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1 Department of Statistics & Operations Research, Aligarh Muslim University,
Aligarh, India, srikant.rs@amu.ac.in, irfii.st@amu.ac.in

2 Helmut Schmidt University / University of the Federal Armed Forces Hamburg,
Holstenhofweg 85, 22043 Hamburg, Germany, fuegenschuh@hsu-hh.de

Abstract. Sourcing, which lies at the initial stage of a supply chain,
can be made efficient by making an appropriate selection of vendors.
The search for the best suited suppliers is among the most important
decisions for companies to improve their performance and deliver their
own products with the greatest benefits for their customers. The vendor
selection in the supply chain is a multi-criteria decision making problem.
In our formulation of that problem it includes three primary objectives:
Minimizing the ordering cost, minimizing the transportation cost, and
minimizing the late deliveries. These objective are optimized subject to
some realistic constraints that are necessary in selecting the appropriate
vendor. This paper consists of two different types of weighted approach:
the relative weights represent the relative importance of the objective
functions, whereas the aggregated fuzzy weights represent the relative
rating of the fuzzy number to each criterion. Also, the input information
of the formulated problem has been considered to be imprecise. Con-
cepts from the fuzzy set theory are used to handle the imprecision by
considering all of those parameters as trapezoidal fuzzy numbers and
then the α-cut approach is used to get the crisp values of the param-
eters. The multi objective vendor selection problem (MOVSP) is thus
formulated in a fuzzy goal environment with two different weighted ap-
proaches. They are used to find the allotted quota given to the suppliers.
A real life example is presented and solved by the LINGO 13.0 solver.

Keywords: Multi-objective Vendor Selection Problem, Weighted Crite-
rion, Fuzzy Sets, Trapezoidal Fuzzy Number, Fuzzy Goal Programming.

1 Introduction

A supply chain is a system of organizations, people, technology, activities, in-
formation, and resources involved in moving a product or service from between
different suppliers finally to the customers. A supply chain is a network of fa-
cilities and distribution options that performs the functions of procurement of
materials, transformation of these materials into intermediate and finished prod-
ucts, and the distribution of these finished products to customers. Supply chains
exist in both service and manufacturing organizations, although the complexity



of the chain may vary greatly from industry to industry and firm to firm. In
its simplest from and as an example of a very simple supply chain for a single
product, consider a raw material that is procured from vendors, transformed
into finished goods in a single step and then transported to distribution centers,
and ultimately to customers. However, realistic supply chains have multiple end
products with shared components, facilities, and capacities (see Figure 1). It
was defined by Quinn [1997] that “the supply chain includes all of those activi-
ties associated with moving goods from the raw-materials stage through to the
end costumer/user”. The selection of right supplier/vendor for an organization
should not only meet customer/user requirements, but also bring profit to the
firm, help in fulfilling various criteria such as cost, delivery, quality objectives
and technical specifications. Kumar et al. [2006b] discussed that the nature of
the supplier/vendor selection in supply chain is a multi-criterion decision making
problem.

Individual supplier may perform differently on different criteria. According
to them, supply chain decision faces many constraints, some of these are related
to supplier’s internal policy and externally imposed system requirements.

Fig. 1. A Supply Chain Network.

Since the 1960s, the criteria for vendor selection and vendor rating were a
central main area of research in supply chain management (SCM). Basically
there are three quantitative techniques used for supplier selection: (1) multi-
ple attribute decision making, (2) mathematical programming models, and (3)
intelligent approaches. Among these quantitative techniques, mathematical pro-



gramming model were used extensively for the vendor selection problem (VSP).
The goal programming developed by Charnes et al. [1968] emerged a powerful
technique to solve such multi-criteria decision making problems. Since the com-
mencement of the goal programming technique, it has been enriched by many
researchers such as Lee [1972], Ignizio [1976] and many more. Undoubtedly,
goal programming was one of the major breakthroughs in dealing with multi-
criteria decision making problems. On the other hand, Zadeh [1965] suggested
the concept of fuzzy sets as one possible way of improving the modeling of vague
parameters. Zimmermann [1978] developed a fuzzy programming approach to
solve multi-criteria decision making problems. However, one of the major prob-
lems which decision makers face is the modeling of ill conditioned optimization
problems or the problems where the coefficients are imprecise and vague in na-
ture. Classical methods of mathematical programming failed to optimization
such problems. Bellman and Zadeh [1970] gave a concept that the constraints
and goals in such situations may be viewed as fuzzy in nature. Weber and Cur-
rent [1993] introduced the concept of multi-objective programming technique
for selecting the vendors with their order quantities by multiple conflicting cri-
teria. Several authors such as Dahel [2003], Xia and Wu [2007], Pokharel [2008],
Tsai and Wang [2010], Rezaei and Davoodi [2011] worked on the multi-objective
vendor selection problem (MOVSP). Kumar et al. [2004, 2006b] formulated a
fuzzy mixed integer goal programming model for a multiple sourcing supplier
selection problem (SSP) including three fuzzy goals: cost, quality, and deliv-
ery, and subject to buyer’s demand, suppliers’ capacity, and others. They used
the max-min technique from Zimmermann [1978] to solve the multi-objective
problem. Lamberson et al. [1976] gave an idea to develop a systematic vendor
selection process for identifying and prioritizing relevant criteria and to evalu-
ate the trade-offs between technical, economic and performance criteria. Kumar
et al. [2006a] used a lexicographic goal programming approach for solving a
piecewise linear VSP of quantity discounts. In real situations, objectives (or cri-
teria) have various weights related to strategies of the purchasing department,
to cope with the problem. Amid et al. [2006, 2009] formulated a fuzzy based
model for SSP including three fuzzy goals cost, quality and delivery, and subject
to capacity restriction and market demand. In order to deal with the objectives’
weight, they used the additive model of Tiwari et al. [1987] for solving their
multi criterion model model. Lin [2004] subsequently proposed a weighted max-
min (WMM) model for solving fuzzy multi criterion model of supplier selection.
This approach was later applied by Amid et al. [2011] to a fuzzy multi-objective
supplier selection problem (MOSSP) with three fuzzy goals cost, quality and
delivery, and subject to capacity and demand requirement constraints. Liao and
Kao [2010] combined the Taguchi loss function, analytical hierarchy process, and
multi-choice goal programming model for solving the supplier selection problem.
Liao and Kao [2011] also gave a two-stage model for selecting suppliers in a
company which is engaged in the watch manufacturing sector by using a fuzzy
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) with
triangular fuzzy numbers and multi-choice goal programming (MCGP) to opti-



