
Angewandte Mathematik und Optimierung Schriftenreihe
Applied Mathematics and Optimization Series

AMOS # 46(2016)

Anke Stieber and Armin Fügenschuh

Variants in Modeling Time Aspects for the Multiple
Traveling Salesmen Problem with Moving Targets

Herausgegeben von der
Professur für Angewandte Mathematik
Professor Dr. rer. nat. Armin Fügenschuh

Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg
Fachbereich Maschinenbau
Holstenhofweg 85
D-22043 Hamburg

Telefon: +49 (0)40 6541 3540
Fax: +49 (0)40 6541 3672

e-mail: appliedmath@hsu-hh.de
URL: http://www.hsu-hh.de/am

Angewandte Mathematik und Optimierung Schriftenreihe (AMOS), ISSN-Print 2199-1928
Angewandte Mathematik und Optimierung Schriftenreihe (AMOS), ISSN-Internet 2199-1936

Variants in Modeling Time Aspects for the Multiple
Traveling Salesmen Problem with Moving Targets

Anke Stieber · Armin Fügenschuh

Abstract The multiple traveling salesmen problem with moving targets (MT-
SPMT) is a generalization of the classical traveling salesmen problem (TSP), where
the targets (cities or objects) are moving over time. Additionally, for each target
a visibility time window is given. The task is to find routes for several salesmen
so that each target is reached exactly once within its visibility time window and
the sum of all traveled distances of all salesmen is minimal. Applications of the
described problem class can be found, e.g., in supply logistics and in the defense
sector. Such instances can be very large in the number of variables and there-
fore time consuming to solve numerically. In handling the time aspect in different
ways we present four distinct modeling approaches for the MTSPMT. First we
present a time-discrete formulation embedded in a time-expanded network. The
second model uses big-M constraints to arrange the time in a continuous way,
which leads to a quadratic programming problem. The other two models comprise
a time-relaxation approach where time-feasibility is ensured by solving a num-
ber of subprograms. For modeling of the subprograms to reintegrate time, again
two possibilities are available: time discretization and applying big-M constraints.
The solution procedure to solve the time-relaxed variants is proposed and com-
putational results for randomly generated test instances to compare all different
modeling approaches are presented. For problem instances with a fine discretiza-
tion the time-relaxed variant with continuous times is the most promising one with
respect to computational running times.

A. Stieber∗

Tel.: +49-40-6541-2755
E-mail: anke.stieber@hsu-hh.de

A. Fügenschuh∗

Tel.: +49-40-6541-3540
E-mail: fuegenschuh@hsu-hh.de

∗Helmut Schmidt University / University of the Federal Armed Forces Hamburg
Holstenhofweg 85, 22043 Hamburg, Germany

2 Stieber, Fügenschuh

Keywords dynamic traveling salesmen problem · moving targets · time-
relaxation · integer linear programming · second-order cone programming ·
modeling

1 Introduction

In the classical TSP the targets (cities, points) are static entities and only one
salesman is considered to traverse each target exactly once. A static TSP dataset
consists of a certain number of targets and no targets are added or removed when
processing, i.e., when the salesman traverses the cities. The location of all cities
are fixed and there is no time aspect regarding the traversal of the dataset.

The multiple traveling salesmen problem with moving targets (MTSPMT)
deals with the case that cities or targets are assigned to several salesmen. There is
a visibility time window for each target, which defines the time when the target is
added and the time when the target is removed again. In addition, the targets are
not fixed, instead they vary their respective local positions over time, meaning the
targets are moving on certain trajectories with a certain variable speed function.
All salesmen start their tour from an initial depot. Each target must be visited
once by exactly one salesman within its visibility time window. The objective is
to minimize the total traveled distances of all salesmen. If we consider only one
salesman and all cities are fixed and visible over the whole time horizon, we obtain
the classical traveling salesman problem, which is NP-hard, see Garey and John-
son [6]. Thus, the MTSPMT as a generalization of the classical TSP is NP-hard,
too.

The MTSPMT as a dynamical generalization of the TSP is more suitable to a
wide range of real-world problems. A possible application of the MTSPMT can be
found in the defense sector. An area, e.g., an airport or a military base, must be
protected from incoming rocket, artillery or mortar fire (RAM). With a battery of
laser guns deployed over or near the protected area the decision has to be made,
which available laser to select for the countermeasure. Here, laser guns correspond
to the salesmen and the incoming fire are the targets, where each target has a
certain visibility time window and its local position is changing over time. In fact,
this application is an online optimization problem, but it can be solved ‘offline”
with a moving horizon approach. For a detailed description of the application we
refer to Stieber et al. [18].

Helvig et al. [8] adressed the Moving-Target TSP, which is the MTSPMT re-
stricted to one salesman. As possible applications they mention a supply ship, that
resupplies patrolling boats or an airplane that must intercept a number of mobile
ground units. They also addressed the Multi-Pursuer Moving-Target TSP with
Resupply, where multiple pursuer are considered and each pursuer must return to
the origin for resupply after intercepting each target.

Many practical application such as routing and scheduling of vehicles have a
dynamic component inherent. The time aspect is considered in traversing from
customer to customer (or target to target). A related formulation can be found in
the Stochastic Vehicle Routing Problem (SVRP) described by Gendreau et al. [7],
where some problem characteristics are stochastic. As an example which is related
to our problem see the m-TSP with Stochastic Travel Times (m-TSPST). This
problem considers m vehicles to serve a number of customers. In this variant the

Modelling Time Aspects for MTSPMT 3

length of the arcs vary, that means travel times between nodes are time dependent,
e.g., due to congestions on roads. Often the vehicles are associated with basic costs
in order to minimize the number of used vehicles in the solution.

We want to investigate the time aspect of the MTSPMT. One way of modeling
is the use of discrete time steps and embedding a multi-commodity flow problem
in a time-expanded network. In case the precision and therefore the number of
used time steps is increased, the size (measured in number of variables and con-
straints) of those problem instances can grow dramatically. We want to tackle this
difficulty by presenting different modeling formulations regarding the time aspect.
Instead of applying discrete time steps we introduce continuous time variables and
solve instances by means of second-order cone programming (SOCP), see Lobo et
al. [14] for an overview on SOCP. Another variant is to relax the time aspect
completely, solve the resulting small problem and construct a time-feasible solu-
tion from it by introducing only parts of the time-discrete restrictions. Not every
time-relaxed solution can result in a time-feasible solution. To this end, nearly
all time-relaxed solutions have to be exploited. Therefor we embed the solution
and construction procedure into a branch-and-bound framework to find a global
optimal time-feasible solution. Instead of basing the construction process on the
time discretization we are also able to use continuous time variables, which gives
us the last modeling variant.

To test and compare all variants we used randomly generated problem instances
with varying numbers of targets and salesmen. Computational tests with different
discretization precisions are conducted.

The remainder of this article is organized as follows. In Section 2 we provide a
survey of the relevant literature. Two model variants which incorporate the time
as a discrete and a continuous concept are presented in Section 3. The relaxation
of time and its solution method is addressed in Section 4 and 5. Computational
results are presented in Section 6 and afterwards we conclude.

