interpolation along each of the dimensions of the table, which leads to a second
degree polynomial. Further details can be found in [1].

Bicubic: Bicubic interpolation is a local technique where intermediate values are com-
puted based on the four neighboring points, the first and second derivatives of these
points (which are approximated). This leads to a linear system of 16 equations where
the variables are the coefficients of a 6th order polynomial in two dimensions. In this
work we have approximated the derivatives at the points of the table by two different
methods, using finite differences and using cubic splines. For more details we refer the
reader to [5].

Cubic Splines: Intermediate values are computed based on the information of the whole
table. Therefore we refer to it as a global technique. The idea is to construct one-
dimensional cubic splines along all the rows of the table and evaluate them at one
of the first coordinate of the intermediate point. With these new values, another one-
dimensional spline is constructed and finally evaluated at the second coordinate of the
intermediate point. If smoothing is desired, a smoothing parameter is used for the con-
struction of the cubic splines (approximation method). This results in a new set of points
that best approximates the surface using cubic splines. For further details we refer the
reader to [1, 4].

3 Numerical Results

The models were written using AMPL as modeling language and solved by the NLP
solvers SNOPT 7.2-5, CONOPT 3.5C, KNITRO 8.1.1, and MINOS 5.51. We have used
similar test instances as in [2], that is, the airplanes Airbus 320, 380, Boeing 737 and
772. For each airplane several travel distances were tested ranging form 800 Nautical
Miles (NM) for the B737. to 7500 NM for A380 and B772. Two different time win-
dows were used for each distance, for a total of 42 instances. Each flight is divided
into equidistant segments of 100 NM. Table 1 summarizes the features of the test in-
stances. All instances were solved using a 6-core Intel Xeon E5 at 3.5 GHz and 16

Table 1. Maximal speed (in Mach number), dry weight and maximal weight in (kg), maximal
distance (in NM) and number of segments |S| for each instance.

Type Max. Speed Dry Weight Max. Weight Max. Distance |S|
A320 0.82 56614 76990 3500 15, 20, 30, 35
A380 0.89 349750 569000 7500 30, 40, 50, 60, 70 ,75
B737 0.76 43190 54000 1800 8, 12, 15, 18
B772 0.89 183240 294835 7500 25, 35, 45, 55 ,65,75
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GB RAM computing machine. In Table 2, we give the percentage of the instances
that were actually solved within a 10% error of the global optimal values reported on
[2] by each solver using the different methods. We have used the following abbrevia-
tions: Splines1 refers to cubic splines interpolation (no smoothing of the data); Splines2
refers to the method of smoothing cubic splines; Bicubic1 refers to bicubic interpola-
tion using finite differences approximations for the value of the derivatives and finally,
Bicubic2 refers to bicubic interpolation using cubic splines to approximate the value
of the derivatives. The results in Table 2 indicate that the most successful methods are

Table 2. Percentage of solved instances with each solver and each method.

SNOPT MINOS KNITRO CONOPT

Bilinear 100 100 43 48
Splines1 100 100 67 100
Splines2 17 31 5 5
Bicubic1 0 12 0 0
Bicubic2 0 10 0 0

Splines1 followed by bilinear, both interpolating techniques. Splines1 is consistently,
among all the solvers, the one that allows to solve the greatest number of instances.
In order to compare these two methods, and the solvers as well, we give a graphical
evaluation of the solution times in figure 2. On the x-axis of these plots, the instances
are listed in ascending order according to their size, i.e., according the number of seg-
ments used for the trip. The data points, whose solution time are 100 seconds, represent
the instances that were not solved, within a 10% gap from the global optimum. For
both methods, the solution times of most instances are below 12 seconds. For the bi-
linear method, the solver Snopt outperforms the others. Note that the squared-shaped
data points are consistently below all other data points. Most of the instances are solved
within one second; the rest, within five. Minos is also very successful using bilinear
interpolation, as the solution of all instances requires at most 10 seconds. The solution
times of our instances using cubic splines interpolation are below 25 seconds. In this
case, there is no straightforward outperformance of one solver over the others. On the
contrary, the solvers take similar time to compute the (same) optimal solution. Knitro
fails sometimes this purpose.

In conclusion, these two methods provide suitable continuous formulations of the
input data, that can efficiently be integrated into our NLP models. Bilinear interpolation
is very simple to implement and the number of computations needed is very low in
comparison to the cubic splines method. The latter one requires the solution of many
systems of linear equations (in the order of rows or columns in the input data table).
Thus one can expect that cubic splines takes a longer solving time. Nevertheless, the
derivatives provided with this last method, are smoother than the ones obtained with
the bilinear interpolation, which can explain its faster convergence to a local optimum.
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What is important to note here, is that the approximations of the derivatives with bilinear
technique are still good enough for the solvers to search in good directions for local
minima. As for the bicubic methods, it is obvious, they are not successful. A reason
behind this, might be the inaccurate approximations of the required first and second
derivatives at the points of the table.
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Fig. 2. Solution times of all test instances using a) bilinear and b) cubic splines interpolation with
each solver.

In our ongoing work we extend our methods to a full 4-dimensional trajectory plan-
ning. That is, to include a vertical optimization phase where a more realistic wind field
(which can deviate also in altitude) is taken into account. This adds one more dimen-
sion to the fuel consumption data. On the other hand, introducing dynamic wind also
increases one dimension to the wind data, therefore we need to study if the interpolation
and approximation techniques, here presented, extend efficiently to more dimensions.
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