mize the problem. Wu et al. [2010] used a trapezoidal membership function, and
solved the probabilistic multi-criteria vendor selection model by using sequential
programming, taking risk factors into consideration. Ozkok and Tiryaki [2011]
established a compensatory fuzzy approach to solve a multi-objective linear sup-
plier selection problem with multiple items by using cost, service, and quality
as objectives. Arikan [2013] formulated a multi-objective VSP based on price,
quality, customer service and delivery criteria. Shirkouhi et al. [2013] developed
an interactive two-phase fuzzy multi-objective linear programming model for the
supplier selection under multi-price level and multiproducts. Kilic [2013] devel-
oped an integrated approach including a fuzzy technique for selecting the best
supplier in a multi-item/multi supplier environment. Rouyendegh and Saputro
[2014] described an optimum decision making method for selecting supplier and
allocating order by applying fuzzy TOPSIS and MCGP. Jadidi et al. [2014] de-
veloped a normalized goal programming model with predetermined goals and
predetermined weights for solving a multi-objective supplier selection problem.
Chang et al. [2010] considered multiple aspiration levels and vague goal relations
to help the decision makers for choosing the better suppliers by using multi-
choice goal programming (MCGP) with fuzzy approach. Karimi and Rezaeinia
[2014] adopted a revised multi-segment goal programming model for selecting
the suppliers. Sivrikaya et al. [2015] adopted a fuzzy Analytic Hierarchy Process
(AHP) goal programming approach with linguistic variables expressed in trape-
zoidal fuzzy numbers, which is applied to assess weights and ratings of supplier
selection criteria.

Motivated from the above literature, we extend a non-fuzzy MOVSP model
from Kumar et al. [2006b] to imprecise parameters which are considered as fuzzy
numbers. The so extended model is then transformed with the α-cut approach
into a series of classical (non-fuzzy) linear programs, which are solved by stan-
dard Linear Programming techniques and numerical solvers. We demonstrate
this approach using a numerical example.

The remainder of this paper is organized as follows. Section 2 provides an
introduction to the preliminaries of the subject to make the study self-contained.
Section 3 deals with the α-cut presentation for the multi-objective goal program-
ming model. In Section 4, the description of multi objective vendor selection
problem is discussed. Section 5 provides the goal programming formulation with
α-cuts for solving MOVSP. In Section 6, the computational procedure for solving
the above model is presented. In Section 7, conclusions are drawn regarding the
effectiveness of the developed solution procedure.

2 Preliminaries

Before formulating the problem of interest, we introduce the basic definitions of
fuzzy sets and fuzzy numbers, which are reproduced here from Khan et al. [2016]
and Abbasbandy and Asady [2004].



2.1 Fuzzy Sets

A fuzzy set Ã in a universe of discourse X is defined as a set of pairs Ã =
{(x, µÃ(x)) : x ∈ X}, where µÃ : X → [0, 1] is a mapping called the membership

function of the fuzzy set Ã. µÃ(x) is called the membership value or degree of

membership of x ∈ X in the fuzzy set Ã. The larger the value of µÃ, the stronger

(or higher) the grade of membership in Ã.

2.2 Fuzzy Numbers

A fuzzy set Ã in R is called a fuzzy number if it satisfies the following conditions:

i. Ã is convex and normal, that is, µÃ(x) = 1 for some x ∈ R.

ii. The α-cut Ãα := {x | µÃ(x) ≥ α, x ∈ X} is a closed interval for every
α ∈ (0, 1].

iii. The support of Ã is bounded, where supp(Ã) := {x ∈ R : µÃ(x) > 0}.

2.3 Triangular Fuzzy Numbers

A fuzzy number Ã is a triangular fuzzy number denoted by (δ,m, β), where δ,m
and β are real numbers with δ < m < β and its membership function µÃ(x) is
given as

µÃ(x) :=





0, x ≤ δ,
x−δ
m−δ , δ ≤ x ≤ m,
1, x = m,

β−x
β−m , m ≤ x ≤ β,
0, x ≥ β.