2 Literature

Our contribution addresses a generalization of the classical traveling salesman
problem (TSP) by considering more than one salesman and moving targets with
time windows. For a survey on the classical TSP we refer to Lawler et al. [12] or
Reinelt [17].

There are a number of articles in the literature that concern dynamical TSP
generalizations. However, representative articles often relate to TSP generaliza-
tions with a number of problem restrictions. For example the traveling salesman
problem with moving targets (TSPMT) and several variants of this problem are
addressed in Helvig et al. [8,9]. Restrictions are made for target speed, geometric
behavior of the system and problem size (only few targets), thus the proposed
algorithms are not applicable to the general case of TSPMT. Variants of TSPMT
and TSPMT with resupply, where salesmen must return to the origin after in-
tercepting a target are also addressed by Jiang et al. [10], Jindal et al. [11] and
Liu [13].

Another application is described by Menezes et al. [15]. Several customers
(people, objects or vehicles) move through a system, where each customer may
have multiple demands for a resource while traveling. Mobile servers meet the

4 Stieber, Fügenschuh

demand and provide for the customers. The authors assume that the customers are
moving on structured paths through the system. One mobile server can intercept
the customers multiple times to provide for their demand. Here the objective is
not serving all points and minimizing the total traveled distance, but to maximize
utility or profit. Examples of such a system might be people waiting in a line
in a theme park or at an attraction. The authors do not solve practical problem
instances, but structure and analyze the problem and answer the question how
long should the server stay at any one location.

Some articles address the dynamic traveling salesman problem, which is very
similar to our problem description. Here, locations of targets change over time and
targets may be added or deleted, but generally only one salesman is considered.
Problem instances were mainly solved by heuristics as an online approach like
Ahrens did in [1]. He created dynamic TSP instances by using static TSP datasets
from a published and standardized library. Time is integrated in a way that the
movement from one target to another can be done in one time step and the tar-
gets localized in the 2-dimensional space move at each time step. This movement
is modeled by a Gaussian-distributed random distance that is added to the static
points from the original dataset in each time step. The author examined the ap-
plicability of standard (static) TSP solvers to dynamic instances. Computational
experiments were carried out with the Tour Construction Framework which com-
bines global and local heuristics and the TSP tour construction heuristic “nearest
neighbor”.

In contrast to most of the mentioned articles we address the MTSPMT, a TSP
with several salesmen and moving targets with a visibility time interval corre-
sponding to adding and removing targets. In this research we concentrate on an
offline approach for solving MTSPMT instances to global optimality. In real-world
online applications this can be used by applying a moving horizon approach. Since
the time inherent in the dynamic variants of the TSP makes instances difficult
in managing, we examine different ways of how to model time in these problems.
Furthermore exact solution methods with regard to the different model variants
are discussed.

3 Two Mathematical Models

Here, we introduce some basic notation to formulate the MTSPMT as an optimiza-
tion problem. Let W = {1, . . . , w} be a set of salesmen. All salesmen start their
respective tour at the same location h. We assume a finite time horizon [0, T]. Let
V = {1, . . . , n} be a set of nodes (targets, cities or customers) and A ⊆ V × V be a
set of arcs (roads). The length of an arc depends on the time the arc is traversed
and varies over time, since the nodes are moving. Thus, the distance for salesman
k traveling from node i to node j starting at time s in i and arriving at time t

in j is given by the function ci,j,k : [0, T] × [0, T] → R+ ∪ {∞}. Each target i ∈ V
is assigned a time window [tSi , t

E
i]. Since the targets are only visible within this

certain time window we have ci,j,k(s, t) = ∞ if s or t is outside this window. A
maximum speed value vmax is assigned to the salesmen, that is the fastest speed
at which they can traverse an arc in the underlying network. The goal is to reach
each target from V by exactly one salesman from W such that the sum of all
traveled distances of all salesmen is minimal.

Modelling Time Aspects for MTSPMT 5

3.1 Time-Discrete Model

We have already addressed the time-discrete mixed-integer linear programming
(MILP) formulation in [18]. For the convenience of the reader it is presented here
in a concise way. We put a multi-commodity flow formulation in a time-expanded
network. For an explanation of time-expanded networks see Ford and Fulkerson [4].
Therefor, we introduce a discretization of time. Let m be an integer number. The
step size is defined by ∆ := T/m. Then the set of all time steps is denoted by
T := {0, . . . ,m}. Regarding different time steps, we have to take into account
different arcs between any pair of nodes i and j. ATD ⊆ (V × T)× (V × T) is the
set of arcs, where an arc (i, s, j, t) ∈ ATD now depends on the departure time s

and arrival time t, when traveling from node i to j. For each salesman the arrival
time at any node in V is equal to the departure time in the same node, since the
waiting time is included in the traveling time, thus, salesmen do not necessarily
use their maximum speed. Having discrete points of time p, q ∈ T we are able to
evaluate the distance function c for arcs at these points cp,qi,j,k := ci,j,k(p, q).

We introduce a family of binary decision variables xp,qi,j,k ∈ {0, 1}. Here, xp,qi,j,k =
1 represents the decision of sending salesman k from i to j, departing at time step
p in i and arriving in j at time step q.

The objective function is to minimize the total traveled distances of all sales-
men: ∑

k∈W

∑

(i,p,j,q)∈ATD

cp,qi,j,kx
p,q
i,j,k → min . (1)

The demand constraint requires, that each node j must be visited once by exactly
one salesman: ∑

k∈W

∑

i∈V

∑

(p,q):(i,p,j,q)∈ATD

xp,qi,j,k = 1, ∀ j ∈ V. (2)

Each salesman k can do at most one trip at any time step p:
∑

(i,p,j,q)∈ATD

xp,qi,j,k ≤ 1, ∀ k ∈ W, p ∈ T . (3)

The following flow conservation constraints ensure the feasibility of time, where
each node j at which salesman k ends his tour can be regarded as the sink of the
flow:

∑

(i,p):(i,p,j,q)∈ATD

xp,qi,j,k ≥
∑

(i,p):(j,q,i,p)∈ATD

xq,pj,i,k, ∀ j ∈ V, q ∈ T , k ∈ W. (4)

Summing up, we solve the following optimization problem:

min{(1) | (2), (3), (4), x ∈ {0, 1}A
TD×W}. (5)

The presented model (5) is not restricted to special shapes of target trajecto-
ries. It can handle any trajectory. Likewise, there is no need to restrict the speed
function of the targets, the model is able to deal with varying target speeds. A
serious drawback of this model is the use of a time discretization. In case there is
a need for a far better accuracy, the level of discretization has to be increased, re-
sulting in more time steps per target. Thus, the number of arcs grows and thereby
the number of variables and constraints of the model, which leads to a higher
computational burden.

6 Stieber, Fügenschuh

3.2 Time-Continuous Model

Another way of modeling the time aspect in the MTSPMT is to apply the big-M
method (Miller-Tucker-Zemlin [16] constraints) instead of embedding the multi-
commodity flow structure in a time-expanded network. In this case the time is
modeled by continuous time variables and time restriction constraints.

