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Abstract

In the framework of the kT -factorization approach, the production of unpolarized Drell-
Yan lepton pair at high energies is studied. The consideration is based on the O(α) and
O(ααs) off-shell partonic matrix elements with virtual photon γ∗ and Z boson exchange.
The calculations include leptonic decays of Z bosons with full spin correlations as well as
γ∗ − Z interference. The unintegrated parton densities in a proton are determined by the
Kimber-Martin-Ryskin prescription. Our numerical predictions are compared with the data
taken by the D∅, CDF and CMS collaborations at the Tevatron and LHC energies. Special
attention is put on the specific angular distributions measured very recently by the CDF
collaboration for the first time.

PACS number(s): 12.38.-t, 12.15.Ji

1 Introduction

With the start of the LHC experiments, high energy particle physics entered a new era.
The LHC opens a new kinematic regime where the number of novel physical phenomena
can occur. One of the most useful tools to study hadronic interactions at high energies is
the Drell-Yan dilepton production, in which quark-antiquark annihilation form intermediate
virtual photon or Z bosons decaying to lepton pairs. This process is presently of considerable
interest from both experimental and theoretical points of view. In particular, Drell-Yan pair
production is a unique process which offers high sensitivity to the parton (quark and gluon)
distributions in a proton. It provides a major source of background to a number of processes
such as Higgs, tt̄ pair, di-boson orW ′ and Z ′ bosons production (and other processes beyond
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the SM) studied at hadron colliders. Dilepton production has a large cross section and clean
signature in the detectors and therefore it is used for monitoring of the collider luminosity and
calibration of detectors. Moreover, it is an important reference process for measurements of
electroweak boson properties at hadron colliders. Therefore it is essential to have an accurate
QCD predictions for corresponding cross sections and related kinematical distributions.

Theoretical investigations of Drell-Yan pair production have own long story. It is one of
the few processes in hadron-hadron collisions where the collinear QCD factorization has been
rigorously proven [1–4]. Within this framework, the NLO pQCD calculations of inclusive
cross sections have been performed [5–7], and later it was done on up to NNLO accuracy [8,9].
Recently fully exclusive NNLO pQCD calculations became available, including the leptonic
decay of intermediate Z boson [10–13]. The results of these calculations agree with the
Tevatron and LHC data within the theoretical and experimental uncertainties. Of course,
typically for collinear QCD factorization, perturbative calculations diverge at small dilepton
transverse momenta pT ≪M (where M is the invariant mass of produced lepton pair) with
terms proportional to lnM/pT appearing due to soft and collinear gluon emission. Therefore
special soft gluon resummation technique [14–20] should be used to make QCD predictions at
low pT . Such soft gluon resummation can be performed either in the transverse momentum
space [21] or in the Fourier conjugate impact parameter space [22]. Differences between
the two formalisms are discussed in [23]. The traditional calculations combine fixed-order
perturbation theory with analytic resummation and some matching criterion.

An alternative description can be achieved within the framework of the kT -factorization
approach of QCD [24]. This approach is based on the Balitsky-Fadin-Kuraev-Lipatov (BFKL)
[25] or Ciafaloni-Catani-Fiorani-Marchesini (CCFM) [26] equations and provides solid the-
oretical grounds for the effects of initial gluon radiation and intrinsic parton transverse
momentum kT . A detailed description and discussion of the kT -factorization formalism can
be found, for example, in reviews [27]. Here we only mention that, in contrast with the
collinear approximation of QCD, the initial gluon emissions in the kT -factorization approach
generate the finite dilepton transverse momentum pT already at Born level. Moreover, the
soft gluon resummation formulas are the result of the approximate treatment of the solutions
of CCFM equation, as it was shown in [28].

