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Abstract

A multistatic sonar system consists of one or more sources that are able to emit
underwater sound, and receivers that listen to the reflected sound waves. Knowing the
speed of sound in water, the time when the sound was sent from a source, and the arrival
time of the sound at one (or more) receiver(s), it is possible to determine the location of
surrounding objects. The propagation of underwater sound is a complex phenomenon that
depends on various attributes of the water (density, pressure, temperature, and salinity)
and the emitted sound (pulse length and volume), as well as the reflection properties of the
water’s surface. These effects can be approximated by nonlinear equations. Furthermore,
natural obstacles in the water, such as the coastline, need to be taken into consideration.
Given a fixed number of sources and receivers and area of the ocean that should be
endowed with a sonar system for surveillance, we consider the problem of determining
the best locations for the sources and receivers in order to maximize the covered area.
We give an integer nonlinear formulation for this problem, and we discuss several ways
to derive an integer linear formulation from it. We then compare these formulations
numerically using a test bed from coastlines around the world and a state-of-the-art
mixed-integer program (MIP) solver (IBM ILOG CPLEX).

1. Introduction to Sonar

Sonar is a technique to detect objects that are under water or at the surface using
sound propagation. Active sonar has been in use for nearly 100 years and has become
a key component of undersea detection. The basic operating principle of active sonar is
that acoustic energy is emitted from a source and its echoes are detected by a receiver;
these echoes reveal information about surrounding objects. In a monostatic system, the
source and the receiver are collocated Bistatic sonar uses a source and a receiver pair
in different locations. Multistatic sonar uses several sources and receivers simultaneously
as a network. For the surveillance of a large area of the ocean, a number of both types
of devices must be deployed. This leads to an optimization problem to find a maximal
coverage of a desired area with a yet-to-be-designed multistatic network that consists of a
given and fixed number of sources and receivers. No algorithm currently in the literature
provides an optimal simultaneous placement of a given number of sources and receivers.
In a discretized setting, we describe mathematical models designed to determine the
sensor layout that will best cover a portion of the ocean (a tile) by sonar surveillance,
with adequate detection probability throughout the tile. Using a definite range (“cookie-
cutter”) detection model, we perform preprocessing calculations to determine whether
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a given part of the tile can be surveilled by a given source-receiver pair as a binary
yes/no outcome. We model the physical properties of sound traveling between sources,
target, and receivers; the properties of the ocean (temperature, density, salinity); as
well as geometrical considerations (obstacles such as islands or coastlines). Section 2
contains the details of our model. We formulate an integer nonlinear program for the
multistatic sonar source-receiver location problem and discuss several linearizations in
Section 3. We compare these formulations empirically using topological data from coastal
areas around the world and a state-of-the-art solver MIP solver in Section 4. Section 5
contains concluding remarks.

2. Input Data

We obtain ocean topography data from Ryan et al. (2009). At present, we do not use sea
level information and only distinguish in a binary fashion between the ocean (negative
elevation value) and the dry land (positive elevation value). A desired part of the ocean
and shoreline (a tile) is taken from the database. Since the resolution of the data is too
fine to let each data pixel become a possible target/source/receiver location, we aggregate
the raw input data into larger rectangular areas called grid cells. We then average the
elevation data from all pixels within a cell and apply the resulting elevation to the entire
cell. Denote the set of rectangles with negative elevation (i.e., those that are underwater)
by G (for grid) and the number of elements in G by n := |G].

The sonar signal is characterized by the range of the day oo, which indicates how
quickly the signal diminishes as the target, source, and receiver become farther apart. In
a definite range (“cookie-cutter”) sensor model, a target in a cell k € G is detected by
a source placed in cell ¢ € G and a receiver placed in cell j € G with binary probability
piik € {0,1}. Denote by d; ; the Euclidean distance between (the centers of) cell ¢ and j.
Necessary for detection (p; ; x = 1) is that the target k is inside the Cassini oval defined
by the equation d; j - di ; < 03, c.f. Karatas et al. (2016); Craparo et al. (2017); Karatas
et al. (2014); Karatas and Craparo (2015). If the target is too close to the line of sight
from source to receiver, then the original signal and its reflection off the target become
indistinguishable at the receiver. This phenomenon is known as the direct blast effect.
The pulse length k; determines the severity of this effect, since longer pulses are more
prone to overlapping with the reflected signal. The direct blast zone is defined by the
ellipsoid d; x + di; < d; j + 2k, c.f. Karatas and Craparo (2015). To account for the
direct blast effect, we say that p; ;i = 0, if the target lies within the direct blast zone.
Additionally, if an obstacle lies on either straight-line path of source to target, target to
receiver, or source to receiver, then p; ; = 0.