(1)

µÃ(x) satisfies the following conditions (c.f. Figure 2):

i. µÃ(x) is a continuous mapping from R to closed interval [0, 1],

ii. µÃ(x) = 0 for every x ∈ (−∞, δ],
iii. µÃ(x) is strictly increasing and continuous on [δ,m],

iv. µÃ(x) = 1 for every x = m,

v. µÃ(x) is strictly decreasing and continuous on [β,m],

vi. µÃ(x) = 0 for every x ∈ [β,∞).

2.4 Trapezoidal Fuzzy Numbers

A fuzzy number Ã is a trapezoidal fuzzy number denoted by (δ,m, n, β) where
δ,m, n and β are real numbers with δ < m < n < β and its membership function



Fig. 2. Triangular Fuzzy number.

µÃ(x) is given as:

µÃ(x) :=





0, x ≤ δ,
x−δ
m−δ , δ ≤ x ≤ m,
1, m ≤ x ≤ n,
n−x
β−n , n ≤ x ≤ β,
0, x ≥ β.

µÃ(x) satisfies the following conditions (c.f. Figure 3):

i. µÃ(x) is a continuous mapping from R to closed interval [0, 1],
ii. µÃ(x) = 0 for every x ∈ (−∞, δ],

iii. µÃ(x) is strictly increasing and continuous on [δ,m],
iv. µÃ(x) = 1 for every x ∈ [m,n],
v. µÃ(x) is strictly decreasing and continuous on [n, β],
vi. µÃ(x) = 0 for every x ∈ [β,∞).

Fig. 3. Trapezoidal Fuzzy number.



2.5 Trapezoidal LR-Fuzzy Numbers

A trapezoidal LR-fuzzy number Ã, denoted by Ã = (a, b, β, γ) with defuzzifier
a, b, left fuzziness β > 0 and right fuzziness γ > 0 is defined by its membership
function

µÃ(x) :=





0, x ≤ a− β,
x−a+β

β , a− β ≤ x ≤ a,
1, a ≤ x ≤ b,
b−x+γ
γ , b ≤ x ≤ b+ γ,

0, x ≥ b+ γ.

A plot of muÃ is shown in Figure 4.

Fig. 4. Trapezoidal LR-Fuzzy number.

2.6 α-Cut of a Trapezoidal Fuzzy Number

If the fuzzy set is a trapezoidal fuzzy number, Ã = (δ,m, n, β), then its α-cut is
defined as

(Ã)α =
[
(Ã)Lα, (Ã)Uα

]
= [δ + (m− δ)α,−(β − n)α+ n].

If the fuzzy set is a trapezoidal LR-fuzzy number, Ã = (a, b, β, γ), then its α-cut
is defined as

(Ã)α =
[
(Ã)Lα, (Ã)Uα

]
= [(α− β) + βα, (b+ γ)− γα].

where (Ã)Lα and (Ã)Uα are the lower bound and upper bound of the α-cut of Ã,
respectively, such that

(Ã)Lα ≤ (Ã)α ≤ (Ã)Uα .

The cut or α-level set of a fuzzy set is called a crisp set.



3 Multi-Objective Fuzzy Goal-Programming Formulation
with α-Cut

Goal programming (GP) is an important technique for decision-makers (DM)
to consider simultaneously the conflicting objectives when searching for a set of
acceptable solutions. GP is among the most widely used technique for solving
multi-criteria and multi-objective decision making problems. Nishad and Singh
[2015] declared that there might be a situation where the DMs would like to
make a decision on the problem, with the goal that can be achieved from some
specific aspiration levels.

Let us consider a fuzzy multi-objective optimization problem with n decision
variable, I = {1, . . . ,m} constraints (where in I1 ⊆ I we subsume the less-than
constraints, in I2 ⊆ I the greater-than constraints, and in I3 ⊆ I the equality
constraints), and K objective functions, i.e.,

min Z(X) = {C̃1x, C̃2x, C̃3x, . . . , C̃Kx},
subject to

Ãix ≥ B̃i, i ∈ I1,
Ãix ≤ B̃i, i ∈ I2,
Ãix = B̃i, i ∈ I3,
xj ≥ 0, j = 1, 2, 3, . . . , n.

(2)

Since problem (2) has fuzzy coefficients which have a probability distribution in
an uncertain interval, it can be approximated in terms of its α-cut interval. The
α-cut interval for C̃k is defined as

(C̃k)α = [(C̃k)Lα, (C̃k)Uα ].

Then the objective function can be defined as

[(Zk(x))α]
L

=
n∑

j=1

(C̃k)Lαxj ,

[(Zk(x))α]
U

=

n∑

j=1

(C̃k)Uαxj .

In a similar manner the inequality constraints can also be approximated as

n∑

j=1

(Ãi,j)xj ≥ B̃i, i ∈ I1,

n∑

j=1

(Ãi,j)xj ≤ B̃i, i ∈ I2.



They can be expressed in terms of their α-cut interval as

n∑

j=1

(Ãij)
U
αxj ≥ (B̃i)

L
α, i ∈ I1,

n∑

j=1

(Ãij)
L
αxj ≤ (B̃i)

U
α , i ∈ I2.

The fuzzy equality constraint

n∑

j=1

(Ãij)xj = B̃i, i ∈ I3

can be transformed into two inequalities as

n∑

j=1

(Ãij)
L
αxj ≤ (B̃i)

U
α , i ∈ I3,

n∑

j=1

(Ãij)
U
αxj ≥ (B̃i)

L
α, i ∈ I3.