In the present note we apply the kT -factorization approach to unpolarized Drell-Yan pair
production in pp̄ and pp collisions. A non-collinear factorization theorem for this process has
been proven [29] for pT ≪ M . Below we assume it in a wide range of pT for phenomenological
purposes1. First application of kT -factorization approach to lepton pair production has
been performed in [31], where authors have considered only diagrams with virtual photon
exchange and concentrated mostly on the rather low energies covered by the RHIC and UA1
experiments. More general consideration of high energy resummation for Drell-Yan processes
was done in [32]. Our main goal is to give a systematic analysis of the Tevatron data [33–38]
and first LHC measurements [39] performed by the CMS collaboration. The consideration
is based on the O(α) and O(ααs) off-shell (depending on the non-zero transverse momenta
of incoming partons) production amplitudes where we take into account both γ∗ and Z
boson exchange. Our calculations include also leptonic decays of Z bosons with full spin
correlations. Thus we easily can produce various kinematical distribution and apply cuts,

1For discussion of the kT -factorization for high energy processes see, for example, [30].
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analogous to experimental ones. Specially we study the angular distributions of produced
lepton pair measured very recently [37] by the CDF collaboration for the first time and
investigate the different sources of theoretical uncertainties.

The outline of our paper is following. In Section 2 we recall shortly the basic formulas
of the kT -factorization approach with a brief review of calculation steps. In Section 3 we
present the numerical results of our calculations and a discussion. Section 4 contains our
conclusions.

2 Theoretical framework

There are three subprocesses which describe Drell-Yan pair production at order of O(α)
and O(ααs):

q + q̄ → γ∗/Z → l+ + l− (1)

q + g∗ → γ∗/Z + q → l+ + l− + q (2)

q + q̄ → γ∗/Z + g → l+ + l− + g (3)

The corresponding Feynman graphs are shown on the Fig. 1. Note that in the framework of
kT -factorization approach contribution from the subprocess (3) is already taken into account
by the quark-antiquark annihilation (1) due to the initial state gluon radiation. Therefore
below to avoid the double counting we consider only the subprocesses (1) and (2). It is in
a contrast with the collinear QCD factorization where contributions from the subprocesses
(1) — (3) should be taken into account separately.

Let us start from the kinematics. We denote the 4-momenta of incoming partons and
outgoing leptons by k1, k2, p1 and p2. The initial hadrons have the 4-momenta p(1) and p(2),
and the final state quark in (2) has 4-momentum p3. In the center-of-mass frame of colliding
particles we can write:

p(1) =

√
s

2
(1, 0, 0, 1), p(2) =

√
s

2
(1, 0, 0,−1) (4)

where
√
s is the total energy of the process under consideration and we neglect the masses

of the incoming protons. The initial parton four-momenta in the high energy limit can be
written as follows:

k1 = x1p
(1) + k1T , k2 = x2p

(2) + k2T , (5)

where k1T and k2T are the corresponding transverse 4-momenta. It is important that k2
1T =

−k21T 6= 0, k2
2T = −k22T 6= 0. From the conservation laws we can easily obtain the following

relations for annihilation subprocess (1):

k1T + k2T = p1T + p2T , (6)

x1
√
s = m1T e

y1 +m2T e
y2 , (7)

x2
√
s = m1T e

−y1 +m2T e
−y2 , (8)
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and the similar ones for QCD Compton subprocess (2):

k1T + k2T = p1T + p2T + p3T , (9)

x1
√
s = m1T e

y1 +m2T e
y2 +m3T e

y3 , (10)

x2
√
s = m1T e

−y1 +m2T e
−y2 +m3T e

−y3 , (11)

where p1T , p2T and p3T are the transverse momenta of produced particles, y1, y2 and y3
are their center-of-mass rapidities and m1T , m2T and m3T are the corresponding transverse
masses, i.e. m2

iT = m2
i +p2

iT . The matrix elements of (1) and (2) can be presented as follows:

Mγ
1 = ie2eq v̄s1(k2)γ

µus2(k1)
gµν
s
ūr1(p1)γ

νvr2(p2), (12)

MZ
1 = i

g2w
4 cos2 θW

v̄s1(k2)γ
µ(Cq

V − Cq
Aγ

5)us2(k1)×

×
(

gµν −
(k1 + k2)µ(k1 + k2)ν

m2
Z

)

ūr1(p1)γ
ν(Ce

V − Ce
Aγ

5)vr2(p2)

(s−m2
Z − imZΓZ)

,

(13)

Mγ
2 = −e2eqgsta ǫµ(k2)ūs1(k1)

(

γν
k̂1 + k̂2

s
γµ + γµ

−k̂2 + p̂3
(−k2 + p3)2

γν

)

us2(p3)×

× gνρ
(p1 + p2)2

ūr1(p1)γ
ρvr2(p2),

(14)

MZ
2 = − g2wgs

4 cos2 θW
taǫµ(k2)×

× ūs1(k1)