We introduce a family of binary decision variables xi,j,k ∈ {0, 1}, where xi,j,k =
1 represents the decision of sending salesman k from i to j (independent of the
time). Additionally, time-continuous variables ti,k ∈ R are defined to describe the
arrival time of salesman k in node i. Now, we are able to formulate the continuous
model.

The objective function is to minimize the total traveled distances of all sales-
men: ∑

k∈W

∑

(i,j)∈A
ci,j,k(ti,k, tj,k)xi,j,k → min . (6)

Each node j must be visited once by exactly one salesman:

∑

k∈W

∑

i:(i,j)∈A
xi,j,k = 1, ∀ j ∈ V. (7)

Each salesman k can do at most one trip:

∑

j:(h,j)∈A
xh,j,k ≤ 1, ∀ k ∈ W. (8)

The following constraints ensure flow conservation:

∑

(i):(i,j)∈A
xi,j,k ≥

∑

(i):(j,i)∈A
xj,i,k, ∀ j ∈ V, k ∈ W. (9)

The Miller-Tucker-Zemlin constraints guarantee time-feasibility, that means, if
salesman k goes from i to j and arrives at ti,k in i, he cannot be earlier in j

than ti,k plus the time he needs to travel from the position of i at ti,k to the posi-
tion of j at tj,k when using maximum speed. The time horizon T is the so called
big-M constant in the following big-M constraints

ti,k +
ci,j,k(ti,k, tj,k)

vmax
≤ tj,k + T ·

(
1− xi,j,k

)
, ∀ (i, j) ∈ A, k ∈ W. (10)

For the visibility time windows, the time variables have to satisfy the following
bounds:

tSj ≤ tj,k ≤ tEj , ∀ j ∈ V, k ∈ W. (11)

Summarized, we aim to solve the following optimization problem:

min{(6) | (7), (8), (9), (10), (11), x ∈ {0, 1}A×W , t ∈ RV×W}. (12)

The presented time-continuous formulation of the MTSPMT is based on an
arbitrary nonlinear continuous function ci,j,k for the distance between two distinct
nodes. In order to apply a standard MILP solver such as IBM ILOG CPLEX or
Gurobi, we have to restrict the movement of the targets. To this end, we assume the
trajectories to be straight lines and the speed of each target to be constant. Here,

Modelling Time Aspects for MTSPMT 7

we use the same constant speed for all targets. Then ci,j,k represents the Euclidean
distance between two points on a straight line. With this, the above presented
optimization problem (12) can be handled as a second order cone program (SOCP).
To solve instances based on formulation (12) with a standard MILP solver, the
model has to be adjusted to the rules of the respective solver to formulate SOCPs
(e.g., by introducing auxiliary variables for CPLEX). The constraints (10) define
the cones and make the set of feasible solutions to be convex.

Following the above given assumptions also for formulation (5) it turned out,
that the time-continuous formulation has a major advantage. It does not concen-
trate on discrete time steps, thus, a salesman is able to reach a moving node at any
possible point of its trajectory. In all cases, the precision of the optimal solution
of (12) is equal or better than the optimal solution of (5). The objective function
value of (12) serves as a lower bound for the objective function value of (5) under
the given trajectory assumptions. However, model formulations based on big-M
constraints usually have a weak linear programming relaxation and thus, more
nodes have to be examined, which slows down the solution process [2].

4 Time-Relaxation

Assume we raise the number of time steps m to a fine discretization for the time-
discrete model, the resulting MILPs get extremely large and standard MILP solvers
do not find an optimal solution in reasonably short time. In the following we use
a method to tackle such problems by relaxing the time aspect in the model. This
technique was first introduced by Fügenschuh et al. [5]. They successfully applied
the method for scheduling and routing a small number of planes for fly-in safaris.

First of all, we perform a projection of (5) from the time-discrete variable
space ATD ×W to A ×W (i.e. from (V × T) × (V × T) ×W to V × V ×W). The
time-free counterpart of variables xp,qi,j,k is simply xi,j,k. The distance coefficients
ci,j,k are formed by minimizing the distance over all time-expanded arcs from i

to j, ci,j,k = min{cp,qi,j,k | p, q ∈ T }. With this, we have the following model in the
time-free space:

min
∑

k∈W

∑

(i,j)∈A
ci,j,kxi,j,k (13)

s.t.
∑

k∈W

∑

i:(i,j)∈A
xi,j,k = 1, ∀ j ∈ V

∑

j:(h,j)∈A
xh,j,k ≤ 1, ∀ k ∈ W

∑

i:(i,j)∈A
xi,j,k −

∑

i:(j,i)∈A
xj,i,k ≥ 0, ∀ j ∈ V, k ∈ W.

This is a classical multi-commodity flow problem, which is easy to solve by stan-
dard MILP solvers. The optimal solution of the time-relaxed (or time-free) model (13)
serves as a lower bound to (5), because the distance coefficients are computed as the
minimum over all arc distances between two nodes. However, the reconstruction
of a time-feasible solution from a time-free solution is not straightforward and not

8 Stieber, Fügenschuh

every time-free solution yields in a time-feasible solution. For this purpose we have
to run through nearly every time-free solution and try to create time-feasibility.
We embed this construction within a branch-and-bound framework.

In the branch-and-bound framework the time-free model (13) serves as the
master problem. Given an optimal solution of the master problem, feasible times
at which salesmen reach the nodes, have to be constructed from it. In case the
objective function value of the constructed time-feasible solution is equal to the
objective function value of the time-free solution, we are done and the constructed
solution is proven global optimal for (5). However, this rarely happens. Therefore,
the master problem is embedded in a branch-and-bound framework in order to
obtain all possible time-free solutions. That means the master problem is treated
as infeasible. For any of the time-free solutions, we try to construct a feasible
counterpart with respect to the time constraints. If the time-feasible solution has
the best objective function value found so far, it is stored. The time-free solution
is then cut off in the branch-and-bound process. This can additionally be done for
all salesmen permutations in order to prevent a repetition due to symmetries. If
for a given time-free solution no time-feasible solution exists, we have to cut off
the time-free solution as well. This method is realized by using the callback func-
tionality of CPLEX. Analyzing the time-free solution before trying to construct
time-feasibility leads to a speed up in processing. For this we refer to the Section 5.
For now, we want to concentrate on the construction of a time-feasible solution
from a time-free solution.

A tour in a time-free solution may be not connected, thus we call it a pretour.
Assume we have a time-free solution, which is given through a bunch of pretours
(not more than the number of salesmen). Then, a salesman is called active, if
and only if there is an arc (i, j) ∈ A where the corresponding binary decision
variable is nonzero in the given time-free solution. Pretours for all active salesmen
are extracted from the solution. For each of these pretours a time-feasible tour is
required.

4.1 Discrete time-feasibility checking

For a given time-free solution we construct a time-feasible solution by setting up a
checking sub-MILP for each of the time-free salesman tours. The sub-MILP makes
use of formulation (5) restricted to those arcs that correspond to binary variables,
that are nonzero in the given time-free solution. It has to be checked for each
salesman if a feasible tour exists that can be projected to the corresponding part
of the time-free solution. If the checking MILP results in a feasible tour for all
salesmen a total time-feasible tour is found.

