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Exlusive eletroprodution of two pions atHERA

ZEUS Collaboration
AbstratThe exlusive eletroprodution of two pions in the mass range0:4 < M�� < 2:5 GeV has been studied with the ZEUS detetor at HERAusing an integrated luminosity of 82 pb�1. The analysis was arried out in thekinemati range of 2 < Q2 < 80 GeV2, 32 < W < 180 GeV and jtj < 0:6 GeV2,where Q2 is the photon virtuality, W is the photon-proton entre-of-mass energyand t is the squared four-momentum transfer at the proton vertex. The two-pioninvariant-mass distribution is interpreted in terms of the pion eletromagnetiform fator, jF (M��)j, assuming that the studied mass range inludes theontributions of the �; �0 and �00 vetor-meson states. The masses and widths ofthe resonanes were obtained and the Q2 dependene of the ross-setion ratios�(�0 ! ��)=�(�) and �(�00 ! ��)=�(�) was extrated. The pion form fatorobtained in the present analysis is ompared to that obtained in e+e� ! �+��.
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1 IntrodutionExlusive eletroprodution of vetor mesons takes plae through a virtual photon �by means of the proess �p ! V p. At large values of the entre-of-mass energy, W ,this is usually viewed as a three-step proess; the virtual photon � utuates into a q�qpair whih interats with the proton through a two-gluon ladder and hadronizes into avetor meson, V . The prodution of ground-state vetor mesons, V = �; !; �; J= ;�,whih are 1S triplet q�q states, has been extensively studied at HERA, partiularly inseveral reent publiations [1{7℄). As the virtuality, Q2, of the photon inreases, theproess beomes hard and an be alulated in perturbative Quantum Chromodynamis(pQCD). Furthermore, by varying Q2, and thus the size of the q�q pair, sensitivity tothe vetor-meson wave-funtion an be obtained by sanning it at di�erent q�q distanesales. Expetations in the QCD framework vary from alulations based only on the massproperties and typial size of the q�q inside the vetor-meson [8, 9℄, to those based on thedetails of the vetor meson wave-funtion dependene on the size of the q�q pair [10{14℄.The approahes di�er in their preditions for the Q2 dependene of the ross setions forexited vetor-meson states and their ratio to their ground state.The only radially exited 2S triplet q�q state studied at HERA so far has been the  (2S)state [15℄. In this study, only the photoprodution reation was investigated and thelow ross-setion ratio of  (2S) to the ground-state J= supported the existene of asuppression e�et, expeted if a node in the  (2S) wave-funtion is present.Other exited vetor-meson states, in partiular those onsisting of light quarks, an beused to study the e�et aused by hanging the sanning size. Exlusive �+�� produtionhas been measured previously in the annihilation proess e+e� ! �+�� [16℄, as well as inphotoprodution [17℄. The �+�� mass distribution shows a omplex struture in the massrange 1{2 GeV. Evidene for two exited vetor-meson states has been established [18,19℄;the �0(1450) is assumed to be predominantly a radially exited 2S state and the �00(1700)is an orbitally exited 2D state, with some mixture of the S and D waves [20℄. In additionthere is also the �3(1690) spin-3 meson [21℄ whih has a �� deay mode. The two-piondeay mode of these resonanes is related [22,23℄ to the pion eletromagneti form fator,F�(M��).In this paper, a study of exlusive eletroprodution of two pions,�p! �+��p; (1)is presented in the two-pion mass range 0:4 < M�� < 2:5 GeV, in the kinemati range2 < Q2 < 80 GeV2, 32 < W < 180 GeV and jtj < 0:6 GeV2, where t is the squaredfour-momentum transfer at the proton vertex. The M�� system onsists of a resonanepart and a non-resonant bakground. The resonanes are desribed by the pion form1