(

γν(Cq
V − Cq

Aγ
5)
k̂1 + k̂2

s
γµ + γµ

−k̂2 + p̂3
(−k2 + p3)2

γν(Cq
V − Cq

Aγ
5)

)

us2(p3)×

×
(

gρν −
(p1 + p2)ρ(p1 + p2)ν

m2
Z

)

ūr1(p1)γ
ρ(Ce

V − Ce
Aγ

5)vr2(p2)

(p1 + p2)2 −m2
Z − imZΓZ

,

(15)

where e and eq are the electron and quark (fractional) electric charges, s = (k1+k2)
2, gw and

gs are the weak and strong charges, mZ and ΓZ are the mass and full decay width of Z boson,
θW is the Weinberg mixing angle, ǫµ and a are the polarization 4-vector and eight-fold color
index of incoming off-shell gluon, CV and CA are the vector and axial constants. Here we
neglected the masses and virtualities of incoming quarks and took propagator of intermediate
Z boson in a Breit-Wigner form to avoid an artificial singularities in numerical calculations.
When we calculate the matrix elements squared, the summation over the incoming off-shell
gluon polarizations is carried out in according to the kT -factorization prescription [24]:

∑

ǫµǫ∗ ν = k
µ
2Tk

ν
2T/k

2
2T . (16)

In the collinear limit, where |k2T | → 0, this expression converges to the ordinary
∑

ǫµǫ∗ ν =
−gµν/2 after averaging on the azimuthal angle. In all other respects the evaluation follows the
standard QCD Feynman rules. The calculation of traces in (12) — (15) is straightforward
and was done using the algebraic manipulation systems form [40]. We do not list here
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the obvious expressions because of lack of space. The obtained expression for Compton
subprocess (2) coincides with the result [32].

To calculate the cross section of Drell-Yan lepton pair production, in according to the kT -
factorization theorem, one should convolute off-shell partonic cross sections with the relevant
unintegrated quark and/or gluon distributions in a proton:

σ =
∑

i,j=q, g

∫

σ̂∗

ij(x1, x2,k
2
1T ,k

2
2T ) fi(x1,k

2
1T , µ

2)fj(x2,k
2
2T , µ

2) dx1dx2 dk
2
1Tdk

2
2T , (17)

where σ̂∗

ij(x1, x2,k
2
1T ,k

2
2T ) is the off-shell partonic cross section and fi(x,k

2
T , µ

2) is the unin-
tegrated parton densities in a proton. The contributions to the total Drell-yan cross section
from quark-antiquark annihilation and QCD Compton subprocesses can be easily rewritten
as follows:

σ =
∑

q

∫

1

16π(x1x2s)2
|M̄γ, Z

1 |2×

×fq(x1,k2
1T , µ

2)fq(x2,k
2
2T , µ

2)dp2
1Tdk

2
1Tdk

2
2Tdy1dy2

dφ1

2π

dφ2

2π
,

(18)

σ =
∑

q

∫

1

256π3(x1x2s)2
|M̄γ, Z

2 |2×

×fq(x1,k2
1T , µ

2)fg(x2,k
2
2T , µ

2)dp2
1Tdp

2
2Tdk

2
1Tdk

2
2Tdy1dy2dy3

dφ1

2π

dφ2

2π

dψ1

2π

dψ2

2π
,

(19)

where φ1, φ2, ψ1 and ψ2 are the azimuthal angles of initial partons and produced leptons,
respectively. If we average these expressions over φ1 and φ2 and take the limit |k1T | → 0 and
|k2T | → 0, then we recover the corresponding formulas in the collinear QCD factorization.

Concerning the unintegrated quark and gluon densities in a proton, we apply the Kimber-
Martin-Ryskin (KMR) approach [41] to calculate them. The KMR approach is the formalism
to construct the unintegrated parton distributions from the known conventional ones. In this
approximation the unintegrated quark and gluon distributions are given by

fq(x,k
2
T , µ

2) = Tq(k
2
T , µ

2)
αs(k

2
T )

2π
×

×
1
∫

x

dz
[

Pqq(z)
x

z
q
(x

z
,k2

T

)

Θ (∆− z) + Pqg(z)
x

z
g
(x

z
,k2

T

)]