The time-feasibility checking MILP is set up as a minimum flow problem from
a source to a sink. For salesman s we are able to extract the sequence of targets
s has to visit from the binary variables x in the time-free solution. Let us assume
ns is the number of targets s has to intercept and (v1, v2, . . . , vns) is the sequence
extracted from the x variables of the time-free solution. Additionally home position
h is considered as the source and we extend our network by a node t, which serves
as the sink. Thus, Vs = {h, v1, v2, . . . , vns , t} denotes the sequence of targets for
the flow.

Modelling Time Aspects for MTSPMT 9

From the set of all time-expanded arcs we now have to consider only those arcs
where the corresponding x variable is non-zero in the time-free incumbent. That
means, the set of arcs our checking MILP is based on, consists of all time-discrete
arcs departing from home position h and arriving in v1, from v1 to v2 and so on,
until from vns−1 to vns . Additionally, we have to introduce artificial time-discrete
arcs from vns to sink t. That means, for each arc, that arrives in vns an arc is
introduced departing at the time it arrived in vns and arriving in t one time step
later than the latest possible arrival time of s in vns . The distance of all arcs
between vns and t is zero. We denote the set of all arcs by As.

According to the time-discrete model, we introduce binary decision variables
xp,qi,succ(i) describing the decision of sending salesman s from target i to its successor

succ(i) starting at time step p and arriving at time step q. The corresponding
predecessor of i is denoted by pred(i). Then, the time-feasibility checking MILP
for salesman s is formulated as follows:

min
∑

(i,p,succ(i),q)∈As

cp,qi,succ(i),sx
p,q
i,succ(i), (14)

s.t.
∑

p:(pred(j),p,j,q)∈As

xp,qpred(j),j =

−1, if j = h,

1, if j = t,
∑

p:(j,q,succ(j),p)∈As x
q,p
j,succ(j), otherwise.

The optimization problem (14) aims to find the shortest flow from h to t. This
kind of optimization problem can be solved in polynomial time by, e.g., Dijkstra’s
algorithm [3]. In case the checking MILP (14) results in a feasible tour for each
salesman, we are able to construct a time-feasible solution for (5) by combining
all salesman tours. If any of the salesman solutions is infeasible the construction
process is aborted.

4.2 Continuous time-feasibility checking

According to our time-continuous model (12), there is another possibility to for-
mulate the feasibility checking sub-MILP. In case the trajectories of all targets
are straight lines with constant speed, the checking MILP can be modeled as a
quadratic program without discrete time steps:

min ch,v1
(th, t1) xth,t1h,v1

+

vns−1∑

i=v1

c
ti,tsucc(i)

i,succ(i) x
ti,tsucc(i)
i,succ(i) , (15)

s.t. c
ti,tsucc(i)

i,succ(i) ≤ vmax · (tsucc(i) − ti), ∀ i = h, v1, . . . , vns ,

tSi ≤ ti ≤ tEi , ∀ i = 1, . . . , ns.

Here, ci,j(ti, tj) again denotes the Euclidean distance between position of node i
at time step ti and node j at time step tj . In the objective function all traveled
distances are summed up, while in the restriction time-feasibility is checked. That
means, the travel time s needs to go from i to succ(i) has to be at least that high,
that the used speed of traveling is at most vmax, the maximum speed. The bounds
restriction ensures that each node is reached within its specified visibility window.

10 Stieber, Fügenschuh

5 Implementational Details

To solve the time-free problem and to construct feasible times for the salesman
tours, we embed the time-relaxed problem (13) within a branch-and-bound frame-
work. The model (13) is called master problem. To check the solutions of the master
problem and to produce the best time-feasible solution we used the callback utili-
ties of CPLEX. We implemented an instance of the LazyConstraintCallback and
an instance of the BranchCallback.

Each time a candidate feasible solution of the master problem is found at a
node in the branch-and-bound tree CPLEX’ LazyConstraintCallback is invoked.
This is a user written callback to solve mixed-integer linear programs (MILP)
while applying constraints in a “lazy” fashion, i.e., only when they are violated.

The LazyConstraintCallback performs a checking of the candidate feasible so-
lution (master problem) and a possible construction of the feasible times according
to (14) and (15). Algorithm 1 presents an overview of the callback. A more detailed
description of single steps is given in the following.

In line 2-3 of the algorithm the branching rule is given. If the lower bound
at a node is greater or equal to the best found objective function value of an
incumbent, we will exit this callback and prune the current node. This is done by
CPLEX’ BranchCallback, which is invoked afterwards. Besides pruning subtrees
the BranchCallback performs branching the same way CPLEX is suggesting it.

Since (13) is a multi-commodity flow formulation, any solution presents a fea-
sible flow but not necessarily a feasible salesman tour due to the lack of subtour
elimination constraints. In line 4-6 of Algorithm 1 we extract the solution for every
salesman and test whether one of these candidate tours contains a cycle. If a cycle
C ⊂ A is found, it will be cut off by the following constraints:

∑

(i,j)∈C
xi,j,k ≤ |C| − 1, ∀k ∈ W. (16)

Before setting up a MILP to solve the time-feasibility checking, we are able
to exploit the visibility windows of the sequential targets of a candidate salesman
tour to get information about time-feasibility. In line 7-9 a prechecking on time-
feasibility is performed by means of interval propagation. To check the tour of
an active salesman we start at the first node of this tour. It can be reached over
the whole visibility window from the salesman home position. Then, the visibility
window defines the departure interval to travel to the second node. This has to be
adjusted to the arrival interval of the second node, which is related to the visibility
window of the second node. This procedure is visualized in an example shown in
Figure 1. Here, the arrival interval of node v1 is the discrete interval [2, 5]. This
interval reduces to the departure interval [2, 3] because with a later departure the
salesman cannot reach the following node v2 within its visibility window of [0, 4].
Then, the corresponding arrival interval of v2 is [3, 4]. The departure interval of
v2 has to be within or equal to [3, 4]. It has to be checked with the visibility
window of the next node and so on. In case there is an infeasible interval, we have
the information that the corresponding salesman tour is time-infeasible. Thus, the
solution can be rejected. This is done by adding a global cut to the master problem.