fator. The ontributions of the three vetor-mesons �, �0 and �00 are extrated and theirrelative rates as a funtion of Q2 are disussed in terms of QCD expetations.2 The pion form fatorThe two-pion invariant-mass distribution of Eq. 1, after subtration of the non-resonantbakground1, an be related to the pion eletromagneti form fator, F�(M��), throughthe following relation [22, 23℄: dN(M��)dM�� / jF�(M��)j2 : (2)There are several parameterizations of the pion form fator usually used for �tting the�+�� mass distribution; the Kuhn-Santamaria (KS) [24℄, the Gounaris-Sakurai (GS) [25℄and the Hidden Loal Symmetry (HLS) [26,27℄ parameterizations. In this paper, resultsbased on the KS parameterization are presented.In the mass range M�� < 2:5 GeV, the KS parameterization of the pion form fatorinludes ontributions from the �(770), �0(1450) and �00(1700) resonanes2,F�(M��) = BW�(M��) + �BW�0(M��) + BW�00(M��)1 + � +  : (3)Here � and  are relative amplitudes and BWV is the Breit-Wigner distribution whihhas the form BWV (M��) = M2VM2V �M2�� � iMV �V (M��) ; (4)where MV and �V (M��) are the vetor-meson mass and momentum-dependent width,respetively. The latter has the form�V (M��) = �V �p�(M��)p�(MV ) �3�M2VM2�� �; (5)where �V is the width of the V meson atM�� =MV , p�(M��) = 1=2pM2�� � 4M2� is thepion momentum in the �+�� entre-of-mass frame, p�(MV ) is the pion momentum in theV -meson rest frame, and M� is the pion mass.1 This is assumed not to interfere with the resonane signal.2 This analysis annot distinguish between �3(1690) and �00(1700). Theoretial alulations estimatethe ontribution of �3(1690) to be either one order of magnitude [9℄ or 2{5 times [28℄ smaller than thatof the �00(1700). 2



3 Experimental set-upThe analyzed data were olleted with the ZEUS detetor at the HERA ollider in theyears 1998{2000, when 920 GeV protons ollided with 27.5 GeV eletrons or positrons.The sample used for this study orresponds to 81.7 pb�1 of whih 65.0 pb�1 were olletedwith an e+ and the rest with an e� beam3.A detailed desription of the ZEUS detetor an be found elsewhere [29℄. A brief outlineof the omponents that are most relevant for this analysis is given below.The harged partiles were traked in the entral traking detetor (CTD) [30℄ whihoperated in a magneti �eld of 1:43T provided by a thin superonduting solenoid. TheCTD onsisted of 72 ylindrial drift hamber layers, organized in nine superlayers ov-ering the polar-angle4 region 15Æ < � < 164Æ. The transverse-momentum resolution forfull-length traks was �(pT )=pT = 0:0058pT � 0:0065� 0:0014=pT , with pT in GeV.The sattered eletron was identi�ed in the high-resolution uranium{sintillator alorime-ter (CAL) [31℄ whih overed 99.7% of the total solid angle and onsisted of three parts:the forward (FCAL), the barrel (BCAL) and the rear (RCAL) alorimeters. Eah partwas subdivided transversely into towers and longitudinally into one eletromagneti se-tion (EMC) and either one (in RCAL) or two (in BCAL and FCAL) hadroni se-tions (HAC). The CAL energy resolution, as measured under test-beam onditions, was�(E)=E = 0:18=pE for eletrons and �(E)=E = 0:35=pE for hadrons, with E in GeV.The position of the sattered eletron was determined by ombining information from theCAL, the small-angle rear traking detetor [32℄ and the hadron-eletron separator [33℄.The luminosity was measured from the rate of the bremsstrahlung proess ep ! e p.The photon was measured in a lead{sintillator alorimeter [34{36℄ plaed in the HERAtunnel at Z = �107 m.4 Data seletion and reonstrutionThe online event seletion required an eletron andidate in the CAL, along with thedetetion of at least one and not more than six traks in the CTD.In the o�ine seletion, the following further requirements were imposed:3 From now on, eletrons and positrons will be both referred to as eletrons in this paper.4 The ZEUS oordinate system is a right-handed Cartesian system, with the Z axis pointing in theproton beam diretion, referred to as the \forward diretion", and the X axis pointing left towardsthe entre of HERA. The oordinate origin is at the nominal interation point. The polar angle, �, ismeasured with respet to the proton beam diretion.3