Let P; denote the value (reward) for covering each grid cell ¢ € G. This parameter can
be used to reflect the fact that some parts of the tile are more valuable than others and
should get a higher priority if not all of the grid can be covered. For simplicity, we use
P, = % - 100% for all ¢ € G. Our objective function thus yields the percentage of the
ocean that is covered. Denote the number of available sources and receivers by cg, ¢, € N,
respectively.

3. Model Formulations

All of our model formulations utilize the binary decision variables s;,r; € {0,1} for each
i € G, which model the decision whether to place a source (s; = 1) or a receiver (r; = 1)
in cell 4, and x; € {0,1} for ¢ € G, which models the coverage outcome of grid cell i
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(x; = 1 if cell ¢ is covered). The objective (in all formulations) is to maximize the total
value from all covered cells, which we calculate as follows:

> P (3.1)
ic@
Constraints that are common to all models are the two deployment constraints that
require that all sources are used:
Z $; = Cs, (3.2)

i€G

er = ¢ (3.3)

3.1. An Integer Nonlinear Model.

In the first nonlinear formulation the binary variables s; and 7; are multiplied in order to
represent the joint decision of placing a source in cell ¢ and a receiver in cell j. A grid cell
k can only be covered if there is at least one feasible combination of a source in 7 and a
receiver in j that allows a detection in k. An over-covering (i.e., covering with more than
one source-receiver combination) is allowed, but it does not give any additional benefit:

Z Zpi,j,ksﬁj >z, VkeG. (3.4)
i€G jeG

and all receivers are used:

In general, for any given k € G the non-negative matrix (p;jx):; is indefinite. Only
recently, some solvers have the ability to solve optimization problems with this type of
restriction to proven global optimality. For instance, the solver CPLEX is able to process
constraints of this form since version 12.6 (Bliek et al. 2014). Thus, the base run for
comparison with the other reformulation approaches is to solve the model:

min{(3.1)[(3.2), (3.3), (3.4); 5,7, = € {0,1}“}. (3.5)

3.2. The Oldest Linearization Technique

The first documented linearization of a product of binaries s;r; introduces a new binary
variable h; ; € {0,1} with h;; = 1 if and only if s; = 1 and r; = 1. In this method,
independently described in Fortet (1959); Balas (1964); Zangwill (1965); Watters (1967),
the constraints 2h; ; < s; +r; and s; +r; < 1+ h;; (for all ¢,j € G) are a linear
description of this relationship. In our case, because of the non-negativity of all p; ; &,
only the first constraint is necessary. Thus the first linear version of (3.5) is

min (3.1), s.t. Z Zpi,j,khi7j >x, VkeG, (3.6&)
i€G jEG
2hij < sitrj, Vi jeG, (3.60)
(3.2),(3.3), 5,72 € {0,1}%,h € {0,1}6%C. (3.6¢)

Compared to the nonlinear integer formulation (3.5), this binary linear model has an
additional n? binary variables and n? constraints.

3.3. Standard Linearization of the Model

A linearization for s;r; similar to the previous one from Glover and Woolsey (1974)
introduces continuous auxiliary variables h; ; € [0, 1] together with the constraints h; ; <
s, hi; < rjand s;+r; < 1+h;, ;. This is perhaps the first and most natural formulation to
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come to mind (and for good reason: Padberg (1989) showed that these three constraints
are facet defining), and is hence often called “standard linearization.” As before, the third
constraint is not required in our case. Then, the second linear version of (3.5) is

min (3.1), s.t. Z Zpi7j7khi7j >z, VkeG, (3.7a)
i€G jeq
hij < s .
, Vi,jeG, (3.7b)
hi,j S Tj
(3.2),(3.3), 5,72 € {0,1}¢ h € [0,1]9%C. (3.7¢)

Compared to the nonlinear binary formulation (3.5), this mixed-integer linear model has
an additional n? continuous variables and 2n? constraints.