Thus the minimization problem (2) can be expressed as

min [(Zk(x))α]L =
n∑

j=1

(C̃k)Lαxj , k = 1, 2, 3, . . . ,K,

subject to
n∑

j=1

(Ãij)
U
αxj ≥ (B̃i)

L
α, i ∈ I1,

n∑

j=1

(Ãij)
L
αxj ≤ (B̃i)

U
α , i ∈ I2,

n∑

j=1

(Ãij)
L
αxj ≤ (B̃i)

U
α , i ∈ I3,

n∑

j=1

(Ãij)
U
αxj ≥ (B̃i)

L
α, i ∈ I3,

xj ≥ 0, j = 1, 2, 3, . . . , n.

(3)

Next, we consider the transformation of the objectives to fuzzy goals by assigning
an aspiration level to each of them. Problem (3) can be transformed into a
fuzzy goal programm by taking certain aspiration levels and introducing variables
d−k ≥ 0 that measure the lower deviation for each of them. Then the objective



function is transformed into the new constraint

uk −
∑n
j=1(C̃k)Lα

uk − gk
+ d−k ≥ 1. (4)

Here gk are the aspiration levels for the k-th goal (also the lowest acceptable
level for the k-th goal or the ideal solution). The upper acceptable level uk is an
anti-ideal (worst-case) solution. For a given and fixed value of α ∈ [0, 1] they are
computed as follows:

gk = min

n∑

j=1

(C̃k)Lαxj , k = 1, 2, . . . ,K,

uk = max

n∑

j=1

(C̃k)Uαxj , k = 1, 2, . . . ,K.

When we define wk for k = 1, 2, . . . ,K as weight coefficients for the objective
functions, then the multi-objective optimization problem is turned into the fol-
lowing single-objective optimization problem with n decision variable and m
constraints:

min Z =
K∑

k=1

wkd
−
k

subject to

uk −
∑n
j=1(C̃k)Lα

uk − gk
+ d−k ≥ 1

n∑

j=1

(Ãij)
U
αxj ≥ (B̃i)

L
α, i ∈ I1,

n∑

j=1

(Ãij)
L
αxj ≤ (B̃i)

U
α , i ∈ I2,

n∑

j=1

(Ãij)
L
αxj ≤ (B̃i)

U
α , i ∈ I3,

n∑

j=1

(Ãij)
U
αxj ≥ (B̃i)

L
α, i ∈ I3,

xj ≥ 0, j = 1, 2, 3, . . . , n,

d−k ≥ 0, k = 1, . . . ,K.

4 Multi-Objective Vendor Selection Problem (MOVSP)

This model is an extension of an model given by Kumar et al. [2006b], where a
hypothetical system of n vendors with deterministic parameter is considered (for



details we refer to Kumar et al. [2006b]). In Table 1 we summarize the symbols
used in the model formulation.

Table 1. List of symbols used in the model formulation.

i index for vendor, for all i = 1, 2, ...., n
k index for objectives, for all k = 1, 2, 3, ....,K
xi order quantity given to vendor i
D aggregate demand of the item over a fixed planning period
n number of vendors competing for selection
pi price per unit of item for ordered quantity xi to the vendor i
ti Transportation cost of a unit item of the ordered from the vendor i
li percentage of the late delivered units by the vendor i
Ui upper limit of the quantity available for vendor i
Bi budget constraint allocated to each vendor.
qi percentage of the rejected units delivered by the vendor i
ri vendor rating value for vendor i
P least total purchasing value that a vendor can have
fi vendor quota flexibility for vendor i
F least value of flexibility in supply quota that a vendor should have
Q maximum rejection that supplier can afford

In this model we consider the following three objectives: The first objective
is to minimize the net cost for ordering the aggregate demand, i.e.,

minZ1 =
n∑

i=1

pixi. (5)

The second objective is to minimize the net transportation cost for all the items,
i.e.,

minZ2 =
n∑

i=1

tixi.

The third objective is to minimize the late delivered items of the vendors, i.e.,

minZ3 =

n∑

i=1

lixi.

The set of feasible solutions to the problem is described by the following con-
straints. There is a restriction due to the aggregate demand of the items, i.e.,

n∑

i=1

xi = D.

There are restrictions due to the maximum capacity of the vendors, i.e.,

xi ≤ Ui for all i = 1, 2, . . . , n.



There are restriction on the budget allocated to the vendors for supplying the
items, i.e.,

pi(xi) ≤ Bi for all i = 1, 2, . . . , n.

The total item purchasing value is bounded, i.e.,

n∑

i=1

ri(xi) ≥ P.

Some flexibility is needed with the vendors quota, i.e.,

n∑

i=1

fi(xi) ≤ F.

There is a restriction on number of rejected items from the supplier, i.e.,

n∑

i=1

qi(xi) ≤ Q.

Finally, there are non-negativity restriction on the vendor, i.e.,

xi ≥ 0 for all i = 1, 2, . . . , n. (6)

The assumptions made by Kumar et al. [2006b] in this formulation are as follows:

i. Only one item is purchased from one vendor.
ii. Quantity discounts are not taken into consideration.

iii. No shortage of the item is allowed for any of the vendors.
iv. Lead-time and demand of the item are constant and known with certainty.