� the presene of a sattered eletron, with energy in the CAL greater that 10 GeVand with an impat point on the fae of the RCAL outside a retangular area of26.4 � 16 m2 in the X � Y plane;� the Z oordinate of the interation vertex was within � 50 m of the nominal inter-ation point;� in addition to the sattered eletron, the presene of exatly two oppositely hargedtraks. Both traks have to be assoiated with the reonstruted vertex, eah havingpseudorapidity j�j less than 1.75 and transverse momentum greater that 150 MeV.This ensures high reonstrution eÆieny and exellent momentum resolution in theCTD. These traks were treated in the following analysis as a �+�� pair;� E � PZ > 45 GeV, where E � PZ = Pi(Ei � PZi) and the summation is over theenergy Ei and longitudinal momentum PZi of the �nal-state eletron and pions. Thisut exludes events with high-energy photons radiated in the initial state;� events with any energy deposit larger than 300 MeV in the CAL, not assoiated withthe pion traks (so-alled `unmathed islands'), were rejeted.The following kinemati variables are used to desribe the exlusive prodution of a �+��pair:� Q2, the four-momentum squared of the virtual photon;� W 2, the squared entre-of-mass energy of the photon-proton system;� M��, the invariant mass of the two pions;� t, the squared four-momentum transfer at the proton vertex;� �h, the angle between the �+�� prodution plane and the positron sattering planein the �p entre-of-mass frame;� �h and �h, the polar and azimuthal angles of the positively harged pion in the s-hannel heliity frame [37℄ of the �+��.The kinemati variables were reonstruted using the so-alled `onstrained' method [38℄,whih uses the momenta of the deay partiles measured in the CTD and the reonstrutedpolar and azimuthal angles of the sattered eletron. The analysis was restrited tothe kinemati region 2 < Q2 < 80 GeV2, 32 < W < 180 GeV, jtj � 0:6 GeV2 and0:4 < M�� < 2:5 GeV. The lower mass range exludes reetions from the � ! K+K�deays and the upper limit exludes the J= ! �+��; e+e� deays with its radiative tail.The above seletion yielded 63517 events for this analysis.The above uts do not eliminate events in whih the proton dissoiates into a low-mass�nal state, the produts of whih disappear down the beam pipe. This ontribution,4



estimated [2℄ to be about 20% in the range of this analysis, was found to be Q2 and Windependent. Its presene does not a�et the onlusions of this analysis.5 Monte Carlo simulationThe program Zeusvm [39℄ interfaed to Herales4.4 [40℄ was used. The e�etive dis-tributions of Q2; W and jtj were parameterized to reprodue the data. The mass andangular distributions were generated uniformly and the MC events were then iterativelyreweighted using the results of the analysis.The generated events were passed through a full simulation of the ZEUS detetor basedon Geant 3.21 [41℄ and proessed through the same hain of seletion and reonstrutionproedures as the data, aounting for trigger as well as detetor aeptane and smearinge�ets. The number of simulated events after reonstrution was approximately seventimes greater than the number of reonstruted data events.A detailed omparison between the data and the Zeusvm MC distributions for the massrange 0:65 < M�� < 1:1 GeV has been presented elsewhere [2℄. Some examples for themass range 1:1 < M�� < 2:1 GeV are shown here. The transverse momentum, pT , ofthe �+ and the �� partiles for di�erent ranges of Q2 and M�� are presented in Fig. 1.Figure 2 shows the Q2; W; jtj, os �h; �h; and �h distributions for events seleted withinthe mass ranges 1:1 < M�� < 1:6 GeV, while Fig. 3 shows those distributions for themass range 1:6 < M�� < 2:1 GeV. All measured distributions