3.4. Glover’s Linearization

To adapt a linearization technique from Glover (1975), we set L := >, pi jx for all
J,k € G, and the model reads:

min (3.1), s.t. Z zjk > Tk, VkeG, (3.8a)
JjEG
ecPijkSi = Zj
2icq Pigh U vikea, (3.8b)
Ljxr; = zjk,

(3.2),(3.3), 8,72 € {0,1}¢, 2 € RG*“. (3.8¢)

In order to understand that this formulation of the problem is equivalent to the previ-
ous ones, fix k£ and think of the auxiliary variables z; ) as the row sum of the matrix
(pi)j’ksirj)i,j for the j-th row. Now also fix j. In case r; = 0, the row sum is equal to
0. This is ensured by the second inequality in (3.8b). Otherwise, if r; = 1, this very in-
equality allows z; ;, to hold any value between zero and the upper bound of the row sum,
which is L; ;. This upper bound may be tight, which happens if and only if s; = 1 for all
i € G. Other than that, it is bounded from above by the first inequality in (3.8b), which
is where the actual s; = 1 values are taken into account. There is no need to bound z;
from below here, since this is taken care of by the inequality of (3.8a). By the objective
function (3.1), it is beneficial to set as many xj variables to 1 as possible; hence, there
is no need for a further lower bound on z;, .

This model introduces n? additional continuous variables and 2n? additional con-
straints (compared to (3.5)). We remark that because of the non-negativity of p; ;, we
could remove some (in this case) redundant constraints from this formulation, similar to
the models (3.6) and (3.7); this was noted by Adams and Forrester (2005). In this case,
the remaining formulation equals a linearization formulation given by Chaovalitwongse
et al. (2004); Pardalos et al. (2004); the close relation of the Pardalos et al.’s to Glover’s
formulation was also noted by Hansen and Meyer (2009).

3.5. Oral-Kettani’s Linearization

Oral and Kettani (1992) proposed two formulations that come with n? additional con-
tinuous variables, but fewer constraints compared to Glover’s formulation; namely, only
n? additional constraints, compared to (3.5).
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The first of the two formulations is:

min (3.1), s.t. Z(Lj,krj —2zjr) >z, VkeQG, (3.9a)
JEG
25k > Lj7k7"j — Zpi’j’ksi’ V], ke G, (39[))
i€G
(3.2),(3.3),s,m,2 € {0,1}9, 2 € R, (3.9¢)

Consider a fixed k and j, and suppose r; = 0. Then by (3.9b) the value of z; ; is bounded
by — > ;cq Pijksi from below. Since the latter is non-positive for any combination of
s; € {0,1}, the actual lower bound is z;, > 0 from (3.9¢). Inequality (3.9a) together
with the objective (3.1) then keep z;; at this lower bound. Now consider the case that
rj = 1. Then by (3.9b) the value of z; is bounded from below by L;x — >, PijkSi-
The latter is now non-negative for any combination of s; € {0,1}. As in the previous
case, inequality (3.9a) together with the objective (3.1) keep z; at the lower bound.
With z; ;, being at the lower bound, the L; r; terms in (3.9a) and (3.9b) cancel, and the
left-hand side of the inequality in (3.9a) is again the row sum of the matrix (p; j£si75):
for the j-th row.
The second Oral-Kettani linearization is:

min (3.1), s.t. Z (Zpi’j,ksi — zNC) >, VkeQG, (3.10a)

jeG \ieG

Zjk = Zpi’j’ksi — Lj7k7‘j, Vi k € G, (3.105)
1€G

(3.2),(3.3),8,r,2 € {0,1}¢, 2 € RE*C. (3.10¢)

In order to understand this formulation, consider again a fixed j and k. If r; = 0, then
Zik > D icq PijkSi by (3.100). The objective function (3.1) together with (3.10a) keep
zj 1 at this lower bound. Then there is a 0 contribution for the outer sum in constraint
(3.10a) for this j, k. If r; = 1, then inequality (3.100) is weak and we have that z;; > 0.
Then for this j, k the contribution to (3.10a) is D, pijkSi-

4. Computational Results

We now compare the above six formulations on a test set of 24 instances. These instances
are based on ocean topography data from various regions around the world and were
extracted from a global map assembled by Ryan et al. (2009). The computations were
carried out on a 2014 MacBookPro with 16 GB RAM and a 2.8 GHz Intel Core i7
processor. We set a time limit of 1,000 seconds and use default settings of the solver
IBM ILOG CPLEX 12.7.1 otherwise.

The resulting total computation times appear at the bottom in Table 1 (row “SUM”).
Ranking the formulations based on their total computation time across all 24 instances
(row “SUMRANK?”), we see that the standard formulation (3.7) outperforms the second
Oral-Kettani formulation (3.10) by a factor of two. Glover’s formulation (3.8) follows,
while the first Oral-Kettani formulation (3.9) and the oldest linearization (3.6) are nearly
tied. Far behind each of these linearizations comes the nonlinear formulation (3.5), which
solves only three of the 24 instances within the time limit. Looking more closely at the
results across all instances, we see that the ranking among formulations varies by problem
instance. However, the nonlinear formulation (3.5) consistently performs worst.