In the above discussed MOVSP, the parameters are assumed to take determin-
istic values but in most of the practical situation these may take imprecise value
for some possible reasons as listed below:

i. The price of the item might depend upon the interest of the decision maker.
Sometimes he/she might decide to spend more or less for the quantity or-
dered.

ii. Transportation cost may vary in the lot.
iii. Late delivery of items may vary in the lot.
iv. Vendor rating and vendor quota flexibility may vary depending upon the

above listed reason.

5 Fuzzy Goal Programming with α-Cut Approach for the
MOVSP

In view of the above equations from (5) to (6), the mathematical formulation
of the MOVSP with n decision variables and m constraints is of the following



form:

min

(
Z1 =

n∑

i=1

p̃ixi, Z2 =
n∑

i=1

t̃ixi, Z3 =
n∑

i=1

l̃ixi

)
,

subject to
n∑

i=1

xi = D,

xi ≤ Ũi, ∀i = 1, 2, . . . , n,

p̃i(xi) ≤ B̃i, ∀i = 1, 2, . . . , n,
n∑

i=1

q̃i(xi) ≤ Q,

n∑

i=1

r̃i(xi) ≥ P̃ ,

n∑

i=1

f̃i(xi) ≤ F̃ ,

xi ≥ 0, ∀i = 1, 2, . . . , n.

(7)

For simplicity all the fuzzy parameters in problem (7) are considered as trape-
zoidal LR-fuzzy number of the (a, b, β, γ)-type. The problem has fuzzy coeffi-
cients which have a probability distribution in uncertain intervals, hence the
problem can be written in terms of α-cut intervals. The lower and upper bound
for the respective α-cut intervals of the objective function are defined as

{
[(Z1(x))α]L =

n∑

i=1

(p̃i)
L
αxi, [(Z1(x))α]U =

n∑

i=1

(p̃i)
U
αxi

}
,

{
[(Z2(x))α]L =

n∑

i=1

(t̃i)
L
αxi, [(Z2(x))α]U =

n∑

i=1

(t̃i)
U
αxi

}
,

{
[(Z3(x))α]L =

n∑

i=1

(l̃i)
L
αxi, [(Z3(x))α]U =

n∑

i=1

(l̃i)
U
αxi

}
.

In the next step, we construct a membership function for the minimization type
objective function, and then replaced it by the lower bound of its α-cut interval.

For first minimize objective
{

[(Z1(x))α]L =
∑n
i=1(p̃i)

L
αxi
}

, the membership
function is given as:

µ1(x) =





1, Z1(x) ≤ g1,
u1−[(Z1(x))α]

L

u1−l1 , g1 ≤ Z1(x) ≤ u1,
0, Z1(x) ≥ u1.



For second minimize objective
{

[(Z2(x))α]L =
∑n
i=1(t̃i)

L
αxi
}

, the membership
function is given as:

µ2(x) =





1, Z2(x) ≤ g2,
u2−[(Z2(x))α]

L

u2−l2 , g2 ≤ Z2(x) ≤ u2,
0, Z2(x) ≥ u2.

For third minimize objective
{

[(Z3(x))α]L =
∑n
i=1(l̃i)

L
αxi

}
, the membership func-

tion is given as:

µ3(x) =





1, Z3(x) ≤ g3,
u3−[(Z3(x))α]

L

u3−l3 , g3 ≤ Z3(x) ≤ u3,
0, Z3(x) ≥ u3.

The constraints are transformed in terms of α-cut values as

xi ≤ (Ũi)
U
α , i = 1, 2, . . . , n,

(p̃i)
L
α(xi) ≤ (B̃i)

U
α , i = 1, 2, . . . , n,

n∑

i=1

(q̃i)
L
α(xi) ≤ Q,

n∑

i=1

(r̃i)
U
α (xi) ≥ (P̃ )Lα,

n∑

i=1

(f̃i)
L
α(xi) ≤ (F̃ )Uα .

Summing it up, the MOVSP (7) is transformed into the following form:

min[(Z1(x))α]L =

n∑

i=1

(p̃i)
L
αxi,

min[(Z2(x))α]L =
n∑

i=1

(t̃i)
L
αxi,

min[(Z3(x))α]L =

n∑

i=1

(l̃i)
L
αxi,

subject to
n∑

i=1

xi = D,

xi ≤ (Ũi)
U
α , ∀i = 1, 2, . . . , n, (8)



(p̃i)
L
α(xi) ≤ (B̃i)

U
α , ∀i = 1, 2, . . . , n,

n∑

i=1

(q̃i)
L
α(xi) ≤ Q,

n∑

i=1

(r̃i)
U
α (xi) ≥ (P̃ )Lα,

n∑

i=1

(f̃i)
L
α(xi) ≤ (F̃ )Uα ,

xi ≥ 0, ∀i = 1, 2, . . . , n.

As we considered trapezoidal LR-fuzzy numbers of the (a, b, β, γ)-type, problem
(8) can also be represented as

min[(Z1(x))α]L =

n∑

i=1

((bp + γp)− γpα)xi,

min[(Z2(x))α]L =

n∑

i=1

((bt + γt)− γtα)xi,

min[(Z3(x))α]L =
n∑

i=1

((bl + γl)− γlα)xi,

subject to
n∑

i=1

xi = D,

xi ≤ ((aU − βU ) + βUα) , ∀i = 1, 2, . . . , n, (9)

((bp + γp)− γpα)xi ≤ ((aB − βB) + βBα) , ∀i = 1, 2, . . . , n,
n∑

i=1

((bq + γq)− γqα)xi ≤ Q,

n∑

i=1

((ar − βr) + βrα)xi ≥ ((bP + γP )− γpα) ,

n∑

i=1

((bf + γf )− γfα)xi ≤ ((aF − βF ) + βFα) ,

xi ≥ 0 ∀i = 1, 2, . . . , n,

where α ∈ [0, 1] is an arbitrary chosen fixed number.
Note that the above given formulation with trapezoidal LR-fuzzy numbers

can easily be transformed into non-LR trapezoidal fuzzy numbers by using (a−
β, a, b, b+ γ), which is equivalent to (δ,m, n, β).