are well desribed by theMC simulations.6 The �� mass �tThe �+�� mass distribution, after aeptane orretion determined from the above MCsimulation, is shown in Fig. 4. A lear peak is seen in the � mass range. A small shoulderis apparent around 1.3 GeV and a seondary peak at about 1.8 GeV.The two-pion invariant-mass distribution was �tted, using the least-square method [42℄,as a sum of two terms,dN(M��)dM�� = A�1� 4M2�M2���"jF�(M��)j2 +B � M0M���n#; (6)where A is an overall normalization onstant. The seond term is a parameterization ofthe non-resonant bakground, with onstant parameters B, n andM0 = 1 GeV. The otherparameters, the masses and widths of the three resonanes and their relative ontributions5



� and , enter through the pion form fator, F� (Eq. 3). The �t, whih inludes 11parameters, gives a good desription of the data (�2/ndf=28.8/24=1.2). The result ofthe �t is shown in Fig. 4 together with the ontribution of eah of the two terms of Eq. 6.The � and the �00 signals are learly visible. The negative interferene between all theresonanes results in the �0 signal appearing as a shoulder. To illustrate this better, thesame data and �t are shown in Fig. 5 on a linear sale and limited to M�� > 1.2 GeV,with separate ontributions from the bakground, the three resonant amplitudes as wellas their total interferene term.The �t parameters are listed in Table 1. Also listed are the mass and width parametersfrom the Partile Data Group (PDG) [43℄. The masses and widths of the � and the �00as well as the width of the �0 agree with those listed in the PDG, while there is about 100MeV di�erene between the PDG value and the �tted mass of the �0. It should howeverbe noted that the value quoted by PDG is an average over many measurements having alarge spread (1265� 75 up to 1424� 25 MeV for the �� deay mode) in this mass range.The measured negative value of � and positive value of  implies that the relative signsof the amplitudes of the three resonanes �; �0 and �00 are +;�;+, respetively. A similarpattern was observed in e+e� ! �+�� and � -deay experiments [45{53℄, whih alsoshowed a dip in the mass range around 1.6 GeV, resulting from destrutive interferene.There is a single experiment where a onstrutive interferene was obtained around 1.6GeV, namely p! �+��p [17℄, a result whih is not understood [12℄.In the mass �ts above it was assumed that the relative amplitudes � and  are real. Inorder to test this assumption, the �t was repeated allowing them to be omplex. Thepion form fator was re-written in the formF�(M��) = BW�(M��) + �0 � exp(i�12)BW�0(M��) + 0 � exp(i�13)BW�00(M��)1 + �0 + 0 ; (7)where �0 and 0 are real numbers and two additional �t parameters, �12 and �13, arethe orresponding phase shifts. The value of the phase-shifts obtained from the �t were�12 = 3:2� 0:2 rad and �13 = 0:1� 0:2 rad, supporting the assumption of the real natureof the relative amplitudes.7 Systemati unertaintiesThe systemati unertainties of the �t parameters were evaluated by varying the seletionuts and the MC simulation parameters. Motivation for the variation in uts used belowan be found in a previous ZEUS analysis [2℄. The following seletion uts were varied:� the E � PZ ut was hanged within the resolution of � 3 GeV;6



� the pT threshold for the pion traks (default 0.15 GeV) was inreased to 0.2 GeV andthe j�j ut on the two pion traks was hanged (default 1.75) by �0:25;� the required maximum distane of losest approah of the two extrapolated pion traksto the mathed island in the CAL was hanged from 30 m to 20 m;� the Z-vertex ut was varied by �10 m;� the energy threshold for an unmathed island (elastiity ut) was hanged by�50 MeV;� the bin size in the �tted mass distribution (default 60 MeV) was varied by � 20 MeV;� the mass range was narrowed to 0:5 < M�� < 2:3 GeV;� the jtj ut was varied by �0:1 GeV2;� the W range was hanged to 35 < W < 190 