The ranking of the formulations deviates if we consider the geometric mean (rows
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Instance n (3.5) (3.6) (3.7) (3.8) (3.9) (3.10)
BabAlMandabStrait 29 139.57  1.11 0.48 0.21 1.78 0.22
ChoctawhatcheeBay 31 1000.27 7.93 3.24 13.55 8.76 7.08
Dardanelles 19 21.14 0.18 0.16 0.07 0.13 0.03
EnglishChannel 48 1000.14 840.64 24.1 1000.01 1000.02 130.23
FalklandSound 57 1001.1  1.23 2.78 1.1 1000.03 0.84
GulfOfAkaba 22 9.94 0.36 0.29 0.16 0.51 0.32
GulfOfFinland 37 1000.04 24.21  2.48 19.07  3.27 1.42
GulfOfSirte 45 1000.99 16.93 76.01 11.2 11.86  43.15
KarkinytskaGulf 34 1000.25 7.48 1.33 9.85 3.18 1.23
KerchStrait 36 1000.02 56.29 0.63 13.31  8.35 1.37
LagoDeMaracaibo 48 1000.84 0.5 1.37 0.4 3.53 0.48
Lesbos 30 1000.01 1.39 0.34 0.79 0.26 0.08
MontereyPeninsula 45 1000.21 196.42 20.36 83.62 66.4 48.64
NewYork 38 1000.02 39.74 6.96 9.91 22.67  32.86
OpenSea-Biscaya 54 1002.94 5.12 46.35 2231 2338 6.95
Oresund 71 1004.21 1001.35 105.1 1000.02 1000.02 495.54
Ruegen 37 1000.41 11.59 1822 2.6 5.52 3.64
Smalandsfarvandet 58 1000.1  1000.02 77.15 1000.02 1000.02 166.03
Storebaelt 40 1000.15 57.84 20.58 9.21 19.84  18.53
StraitOfGibraltar 52 1000.17 1000.02 124.29 168.91 154.69 312.86
StraitOfHormuz 41 1000.08 20.48  6.79 5.7 11.37 6.2
TaedongGang 39 1000.13 14.87 15.12 12.32 11.73 13.76
Vaeinameri 36 1000.05 172.32 9.1 1.71 2.27 8.54
WonsanBay 44 1000.34 26.9 100.67 12.09 15.92  27.31
SUM 21183.12 4504.92 663.9  3398.14 4375.51 1327.31
SUMRANK 6 5 1 3 4 2
GEOMEAN 527.22 1845  6.97 9.27 13.59  6.22
GEOMEANRANK 6 5 2 3 4 1
WINNER 0 1 8 9 1 5
WINNERANK 6 4 2 1 4 3

TABLE 1. Computation time (seconds) of models (3.5)—(3.10) on 24 realistic test instances.

“GEOMEAN” and “GEOMEANRANK?”) as performance measure. Now the second Oral-
Kettani formulation (3.10) is slightly ahead of the standard formulation (3.7), and in the
same order as before on ranks 3, and 4, 5 we find Glover’s formulation (3.8), the first
Oral-Kettani formulation (3.9), and the oldest linearization (3.6), respectively. Still, the
nonlinear formulation (3.5) performs worst.

A third way of ranking is by counting the number of wins, that is, how many times is
one formulation ahead of all others with respect to the run time (rows “WINNER” and
“WINNERRANK?”), see also Figure 2. It turns out that from this point of view, Glover’s
formulation (3.8) with 9 wins is slightly ahead of the standard formulation (3.7) with 8
wins, followed by the second Oral-Kettani formulation (3.10) with 5 wins. The second
Oral-Kettani formulation (3.10) as well as the oldest linearization (3.6) only win on 1
instance each. Still, the nonlinear formulation (3.5) performs worst.

An example solution appears in Figure 1.
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FIGURE 1. Left: The Monterey Peninsula area tile (Ryan et al. 2009) as raw input data (365 cols,
285 rows). Right: Optimal placement of 2 sources (red circles) and 4 receivers (blue triangles)
on a 9x7 grid. Numbers > 1 at each coordinate show multiplicity of coverage.

5. Conclusions

When facing a bilinear constraint of the type #7 Ay < b with binary variable vectors z,y
and an indefinite matrix A, a user may choose among several linearization techniques
that have been developed over the last five decades. Today, classical MIP solvers (such
as CPLEX) offer features to automatically deal with such nonlinear constraints, lifting
the user’s burden. However, as our results demonstrate, it is still worthwhile to consider
the knowledge of the past, and not to blindly rely on the solver. Because it is difficult to
determine a priori which method will outperform the others, and this also depends on
the kind of measurement for success, it may be necessary to implement and test all of
them.
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