,

(20)

fg(x,k
2
T , µ

2) = Tg(k
2
T , µ

2)
αs(k

2
T )

2π
×

×
1
∫

x

dz

[

∑

q

Pgq(z)
x

z
q
(x

z
,k2

T

)

+ Pgg(z)
x

z
g
(x

z
,k2

T

)

Θ (∆− z)

]

,

(21)

where Pab(z) are the usual unregulated LO DGLAP splitting functions. The theta functions
which appears in (20) and (21) imply the angular-ordering constraint ∆ = µ/(µ + |kT |)
specifically to the last evolution step to regulate the soft gluon singularities. Numerically,
for the input we have used leading-order parton densities xq(x, µ2) and xg(x, µ2) from recent

5



MSTW’2008 set [42]. The Sudakov form factors Tq(k
2
T , µ

2) and Tg(k
2
T , µ

2) enable us to
include logarithmic loop corrections to the calculated cross sections. To take into account the
non-logarithmic loop corrections we use the approach proposed in [43]. It was demonstrated
that main part of the non-logarithmic loop corrections to the quark-antiquark annihilation
cross section (1) can be absorbed in the effective K-factor:

K = exp

[

CF
αs(µ

2)

2π
π2

]

, (22)

where color factor CF = 4/3. A particular choice µ2 = p
4/3
T M2/3 has been proposed [23, 43]

to eliminate sub-leading logarithmic terms. We choose this scale to evaluate the strong
coupling constant in (22).

The multidimensional integrations in (18) and (19) have been performed by the means of
Monte Carlo technique, using the routine vegas [44]. The full C++ code is available from
the author on request2.

3 Numerical results

We now are in a position to present our numerical results. First we describe our input
and the kinematic conditions. After we fixed the unintegrated gluon distributions, the cross
sections (18) and (19) depend on the renormalization and factorization scales µR and µF .
Numerically, we set them to be equal to µR = µF = ξM . To estimate the scale uncertainties
of our calculations we vary the parameter ξ between 1/2 and 2 about the default value ξ = 1.
Following to [45], we set mZ = 91.1876 GeV, ΓZ = 2.4952 GeV, sin2 θW = 0.23122 and use
the LO formula for the strong coupling constant αs(µ

2) with nf = 4 active quark flavors at
ΛQCD = 200 MeV, so that αs(M

2
Z) = 0.1232.

The results of our calculations are presented in Figs. 2 — 4 in comparison with the
D∅ [38], CDF [33–37] and CMS data [39]. Solid histograms are obtained by fixing both
the factorization and renormalization scales at the default value µ =M , whereas the upper
and lower dashed histograms correspond to the scale variation as it was described above.
The predicted total cross sections are listed in Table 1. One can see that the Tevatron and
LHC experimental data are reasonable well described by the kT -factorization approach in
the whole range of invariant masses. Our predictions tend to only slightly overestimate the
rapidity distribution of dilepton pair in the region of Z boson peak 66 < M < 116 GeV, but
agree with the data within the uncertainties. Specially we point out a good description of
dilepton transverse momentum distributions measured by the CDF collaboration since this
observable strongly depends on the unintegrated parton density used.

The relative contributions of quark-antiquark annihilation and QCD Compton subpro-
cesses to the Drell-Yan cross sections at the Tevatron and LHC energies are shown in Fig. 5
as a function of azimuthal angle difference between the transverse momenta of produced lep-
tons. Note that this observable is singular in the collinear QCD approximation at LO due to
back-to-back kinematics. It is in a contrast with the kT -factorization approach, where, as it

2lipatov@theory.sinp.msu.ru
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Source σ(66 < M < 116 GeV), pb σ(M > 116 GeV), pb

kT -factorization (KMR) 285± 31 3.7± 0.4

NNLO pQCD [36] 227± 9 3.3

CDF data [36] 250± 4 (stat.) ±10 (syst.) 4.0± 0.4 (stat.+syst.) ±0.2 (lumi.)

Table 1: Total cross sections of Drell-Yan pair production in pp̄ collisions at
√
s = 1800 GeV.

was mentioned above, the finite transverse momentum of dilepton pair is generated already
in LO quark-antiquark annihilation (1). We find that latter dominates at high ∆φ ∼ π for
both the Tevatron and LHC energies, whereas at ∆φ < π/2 quark-antiquark annihilation
and QCD Compton subprocesses contribute equally. Note that here we applied no cuts on
the final-state phase space.