GeV;� the os �h range was hanged to j os �hj < 0:9;� the W Æ dependene in the MC was varied by hanging the Q2-dependent Æ value by� 0.03;� the exponential t distribution in the MC was reweighted by hanging the nominalQ2-dependent slope parameter b by � 0.5 GeV�2;� the exponent of the Q2 distribution parameterization in the MC was hanged by �0.05.The largest variations were observed for , �(�00) and �. The value of �(�00) hanges by7% when the elastiity ut is varied. The restrition of the phase spae in the �tted massrange leads to a hange of the value of � by �5:2% while for , restriting the j os �hjrange leads to a hange of �8%. In addition, another form of bakground in Eq. 6, withan added exponential term, was investigated. It gave a very similar result in the massrange of this analysis and therefore no additional unertainty was assigned to the form ofthe �tted mass urve.All the systemati unertainties were added in quadrature. The ombined systematiunertainties are inluded in Table 1.8 Deay angular distributionsDeay angular distributions an be used to determine the spin density-matrix elementsof a resonane [37, 44℄. In the present ase we study three resonanes, all in a JP = 1�state. However, the deay angular distribution in a given mass bin is a�eted by thebakground ontribution whih does not neessarily have the same quantum numbers asthe resonane. Given the above, only the distribution of the polar angle �h, de�ned asthe polar angle of the positively harged pion in the heliity frame, was studied.7



The distribution of os �h is shown in Fig. 6 for di�erent mass bins; its shape is learlymass dependent. In order to study the mass dependene further, the angular distributionof the polar heliity angle, W (os �h) was parameterized asW (os �h) / [1� r + (3r � 1) os2 �h℄; (8)and �tted to the data. The mass dependene of the resulting parameter r is shownin Fig. 7. In the mass range M�� < 1.1 GeV, r shows the dependene seen for the r0400density matrix in the � region [2℄. Indeed this region is dominated by exlusive produtionof � and therefore r = r0400. In that ase, r an be interpreted as �L=�tot, assuming s-hannel heliity onservation (SCHC). Here �L is the ross setion for produing � by alongitudinally polarized photon, and �tot = �L+�T , with �T the prodution ross setionby transversely polarized photons. The results shown here for the � region are in exellentagreement with the values given in an earlier ZEUS paper [2℄.The struture seen for M�� > 1.1 GeV is not easy to interpret, however the dip observedaround 1.3 GeV and the enhanement at 1.6 GeV seem to follow the loation of theresonanes determined from the mass distribution.9 Q2 dependene of the pion form fatorThe Q2 dependene of the relative amplitudes was determined by performing the �t toM�� in three Q2 regions, 2{5, 5{10 and 10{80 GeV2. The masses and widths of the threeresonanes were �xed to the values found in the overall �t and listed in Table 1. Theresults are shown in Fig. 8. A reasonable desription of the data is ahieved in all threeQ2 regions. The orresponding values of � and  are given in Table 2. The absolute valueof � inreases with Q2 while the value of  is onsistent with no Q2 dependene, withinlarge unertainties.Figure 9 shows the urves representing the pion form fator, jF�(M��)j2, as obtained inthe present analysis for the three Q2 ranges: 2{5, 5{10, 10{80 GeV2. Also shown areresults obtained in the time-like regime from the reation e+e� ! �+��. In general, thefeatures of the jF�(M��)j2 distribution observed here are also observed in e+e�, i.e., theprominent � peak, a shoulder around the �0 and a dip followed by an enhanement in the�00 region. Above the � region, where the interferene between the �0 and the �00 starts todominate, there is a dependene of jF�(M��)j2 on Q2, with the results from the lowest Q2range losest to those from e+e�. However, in the region of the � peak, shown in Fig. 10,the pion form-fator jF�(M��)j2 is highest at the highest Q2, as in the �0-�00 interfereneregion, while the e+e� data are higher than those in the highest Q2 range. They are equalwithin errors for M�� > 1.8 GeV. 8