Next, we consider the conversion of the objective functions to fuzzy goals
by means of assigning an aspiration level to them. Thus, problem (8) is trans-



formed into a fuzzy goal program by taking certain aspiration levels and intro-
ducing variables for the deviation from below to the objective function also. The
minimization type objective function in (9) is transformed into

uk −
∑n
j=1(Zk(x)α)L

uk − gk
+ d−k ≥ 1, k = 1, 2, . . . ,K.

where

gk = min[(Z1(x))α]L, uk = max[(Z1(x))α]U , ∀k = 1, 2, . . . ,K.

Now using the above described goal programming method, the model is con-
verted into single objective problem as follows:

minZ =
K∑

k=1

wkd
−
k ,

subject to

uk −
∑n
j=1(Zk(x)α)L

uk − gk
+ d−k ≥ 1,

d−k ≥ 0, k = 1, 2, 3, . . . ,K,

and the set of constraints of problem (8).

Here, Z represents the achievement function. Weights wk are the relative weights
attached to the respective objective functions. For calculating these weights we
introduce two methods.

5.1 Weights measuring the target deviation

Weights attached to each of the objectives to measure the relative importance
of a deviation from their respective target:

wk =





1

gk − lk
for the maximizing case,

1

uk − gk
for the minimizing case,

for all k = 1, 2, 3, . . . ,K.

5.2 Aggregated weights attached to the fuzzy numbers itself

Awasthi et al. [2014] developed the aggregated fuzzy weights for triangular fuzzy
number. Motivated by his study we developed the aggregated fuzzy weights for
trapezoidal fuzzy number. The aggregated fuzzy weights wk of each objective



function k are calculated as follows. We first compute aggregated values as

w̃k,1 = min{Ãk,1 : k = 1, 2, 3},

w̃k,2 =
1

4

3∑

k=1

Ãk,2,

w̃k,3 =
1

4

3∑

k=1

w̃k,3,

w̃k,4 = max{w̃k,j,4 : k = 1, 2, 3}.

(10)

Then we defuzzify the elements for the criteria weights and the alternatives into
crisp values by employing the following equation (see Yong [2006]):

wk =
w̃k,1 + 2w̃k,2 + 2w̃k,3 + w̃k,4

6
(11)

6 Numerical Illustration

In order to illustrate the developed method, we consider an example of the
Vendor Selection Problem from Kumar et al. [2006b] with some extensions. Some
additional data is also assumed by us to illustrate the situation of uncertainty
in the parameters of the MOVSP. The instance consists of four vendors s ∈
{1, 2, 3, 4}. Their respective profiles with fuzzy parameters are shown in Table 2.
If the purchasers are following a 95% (2σ limits) of the accepted policy, then
the maximum limit of rejections should not exceed 5% of the demand. Hence,
the maximum rejection that a purchaser can afford is 25000 · 0.05 = 1250. The
least value of flexibility in vendors’ quota and the least total purchase value of
supplied items are policy decisions and are depending on the demand. The least
value of flexibility in the suppliers’ quota is given as F = f̃ · D, and the least
total purchase value of supplied items is given as P = r̃ · D. The overall fuzzy
flexibility f̃ for the vendor is (0.03, 0.04, 0.005, 0.006) on a scale from 0 to 1, and
the overall fuzzy vendor rating r̃ for the vendor is (0.93, 0.95, 0.04, 0.06) on the
scale of 0 to 1. The aggregated demand D is 25000 units.



Table 2. Instance data for the Vendor Selection Problem

Vendor s 1 2 3 4

p̃i (110, 130, 10, 15) (305, 325, 15, 20) (250, 265, 13, 18) (355, 370, 12, 20)

t̃i (15, 17, 2, 3) (11, 12, 1, 2) (5, 7, 0.9, 1.8) (21, 24, 4, 6)

l̃i (2, 2.5, 0.3, 0.7) (3, 4.5, 0.6, 0.9) (9, 11, 0.8, 1.1) (4, 6, 0.5, 0.7)

Ũi (5600, 5800, 200,
400)

(16500, 16900,
600, 750)

(7000, 7900, 250,
450)

(5500, 5800, 310,
420)

B̃i (1250000,
1300000, 50000,
60000)

(5000000,
5500000, 65000,
70000)

(1750000,
1800000, 40000,
45000)

(300000, 325000,
10000, 15000)

q̃i (4, 6, 0.8, 1.2) (4, 5.5, 0.6, 0.8) (1, 2, 0.1, 0.2) (7.5, 8.5, 1.5, 1.8)

f̃i (0.05, 0.06, 0.001,
0.002)

(0.02, 0.03, 0.002,
0.003)

(0.07, 0.09, 0.001,
0.003)

(0.03, 0.04, 0.001,
0.002)

r̃i (0.87, 0.88, 0.01,
0.02)

(0.90, 0.94, 0.04,
0.06)