Modelling Time Aspects for MTSPMT 11

Algorithm 1: CPLEX LazyConstraintCallback: Check time-free solution and
if exists construct solution with times.
Data: Time-relaxed x variables, best objective function value found so far

best obj val

Result: If exists time-feasible tours for all salesmen
1 #Exploit bounds

2 if current objective function value curr obj val ≥ best obj val then
3 return;

4 #Cycle detection

5 if x solution of an active salesman s contains a cycle then

6 add cut for all salesmen;
7 return;

8 #Time-feasibility checking by interval propagation

9 if x solution of an active salesman s can be identified as time infeasible then

10 add global cut for all salesmen;
11 return;

12 #Checking

13 initialize current solution curr sol← ∅;
14 initialize all salesmen feasible← true;
15 initialize objective function value for time-feasible solution tour val← 0;
16 for each s ∈ W do

17 if s is not active then

18 continue;

19 if all salesmen feasible 6= true then

20 break;

21 if time-free x solution part for s is already in solution pool then

22 get time-feasible solution tour t for s;
23 if t is infeasible then

24 all salesmen feasible← false;

25 else

26 set up MILP to compute time-feasible tour t for s;
27 solve MILP;
28 if MILP is infeasible then

29 all salesmen feasible← false;
30 add cut to cut off this x solution part for all salesmen;

31 else

32 #t is valid tour of s;
33 tour val← add objective function value of t;
34 curr sol = curr sol ∪ t;
35 add time-free x solution of s and t to solution pool;

36 if all salesmen feasible = true then

37 add cut to prevent solution to be repeated by other salesmen;
38 if tour val < best obj val then

39 best obj val = tour val;
40 save curr sol;
41 return;

12 Stieber, Fügenschuh

h

2

3

4

5

0

1

2

3

4v1

v2

discrete
arrival
interval

Fig. 1 Interval propagation. This figure presents the home position h of all salesman and
a given salesman tour consisting of the sequence h, v1, v2. Each target is visualized by its
trajectory and the corresponding discrete time steps, which are given by numbers.

Therefore, consider an infeasible sequence of arcs P ⊂ A from node r to node s, we
can formulate the following constraints for each salesman to cut off this solution:

∑

(i,j)∈P
xi,j,k ≤ |P| − 1, ∀k ∈ W. (17)

For a pair of anti-parallel arcs (i, j) and (j, i) we have

xi,j,k + xj,i,k ≤ 1, ∀k ∈ W. (18)

Thus, lifting |P |−1 backward arcs into the cut extends the applied constraints to:

∑

(i,j)∈P
xi,j,k +

∑

(i,j)∈P\(pred(s),s)
xj,i,k ≤ |P| − 1, ∀k ∈ W. (19)

Interval propagation for the time-feasibility checking with continuous times is
done in a similar way. In general the resulting arrival interval is slightly larger,
see Figure 2, due to an exact calculation of the travel time. The travel time is
not rounded to the next time step, its exact value is computed from the maximum
salesman speed and the Euclidean distance between the corresponding positions of
the targets. With this a salesman is able to arrive earlier and to depart later com-
pared to the time-discrete case. Computation of the exact departure and arrival
interval consists of identifying the values tdepmin, t

dep
max, t

arr
min and tarrmax, as visualized in

Figure 2. As an initialization we take the whole visibility window [tS , tE] as the de-
parture interval and therefore compute the possible arrival interval for the arrival
node. Since only a constant maximum speed is considered we take the equation of
motion to compute tarrmin, which has to be within its visibility window:

vmax · (tarrmin − tS) =
∥∥parr − pdep

∥∥
2
, (20)

where parr and pdep are the positions of the nodes at the times tarrmin and tS

respectively. Since the right hand side of the motion equation is also depended on

Modelling Time Aspects for MTSPMT 13

h

2

3

4

5

0

1

2

3

4v1

v2

discrete
arrival
interval

continuous
arrival
interval

tdepmin

tdepmax
tarrmin

tarrmax

Fig. 2 Interval propagation. Visualized is the discrete departure and arrival interval between
consecutive nodes and the extended departure and arrival interval between consecutive nodes
when continuous times are considered. This figure presents the home position h of all salesman
and a given salesman tour consisting of the sequence h, v1, v2. Each target is visualized by
its trajectory and the corresponding discrete time steps, which are given by numbers. The

variables tdepmin and tdepmax define the exact departure interval and tarrmin and tarrmax define the
exact arrival interval.

tarrmin we have to square both sides and replace parr and pdep by their trajectory
descriptions. This leads to a quadratic equation and tarrmin can be obtained. tarrmax

is set to tE of the arrival node, because waiting is permitted for salesman s.

The next step is to calculate the right departure interval based on the recently
computed arrival interval in the same way. For the next pair of consecutive nodes
an intersection of the departure interval and the arrival interval of the former pair
has to be taken. In case an empty intersection has been detected the salesman
tour is time-infeasible.

As mentioned earlier CPLEX’ BranchCallback is responsible for pruning nodes
or subtrees. The decision on which variable branching is performed adheres to
CPLEX, but the BranchCallback supports a way to give information to the new
generated nodes. We use this technique to give an adjusted set of arcs to the
new nodes. This set is then further adjusted according to CPLEX’ branching
strategy. That means when branching is performed we get new information about
the solution in this subtree in the case the branch variable is set to 1. In the other
case, where the branch variable is set to 0 there is no additional information.
More precisely, assume the branch variable that is set to 1 puts node w after
node v for salesman s. Then, we have the information that all existing time-
expanded arcs {(i, p, w, q) ∈ ATD | i ∈ V \{v}} that end in w can be removed for the
solution procedure of the current node being processed. This information is passed
down in the branch-and-bound tree and further adjusted in the corresponding
subtree at nodes with branch variables, which are set to 1. Based on the local and
adjusted set of time-expanded arcs, we can recompute the distance coefficients
ci,j,k for the time-relaxed model (13). In case the distance coefficients change,
we introduce a new constraint to tighten the time-free model. This gives us an
extended solution procedure. Additionally, time-feasibility checking by interval

14 Stieber, Fügenschuh

Table 1 Instance settings.

salesmen
targets 1 2 3 4 6

4 × × - × -
6 × × × - ×
8 × × - × -

propagation can be performed on the local time-expanded set of arcs after global
time-feasibility checking. In case of time-infeasibility a local cut is added to the
current subtree. In any other case a time-feasible solution can be obtained because
of valid departure and arrival time intervals. This solution is then calculated by
setting up and solving the checking MILP.

Finally, when a time-feasible solution is found there is a time-feasible tour for
each active salesman. This solution has to be returned manually to the master
problem and to the best solution found so far. Infeasible solutions are cut off by
lazy constraints.

Summing up, we have the time-discrete model (5) (TD for short), the time-
continuous model (12) (TC), the time-free model (13) with time-discrete feasibility
checking (14) according to Algorithm 1 (TF-TD), the time-free model (13) with
time-continuous feasibility checking (15) according to Algorithm 1 (TF-TC) and
the time-free model (13) with discrete time-feasibility checking according to Algo-
rithm 1 extended by local information (TF-TDloc).