10 Cross-setion ratios as a funtion of Q2The Q2 dependene of the � by itself is given elsewhere [2℄. Sine the �� branhing ratiosof �0 and �00 are poorly known, the ratio RV de�ned asRV = �(V ) �Br(V ! ��)�(�) ; (9)has been measured, where � is the ross setion for vetor-meson prodution and Br(V !��) is the branhing ratio of the vetor meson V (�0; �00) into ��. The ratio RV may bediretly determined from the results of the M�� mass �t,R�0 = �2 I�0I� R�00 = 2 I�00I� ; (10)where IV = MV +5�VZ2M� dM��jBWV (M��)j2; (11)and the integration is arried out over the range 2M� < M�� < MV + 5�V .Figure 11 shows and Table 3 lists the ratio RV for V = �0; �00, as a funtion of Q2. Owingto the large unertainties of R�00 , no onlusion on its Q2 behaviour an be dedued,whereas R�0 learly inreases with Q2. This rise has been predited by several models [8,10, 13, 54, 55℄. The suppression of the 2S state (�0) is onneted to a node e�et whihresults in anellations of ontributions from di�erent impat-parameter regions at lowerQ2, while at higher Q2 the e�et vanishes.11 SummaryExlusive two-pion eletroprodution has been studied by ZEUS at HERA in the range0:4 < M�� < 2:5 GeV, 2 < Q2 < 80 GeV2, 32 < W < 180 GeV and jtj � 0:6 GeV2. Themass distribution is well desribed by the pion eletromagneti form fator, jF�(M��)j2,whih inludes three resonanes, �, �0(1450) and �00(1700).A Q2 dependene of jF�(M��)j2 is observed, visible in partiular in the interferene regionbetween �0 and �00. The eletromagneti pion form fator obtained from the presentanalysis is lower (higher) than that obtained from e+e� ! �+�� for M�� < 0:8 GeV(0:8 < M�� < 1:8 GeV). They are equal within errors for M�� > 1:8 GeV.The Q2 dependene of the ross-setion ratios R�0 = �(�0 ! ��)=�(�) and R�00 = �(�00 !��)=�(�), has been studied. The ratio R�0 rises strongly with Q2, as expeted in QCD-inspired models in whih the wave-funtion of the vetor meson is alulated within theonstituent quark model, whih allows for nodes in the wave-funtion to be present.9
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Parameter ZEUS PDGM� (MeV) 771� 2+2�1 775.49�0.34�� (MeV) 155� 5� 2 149.1�0.8� �0:27� 0:02� 0:02M�0 (MeV) 1350� 20+20�30 1465�25��0 (MeV) 460� 30+40�45 400�60 0:10� 0:02+0:02�0:01M�00 (MeV) 1780� 20+15�20 1720�20��00 (MeV) 310� 30+25�35 250�100B 0:41� 0:03� 0:07n 1:30� 0:06+0:18�0:13Table 1: Fit parameters obtained using F�(M��) parameterization. Masses andwidths are in MeV. The �rst unertainty is statistial, the seond systemati. Alsoshown are the masses and widths from the PDG [43℄.
Q2(GeV2) 2{5 5{10 10{80� �0:249� 0:008+0:005�0:003 �0:282� 0:008+0:005�0:008 �0:35� 0:02� 0:01 0:100� 0:009� 0:003 0:098� 0:012+0:005�0:003 0:118� 0:022+0:008�0:006Table 2: The Q2 dependene of the � and  parameters. Masses and widths are�xed to the values given in Table 1. The �rst unertainty is statistial, the seondsystemati.
Q2(GeV2) 2{5 5{10 10{80R�0 0.063�0:006� 0:004 0.081�0:007+0:006�0:005 0.122�0:008+0:005�0:006R�00 0.027�0:006+0:004�0:003 0.026�0:006� 0:003 0.039�0:010+0:003�0:005Table 3: The Q2 dependene of the ratio RV for V = �0 and �00. The �rstunertainty is statistial, the seond systemati.
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Figure 9: The pion form fator squared, jF�j2, as a funtion of the �+�� invariantmass, M��, as obtained from the reation e+e� ! �+�� [16, 45, 46, 48, 49℄. Theshaded bands represent the square of the pion form fator and its total unertaintyobtained in the present analysis for three ranges of Q2: 2{5 GeV2 (rossed lines),5{10 GeV2 (horizontal lines) and 10{80 GeV2 (vertial lines).
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