(0.91, 0.93, 0.03,
0.05)

(0.89, 0.90, 0.08,
0.09)

We solve this instance of the MOVSP problem by a fuzzy goal programming
with the α-cut approach as described in Section 5. To this end, we first replace
the fuzzy numbers by their α-cut and thus the MOVSP is transformed into the
following form

minZ1 = (100 + 10α)x1 + (290 + 15α)x2

+ (237 + 13α)x3 + (343 + 12α)x4,

minZ2 = (13 + 2α)x1 + (10 + α)x2+

(4.1 + 0.9α)x3 + (17 + 4α)x4,

minZ3 = (0.017 + 0.003α)x1 + (0.024 + 0.006α)x2

+ (0.082 + 0.008α)x3 + (0.035 + 0.005α)x4,

subject to

x1 + x2 + x3 + x4 = 25000,

x1 ≤ (6200 + 400α),

x2 ≤ (17650 + 750α),

x3 ≤ (8350 + 450α),

x4 ≤ (6220 + 420α), (12)

(100 + 10α)x1 ≤ (1360000− 60000α),

(290 + 15α)x2 ≤ (5570000− 70000α),

(237 + 13α)x3 ≤ (1845000− 45000α),

(343 + 12α)x4 ≤ (340000− 15000α),



(0.032 + 0.008α)x1 + (0.034 + 0.006α)x2

+ (0.009 + 0.001α)x3 + (0.06 + 0.015α)x4 ≤ 1250,

(0.062− 0.002α)x1 + (0.0033− 0.003α)x2 + (0.093− 0.003α)x3

+ (0.042− 0.002α)x4 ≥ (0.025 + 0.005α) · 25000,

(0.86 + 0.01α)x1 + (0.86 + 0.04α)x2 + (0.88 + 0.03α)x3

+ (0.81 + 0.008α)x4 ≤ (1.01− 0.06α) · 25000,

x1, x2, x3, x4 ≥ 0.

The aspiration levels of goals Z1, Z2, and Z3 are calculated and summarized in
Table 3.

Table 3. Aspiration level for the goals.

α g1 g2 g3

0 5659405 204069.6 576.71

0.1 5703132 206854.4 601.5638

0.2 5746888 209636.4 626.4187

0.3 5790673 212415.8 651.2767

0.4 5834488 215555.1 676.1383

0.5 5878332 218808 701.0042

0.6 5922205 222082.9 725.8752

0.7 5966109 225379.7 750.7519

0.8 6010042 228698.2 775.6349

0.9 6054006 232038.3 800.5249

1.0 6098000 235400 825.4225

Method 1. After establishing the target levels which represent optimistic as-
piration levels for each objective function, we calculate the fractional weight
attached to the lower-deviation variables d−k by using the method described
in Paragraph 5.1. For some discrete choices of α ∈ [0, 1] this yields the nu-
merical values shown in Table 4.



Table 4. Weights determination.

α w1 w2 w3

0 0.000000766 0.000014178 0.002058829

0.1 0.000000773 0.000014234 0.002091673

0.2 0.000000781 0.000014292 0.002125826

0.3 0.000000789 0.000014353 0.002161371

0.4 0.000000797 0.000014493 0.002198403

0.5 0.000000805 0.000014664 0.002237002

0.6 0.000000813 0.000014846 0.002277273

0.7 0.000000822 0.000015041 0.002319329

0.8 0.000000831 0.000015250 0.002363283

0.9 0.000000840 0.000015473 0.002409272

1.0 0.000000849 0.000015711 0.002457428

The compromise solution values for Z1, Z2 and Z3 and an optimum allocation
of order quantities for the vendors for the same discrete values for α ∈ [0, 1]
as above are summarized in Table 5.

Table 5. Compromise objective values corresponding to different weights.

α objective values (Z1, Z2, Z3) vendors’ allocations (x1, x2, x3, x4)

0 (6116096, 274598.9, 577) (6200, 17650, 159, 991)

0.1 (6150822, 277105.3, 602) (6160, 17575, 282, 983)

0.2 (6185543, 279596.4, 627) (6120, 17500, 405, 975)

0.3 (6220260, 282072.3, 651) (6080, 17425, 528, 967)

0.4 (6255078, 284547, 676) (6040, 17350, 650, 960)

0.5 (6289786, 286992.7, 701) (6000, 17275, 773, 952)

0.6 (6324595, 289437.8, 726) (5960, 17200, 895, 945)

0.7 (6359294, 291853.2, 751) (5920, 17125, 1018, 937)

0.8 (6394094, 294268.8, 776) (5880, 17050, 1140, 930)

0.9 (6428784, 296654, 800) (5840, 16975, 1263, 922)

1.0 (6463575, 299040, 825) (5800, 16900, 1385, 915)

Method 2. We calculate the aggregated fuzzy weights w̃k attached to the fuzzy
criterion by using equations (10) and (11). The value of p̃i, t̃i and l̃i of Table 2
are revised by using non-LR fuzzy numbers



Table 6. Data for the Vendor Selection Problem.