6 Computational Results

We applied our methods described above to a set of randomly generated test in-
stances. A test instance is generated by specifying the number of salesmen and the
number of moving targets. For each of those pairs we created 25 instances, where
the trajectory generation with more targets are based on the trajectories for fewer
targets. That means an instance with 6 targets contains the same 4 trajectories as
in the instance with 4 targets (plus 2 new ones). We generated our test instances
and checked afterwards if they are really solvable by a primitive check. This check
was simply a test if the number of targets is divisible by the number of sales-
men without remainder. The positive outcome provided an allocation of targets to
salesmen. With the allocation we tested if each salesman can intercept its part of
the targets one after another in the middle of the respective trajectories. If it is not
possible our trajectory generation is repeated. Due to this checking procedure, the
target and salesmen pairs we used can be found in Table 1. The operating space
is a square of size 500 length units. Due to reasons of visualization the trajectories
of the targets are generated to have random lengths between 100 and 400 length
units. The targets are assumed to have a constant traveling speed of 16 length
units per time step. That leads to the normal or single (1) precision of time steps.
The instances are then expanded by a higher discretization of time steps. We used
a double (2) and a fourfold (4) precision for our tests. More precisely for two con-
secutive time steps we introduced a new one in the middle for double precision.
Taking double precision and again introducing new time steps in the middle of
two consecutive time steps leads to fourfold precision.

Modelling Time Aspects for MTSPMT 15

Table 2 CPLEX parameter settings.

model CPLEX parameter parameter value

TD EpGap 0.0
MIPEmphasis 3

TC EpGap 0.0
MIPEmphasis 3
BarQCPEpComp 1e-8

TF-TD EpGap 0.0
MIPEmphasis 3
HeurFreq -1

TF-TD subMILP1 EpGap 0.0
TF-TC EpGap 0.0

MIPEmphasis 3
HeurFreq -1

TF-TC subMILP EpGap 0.0
BarQCPEpComp 1e-8

The salesmen have a maximum traveling speed of 200 length units per time
step. Their actual traveling speed can be any value less or equal to the maximum
speed in order to permit waiting. In all instances salesmen start their tours at the
“home position”, an initial position in the center of the operating space.

Our proposed methods are not restricted to the two dimensional space. They
can also be applied to the n-dimensional space, n ∈ N. Furthermore our time-
discrete models are not restricted to linear trajectories, it is also possible to handle
non-linear trajectories. In order to compare all models with each other we only
used linear trajectories and a constant traveling speed of the targets.

The time-expanded model (5) was solved with the MILP solver CPLEX using
a start heuristic described in [18]. The CPLEX parameters we used are listed in
Table 2 all other parameters were used with their default values.

The time-continuous model (12) could be implemented in CPLEX as a second
order cone program due to the assumption of linear trajectories and constant
speed of the moving targets. In this case it is a convex optimization problem with
constraints that formulate second order cones. We also used CPLEX to solve such
problems. We set the parameter for the convergence tolerance for quadratically
constrained problems (BarQCPEpComp) to 1e-8. All parameters we set differently
from their default values can be extracted from Table 2.

The time-relaxed models were also solved by CPLEX. We turned off the pa-
rameter for the node heuristic (HeurFreq) in order to save running time. The node
heuristics would permanently check time free solutions that are usually infeasible
and furthermore these solutions would arise repeatedly. For TF-TC we used the
same convergence tolerance parameter (BarQCPEpComp) as in its counterpart
with time. We refer to Table 2 for the complete list of applied CPLEX parame-
ters. To compare computational running times of all five models we aggregated the
running times of each test set by using the geometric mean of the 25 instances in
each test set. The values are given in Table 3. The first three columns specify the
test set, where the first column (nbt) denotes the number of targets, the second
column (nbs) denotes the number of salesmen and the third column describes the
precision of the time steps. Column 4 to 8 contain the geometric means of the
computational running times of the proposed five models. The missing values in
the last row result from a computer memory that was not sufficient for solving

16 Stieber, Fügenschuh

Table 3 Geometric mean of the running times of all proposed models.

instance
nbt nbs precision TD TC TF-TD TF-TC TF-TDloc

4 1 1 0.2665 0.0963 0.0472 0.0457 0.0473
4 1 2 8.9292 0.0963 0.0761 0.0457 0.0767
4 1 4 89.9859 0.0963 0.1871 0.0457 0.1939
4 2 1 2.1852 0.1371 0.0553 0.0601 0.0549
4 2 2 40.0755 0.1371 0.0894 0.0601 0.0899
4 2 4 170.9560 0.1371 0.2143 0.0601 0.2195
4 4 1 6.6612 0.3301 0.0934 0.0692 0.0936
4 4 2 68.2254 0.3301 0.1975 0.0692 0.1989
4 4 4 269.6514 0.3301 0.5855 0.0692 0.5905
6 1 1 1.5033 0.1917 0.3848 0.2720 0.4007
6 1 2 41.9211 0.1917 1.0185 0.2720 1.0822
6 1 4 563.2793 0.1917 3.4645 0.2720 3.6497
6 2 1 16.3594 0.9682 0.6293 0.4074 0.6743
6 2 2 147.5708 0.9682 1.5951 0.4074 1.7370
6 2 4 738.3345 0.9682 5.3395 0.4074 5.8295
6 3 1 29.9652 3.1040 0.8601 0.3496 0.9173
6 3 2 177.8745 3.1040 2.1990 0.3496 2.3505
6 3 4 675.9556 3.1040 7.2594 0.3496 7.7560
6 6 1 75.3395 59.9248 10.2121 3.2947 10.2333
6 6 2 308.3957 59.9248 20.7388 3.2947 20.8952
6 6 4 1197.5080 59.9248 59.3193 3.2947 59.8541
8 1 1 3.6934 0.6386 3.0288 1.9126 3.3066
8 1 2 116.3597 0.6386 9.2450 1.9126 10.2484
8 1 4 1460.2306 0.6386 32.2851 1.9126 36.0268
8 2 1 56.5407 23.8182 8.9582 3.5514 9.9173
8 2 2 441.6773 23.8182 25.4224 3.5514 28.5381
8 2 4 2373.6045 23.8182 94.4134 3.5514 106.7477
8 4 1 122.5020 837.2738 92.1096 32.4143 96.5363
8 4 2 510.0498 837.2738 179.6741 32.4143 185.6987
8 4 4 2549.0757 837.2738 – 32.4143 –

some of the used instances. Our computational experiments were carried out on
an Apple Mac mini computer running the MacOS 10.9.5 operating system with
an Intel Core i7 running at 2.6 GHz on 4 cores, 6 MB L3 cache, and 16 GB 1600
MHz DDR3 RAM. The version of CPLEX we used was 12.5.1.

For the test set with 4 targets and 2 salesmen we put the problem sizes and
the non-aggregated running times of all 25 instances in Table 4. The same values
for the test set with 6 targets and 6 salesmen can be found in Table 5. In both
tables problem sizes are compared for single precision and fourfold precision, where
the respective first column (nbv) denotes the number of variables, the respective
second column (nbc) is the number of constraints and the third column (nbn)
represents the number of non-zeros in the corresponding MILP. Columns 7 to 11
show computational running times of the instances with fourfold precision. The
last row in Table 4 and Table 5 contains the aggregated running times for all 25
instances.