Now we turn to more detailed analysis of angular distributions in dilepton production.
The general expression can be described by the polar θ and azimuthal φ angles of produced
particles in the dilepton rest frame. When integrated over cos θ or φ, respectively, the angular
distribution can be presented as follows:

dσ

d cos θ
∼ (1 + cos2 θ) +

1

2
A0(1− 3 cos2 θ) + A4 cos θ, (23)

dσ

dφ
∼ 1 + β3 cos φ+ β2 cos 2φ, (24)

where β3 = 3πA3/16 and β2 = A2/4. Note that the angular coefficients A0 and A2 are the
same for γ∗ or Z boson exchange, and A3 and A4 originate from the γ∗ − Z interference.
The Lam-Tung relation [46] A0 = A2 is valid for both quark-antiquark annihilation and
QCD Compton subprocesses at O(ααs) order. Higher-order QCD calculations [47, 48] as
well as QCD resummation up to all orders [49] indicate that violations of the Lam-Tung
relation are small. Very recently the CDF collaboration reported [37] the first measurement
of the angular coefficients A0, A2, A3 and A4 in the Z peak region (66 < M < 116 GeV) at√
s = 1960 GeV. Below we estimate these coefficients regarding the CDF measurements. Our

evaluation generally followed the experimental procedure. We have collected the simulated
events in the specified bins of dilepton transverse momentum, generated the decay lepton
angular distributions according to the matrix elements (12) — (15) and then applied a two-
parametric fit based on (23) and (24). The estimated values of angular coefficients in the
Collins-Soper frame are shown in Fig. 6. We find that our predictions agree well with the
CDF data as well as collinear QCD predictions listed in [37]. We would like to only remark
that the latter predict a flat behaviour of A3 in a whole pT range whereas CDF data tends
to support our predictions (slight decreasing of A3 when we move to large pT values).
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Finally, we can conclude that kT -factorization predictions in general are rather similar
to ones based on the collinear QCD factorization with the NNLO accuracy. It demonstrates
again that the kT -factorization approach at LO level automatically incorporates a large piece
of the standard (collinear) high-order corrections [27]. It is important for further studies of
small-x physics at hadron colliders, and, in particular, for searches of effects of new physics
beyond the SM at the LHC.

4 Conclusions

We have investigated unpolarized Drell-Yan lepton pair production in pp̄ and pp collisions
at the Tevatron and LHC energies within the framework of the kT -factorization approach.
Our consideration is based on the O(α) and O(ααs) off-shell production amplitudes where
γ∗ and Z boson exchange is taken into account. The calculations include leptonic decays of
Z bosons with full spin correlations and γ∗ − Z interference. The unintegrated parton den-
sities in a proton are determined by the Kimber-Martin-Ryskin prescription. We obtained a
reasonable well agreement (at a similar level as in the NNLO pQCD) between our predictions
and the available data taken by the D∅, CDF and CMS collaborations. Specially we studied
the specific angular distributions measured very recently by the CDF collaboration for the
first time.
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Figure 1: The Feynman graphs for Drell-Yan pair production at theO(α) and O(ααs) orders.
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Figure 2: The total and differential cross sections of the Drell-Yan pair production in pp̄ and
pp collisions at the Tevatron and LHC as a function of dilepton invariant mass M . The solid
histograms correspond to the results obtained with the KMR parton densities. The upper
and lower dashed histograms correspond to scale variations, as it is described in the text.
The experimental data are from D∅ [38], CDF [33, 35] and CMS [39].

0

20

40

60

80

100

0 0.5 1.0 1.5 2.0 2.5

d
σ/

d
y
 [

p
b

]

y

66 < M < 116 GeV
CDF

0

0.5

1.0

1.5

2.0

0 0.5 1.0 1.5 2.0

d
σ/

d
y
 [

p
b

]

y

M > 116 GeV
CDF

Figure 3: The differential cross sections dσ/dy of dilepton production at
√
s = 1800 TeV

compared to the CDF data [36]. Notation of all histograms is the same as in Fig. 1.
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Figure 4: The differential cross sections dσ/dpT of dilepton production at
√
s = 1800 TeV

compared to the CDF data [34]. Notation of all histograms is the same as in Fig. 1.
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