Vendors 1 2 3 4

p̃i (100, 110, 130,
145)

(290, 305, 325,
345)

(237, 250, 265,
283)

(343, 355, 370,
390)

t̃i (13, 15, 17, 20) (10, 11, 12, 14) (4.1, 5,7, 8.8) (17, 21, 24, 30)

l̃i (1.7, 2, 2.5, 3.2) (2.4, 3, 4.5, 5.4) (8.1, 9, 11, 12.1) (3.5, 4, 6, 6.7)

For criterion Z1, the aggregated fuzzy weights are given as

w̃1,1 = min(100, 110, 130, 145) = 100,

w̃1,2 =
1

4
(290 + 305 + 325 + 345) = 316,

w̃1,3 =
1

4
(237 + 250 + 265 + 283) = 258.75,

w̃1,4 = max(343, 355, 370, 390) = 390.

Using equation (8) to transform the aggregated fuzzy weights into crisp
number w1, we have that

w1 =
100 + 2 · 316 + 2 · 258.75 + 390

6
= 273.25.

Similarly, the aggregate weights for the two other criteria are w2 = 13.1583333
and w3 = 0.06025. Using the above calculated weights, the solutions of model
(12) for some discrete choices for α ∈ [0, 1] are given in Table 7.

Table 7. Compromise objective values corresponding to fixed weights.

α Objective values (Z1, Z2, Z3) Vendor’s Allocation (x1, x2, x3, x4)

0 (5659448, 222674.4, 1008) (6200, 11016, 7784, 0)

0.1 (5688620, 225697.5, 1014) (6160, 11117, 7723, 0)

0.2 (5746929, 229225, 1031) (6120, 11218, 7662, 0)

0.3 (5790713, 232484.1, 1042) (6080, 11318, 7602, 0)

0.4 (5834507, 235730.6, 1054) (6040, 11417, 7484, 0)

0.5 (5878364, 238970.2, 1066) (6000, 11516, 7484, 0)

0.6 (5922231, 242197, 1077) (5960, 11614, 7426, 0)

0.7 (5966161, 245417, 1089) (5920, 11712, 7368, 0)

0.8 (6010045, 248618.2, 1101) (5880, 11808, 7312, 0)

0.9 (6054046, 251818.5, 1112) (5840, 11905, 7255, 0)

1.0 (6098000, 255000, 1124) (5800, 12000, 7200, 0)



7 Discussion and Result Analysis

The solution of the problem instance given in Section 6 was solved by LINGO 13.0.
The following results were generated which indicate that most of the goals are
attainable with some minor and major improvement in the set of targets. The
result analysis of vendor selection for α ∈ [0, 1] is given in Figure 5.

Fig. 5. Graphical presentation of the results.

From Table 5 and Table 7 at α = 0, we can see that the results obtained
from method 2 are very close to the aspiration goal set by the decision maker.
Method 2 provides a better objective value (in comparison with Method 1) of
the solution for an aggregate demand of 25000 units that yields a minimum net
cost as 5659448, a minimum transportation cost as 222674.4 and a minimum
late delivered units as 1008. Thus, the DM of the manufacturer can decide to
purchase 11016 units form vendor 2, 7784 units form vendor 3, 6200 units from
vendor 3 and does not purchase any item from vendor 4 due to their most
inferior performance on the criteria set (viz. highest percentage rejections, high
percentage late deliveries, less vendor rating value, less quota flexibility value,
etc.).

From Table 5 and Table 7 at α = 1.0, we can see that the result obtained
from method 2 are very close to the aspiration goal set by the decision maker.
Method 2 provides a better objective value (in comparison with Method 1) of
the solution for an aggregate demand of 25000 units that yields the minimum net
cost 6098000, minimum transportation cost 255000 and minimum late delivered
units 1124. Thus, the DM at the manufacturer can decide to purchase 12000 units
form vendor 2, 7200 units form vendor 3, 25800 units from vendor 3 and does not
purchase any item from vendor 4 due to the most inferior performance on the
criteria set (viz. highest percentage rejections, high percentage late deliveries,
less vendor rating value, less quota flexibility value, etc.).



A similar conclusion can given for other values of α. Notable, the objective
values and order quantities associated for different α values does not need to be
the same.

8 Conclusion

In multi-criteria decision-making problem, there may be situations where a de-
cision maker has to be satisfied with a solution of a fuzzy goal programming
problem where some of the fuzzy goals are achieved and some are not because
these fuzzy goals are subject to the function of realistic constraints. In this pa-
per, we have considered a vagueness in the parameters. One more constraint of
quantity rejection is added to the problem that was originally formulated by Ku-
mar et al. [2006b]. The fuzziness of the data is handled by an α-cut approaches.
The resulting crisp form of the MOVSP is solved by a fuzzy goal programming
technique with two different weighted criteria approaches in order to get the
optimal result of an order allocation given to the suppliers.

In multi-objective optimization problems, it is a difficult task to set priority
weights for various goals. The situation becomes even more tedious, when the
goals are naturally conflicting each other. To this end, we considered two different
types of weighted approaches. Firstly, the relative weights represent the relative
importance of the objective functions, and secondly, the aggregated fuzzy weights
represent the relative rating of the fuzzy number to each criterion. The result
obtained by using the aggregated fuzzy weights approach satisfies the fuzzy goals
better (compared to the weighted approach) in the sense that the solutions are
very close to the aspiration level for different levels of α ∈ [0, 1]. We found that
at α = 0 we get an optimal solution of the formulated MOVSP. As the value of
α changes, there was a slightly increase in the value of the objective functions.

In our future work we plan to apply the proposed method also to reformu-
late and solve other real-world multi-objective fuzzy optimization problems, in
particular, those with discrete decision variables.
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