Looking at the values of the TD model in column 4 of Table 3, it is obvious
that the values strongly correlate with the precision of time steps, but not with the
number of used salesmen. The TD model is embedded in a time-expanded graph,
which grows drastically in number of arcs when applying instances with a high
number of time steps (high precision). Since the TC model is independent of time

Modelling Time Aspects for MTSPMT 17

Table 4 Problem sizes and exact running times of all proposed models for the 25 instances
with target number 4 and number of salesmen 2.

precision 1 precision 4 running times for precision 4
nbv nbc nbn nbv nbc nbn TD TC TF-TD TF-TC TF-TDloc

1314 124 5174 16988 454 67636 122.55 0.15 0.06 0.03 0.06
2114 158 8356 28492 590 113582 190.59 0.20 0.80 0.13 0.86
2496 174 9872 34198 654 136356 255.22 0.16 0.29 0.06 0.29
2880 174 11396 40194 654 160302 444.16 0.16 0.94 0.14 0.99
1478 134 5826 19752 494 78684 98.20 0.10 0.17 0.05 0.18
3022 186 11964 42252 702 168526 365.98 0.14 1.00 0.11 1.06
1564 138 6168 20556 510 81884 146.07 0.13 0.12 0.03 0.12
2022 164 7988 27618 614 110082 117.06 0.16 0.49 0.08 0.50
2768 182 10952 38744 686 154514 260.89 0.12 0.40 0.07 0.39
3132 186 12404 43996 702 175496 266.39 0.15 0.08 0.02 0.08
2116 160 8362 28754 598 114616 180.87 0.11 0.09 0.04 0.09
1028 118 4038 13056 430 51948 85.21 0.11 0.07 0.04 0.06
3078 178 12188 43038 670 171666 440.82 0.13 0.53 0.09 0.52
1278 128 5030 16498 470 65682 111.91 0.09 0.05 0.03 0.05
1888 154 7454 25432 566 101350 143.18 0.12 0.68 0.16 0.72
1726 148 6818 22862 550 91108 116.33 0.15 0.69 0.16 0.71
2066 158 8158 28456 590 113422 213.58 0.13 0.14 0.04 0.13
1138 116 4472 14662 422 58350 105.04 0.13 0.13 0.05 0.14
2326 170 9200 31706 638 126414 137.81 0.17 1.11 0.15 1.10
980 114 3848 12592 414 50094 68.34 0.15 0.12 0.05 0.12

1926 152 7604 26280 574 104740 182.70 0.11 0.27 0.10 0.27
2244 154 8868 30954 574 123400 241.26 0.25 0.07 0.04 0.07
3714 202 14718 52928 766 211174 397.71 0.17 1.10 0.10 1.19
1570 148 6190 20710 550 82494 123.66 0.13 0.04 0.02 0.05
1162 124 4570 15178 454 60414 101.22 0.10 0.03 0.03 0.03∑

4916.75 3.52 9.45 1.83 9.78

steps, the model is solved once. For reasons of better comparisons we take this
one geometric mean value for all three different precision values, as can be seen in
Table 3. However, the values of the TC model strongly correlate with the number
of salesmen. That means a high number of salesmen makes the problem more
difficult. This effect becomes particularly apparent at instances with 8 targets.
Running times are increased by a factor of 103 when considering salesman number
from 1 to 4.

The time-free running times have a similar correlation behavior as their coun-
terparts with time. For a comparison of time and time-free variants we put the
running time values in graphical visualizations, see Figure 3 for the TD and TF-
TD models and Figure 4 for the TC and TF-TC models. In the first picture of
Figure 3 instances with 4 moving targets are considered. In the second picture
instances with 6 moving targets and in the third picture instances with 8 moving
targets are visualized. In all three pictures it is obvious, that the time-free variant
(dashed lines) outperforms the variant with times (solid lines). This might indi-
cate that for instances with 4, 6 and 8 targets the TF-TD variant usually runs
faster than the TD variant. This behavior can also be seen when looking at the
exact running times in Table 4 and Table 5. The values of column TF-TD are far
below the running time values of column TD, even if the computational effort for 6
targets and 6 salesmen is much higher than for 4 targets and 2 salesmen. To solve
all 25 instances with 4 targets and 2 salesmen TF-TD only needs about 0.2% of

18 Stieber, Fügenschuh

Table 5 Problem sizes and exact running times of all proposed models for the 25 instances
with target number 6 and number of salesmen 6.

precision 1 precision 4 running times for precision 4
nbv nbc nbn nbv nbc nbn TD TC TF-TD TF-TC TF-TDloc

10338 516 40986 139008 1920 554610 901.23 57.70 8.73 0.25 8.70
11826 576 46920 160290 2160 639672 1154.05 29.66 23.66 0.69 28.47
17292 684 68694 240480 2592 960054 1705.57 43.53 28.58 0.50 29.77
20076 696 79782 283758 2640 1133016 2350.53 52.05 36.46 0.74 37.21
10902 540 43230 148518 2016 592608 1021.46 72.34 55.20 4.84 55.99
15708 648 62382 218814 2448 873498 1764.26 64.60 334.86 39.94 336.02
9900 528 39240 132816 1968 529848 855.83 47.18 21.85 0.84 21.56

11250 588 44616 152082 2208 606846 625.70 82.27 176.01 17.25 181.08
17340 690 68880 243378 2616 971658 1622.43 71.23 325.67 32.56 253.97
19446 702 77292 273636 2664 1092600 2070.53 77.44 285.50 15.82 291.88
12804 594 50814 175974 2232 702306 1275.71 54.24 281.25 40.80 307.38
9906 522 39264 133044 1944 530772 964.50 69.27 33.69 1.87 32.75

18018 666 71586 253482 2520 1012026 1977.32 39.92 44.58 1.24 47.08
11034 558 43758 150624 2088 601038 1094.28 76.71 198.38 19.86 208.19
11748 564 46602 160152 2112 639072 969.60 94.12 159.67 10.08 162.81
13926 612 55284 190332 2304 759696 1618.97 47.84 380.44 59.42 359.68
12546 588 49782 171036 2208 682584 1022.71 61.94 56.90 4.04 56.90
9372 492 37134 127062 1824 506910 1383.62 45.72 6.17 0.38 6.52

12420 612 49284 168354 2304 671838 842.11 59.39 82.20 5.40 68.30
6936 438 27450 89874 1608 358374 471.37 81.10 47.28 4.00 48.81

10272 546 40722 137934 2040 550326 831.70 73.37 28.09 2.42 33.22
14466 600 57420 200280 2256 799398 1427.90 77.25 7.32 0.18 7.63
19560 726 77730 276570 2760 1104288 1822.87 79.24 355.87 39.57 346.95
12456 600 49422 170994 2256 682428 1007.93 48.09 35.66 1.40 36.02
11766 552 46674 159666 2064 637140 1308.09 46.55 8.29 0.11 7.91∑

32090.27 1552.73 3022.32 304.18 2974.80

the time TD needs to solve the instances (see the last row of Table 4). Regarding
6 targets and 6 salesmen TF-TD needs 10% of the TD time (see the last row of
Table 5).

In Figure 4 the TC variant is compared with its time-free counterpart TF-TC.
Since there is no time discretization and therefore no precision that can be raised
to make the problem instances more difficult, we looked at the number of salesmen.
A high number of salesmen also results in more difficult problem instances. The
three pictures visualize the geometric mean of the running times for the different
target numbers 4, 6 and 8. Running times increased over the number of used
salesmen, but the time-free variant TF-TC has lower running times in all three
diagrams when more than one salesman is considered. Looking at the aggregated
running times in Table 4 and Table 5, we have that TF-TC only needs about half
as long (50%) as TC to solve all 25 instances with 4 targets and 2 salesmen. For 6
targets and 6 salesmen TF-TC only needs about 20% of the time, that TC takes
to solve all 25 instances.

The last column of Table 3 is the time-free variant TF-TD extended by local
information about arcs with times from the current branch-and-bound tree. The
aim was to exploit this information to create cutting planes in order to prune nodes
in the branch-and-bound tree for an advantage in running times. Comparing the
values of column 6 and 8, makes clear that the values are very similar, thus there

Modelling Time Aspects for MTSPMT 19

1 2 3 40

50

100
4 targets

precision of time steps

ge
om

et
ric

 m
ea

n
of

 ru
nn

in
g

tim
e

TD, nbs=1
TFTD, nbs=1
TD, nbs=2
TFTD, nbs=2
TD, nbs=4
TFTD, nbs=4

1 2 3 40

50

100

150
6 targets

precision of time steps

ge
om

et
ric

 m
ea

n
of

 ru
nn

in
g

tim
e

TD, nbs=1
TFTD, nbs=1
TD, nbs=2
TFTD, nbs=2
TD, nbs=3
TFTD, nbs=3
TD, nbs=6
TFTD, nbs=6

1 2 3 40

500

1000
8 targets

precision of time steps

ge
om

et
ric

 m
ea

n
of

 ru
nn

in
g

tim
e

TD, nbs=1
TFTD, nbs=1
TD, nbs=2
TFTD, nbs=2
TD, nbs=4
TFTD, nbs=4

Fig. 3 Visualization of computational running times of the time-discrete model variants for
target numbers 4, 6 and 8.

is no advantage visible through applying local information. For a target number
of 6 and 8 the values of TF-TDloc are all worse than the values of TF-TD.

Summarizing, for a test set defined by number of targets and number of sales-
men we created 25 instances. We solved the instances for three different precision
values (discretization) and then took the geometric mean of the 25 running times.
Based on these values we observed that the TD variant is precision sensitive and
the TC model with continuous times is very sensitive against the number of sales-
men. Regarding difficult instances, that are instances with either a high precision
value or a high number of salesmen, the time-free variants beat the variants with
time. Since the range of application for the discrete model variants (TD, TF-TD)
and the continuous model variants (TC, TF-TC) is different, it is not straightfor-
ward to make a comparison over all model variants. The discrete variants allow
for nonlinear target trajectories and variable speed functions, while the continuous
variants are restricted to linear trajectories and constant target speeds. Further-
more the discrete variants apply for problems based on time steps (e.g., time
tables), where departure and arrival take place exactly at these time steps and not
in between as in our continuous variants. Nonetheless we restricted our problem
instances to linear trajectories and constant speed of each target, in order to solve
them with all variants for a comparison of computational run-times. Regarding
the difficult ones of our instances, the best choice with respect to running times is
the TF-TC variant.

20 Stieber, Fügenschuh

1 2 3 40

0.1

0.2

0.3

4 targets

number of salesmen

av
er

ag
e

ru
nn

in
g

tim
e

TC
TF−TC

1 2 3 4 5 60

10

20

6 targets

number of salesmen

av
er

ag
e

ru
nn

in
g

tim
e

TC
TF−TC

1 2 3 40

50

100

150

200

8 targets

number of salesmen

av
er

ag
e

ru
nn

in
g

tim
e

TC
TF−TC

Fig. 4 Visualization of computational running times of the time-continuous model variants
for target numbers 4, 6 and 8.

7 Conclusion

We addressed a dynamic variant of the TSP, where several salesmen are looking for
their tours through a system with moving targets. The targets enter the system at a
certain time and leave the system again, after a while. Intercepting is only possible
during this visibility time interval. We presented two model formulation, the first
(TD) is based on discrete time steps and the second one (TC) uses continuous
times by applying big-M constraints. Due to the different modeling of time both
variants have different characteristics inherent. The precision sensitive TD model
requires very long computational times especially when the number of time steps is
increased. While the TC model is independent of number of time steps, it correlates
with the number of salesmen and therefore results in high running times.

Our main research focus is on another modeling variant. We completely re-
laxed the time aspect and solved the resulting simple time-free program. With
some analysis of the time-free solutions and re-integrating parts of the time re-
strictions, global optimal salesman tours can be constructed. The re-integration of
time can be done using discrete and continuous times. While the time-free variants
follow a similar correlation behavior to their counterparts with time, for most of
the considered instances they result in lower running times. Exploiting local infor-
mation during branching does not result in an apparent effect for running times.

Modelling Time Aspects for MTSPMT 21

For continuous times the time-free variant is faster for most of our instances. Thus,
having linear trajectories and constant speed TF-TC is the most promising vari-
ant with respect to computational running times. In case of nonlinear trajectories
TF-TD would be the first choice.

8 Acknowledgements

This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.

References

1. Ahrens, B.: The tour construction framework for the dynamic travelling salesman problem.
In: SoutheastCon 2015, pp. 1–8 (2015). DOI 10.1109/SECON.2015.7132999

2. Codato, G., Fischetti, M.: Combinatorial benders cuts. In: D. Bienstock, G. Nemhauser
(eds.) Integer Programming and Combinatorial Optimization, Lecture Notes in Com-
puter Science, vol. 3064, pp. 178–195. Springer Berlin Heidelberg (2004). DOI 10.1007/
978-3-540-25960-2 14

3. Dijkstra, E.W.: A note on two problems in connexion with graphs. NUMERISCHE MATH-
EMATIK 1(1), 269–271 (1959)

4. Ford, L.R., Fulkerson, D.R.: Constructing Maximal Dynamic Flows from Static Flows.
Operations Research 6(3), 419–433 (1958)

5. Fügenschuh, A., Nemhauser, G., Zeng, Y.: Scheduling and routing of fly-in safari planes
using a flow-over-flow model. In: M. Jünger, G. Reinelt (eds.) Facets of Combina-
torial Optimization, pp. 419–447. Springer Berlin Heidelberg (2013). DOI 10.1007/
978-3-642-38189-8 17. URL http://dx.doi.org/10.1007/978-3-642-38189-8_17

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, New York (1979)

7. Gendreau, M., Laporte, G., Seguin, R.: Stochastic vehicle routing. European Journal of
Operational Research 88(1), 3–12 (1996)

8. Helvig, C., Robins, G., Zelikovsky, A.: Moving-Target TSP and Related Problems. In:
A.P. G. Bilardi G. F. Italiano, G. Pucci (eds.) Proceedings of the European Symposium
on Algorithms, Lecture Notes in Computer Science, vol. 1461, pp. 453 – 464. Springer
Verlag, Berlin (1998)

9. Helvig, C., Robins, G., Zelikovsky, A.: The moving-target traveling salesman problem.
Journal of Algorithms 49(1), 153 – 174 (2003)

10. Jiang, Q., Sarker, R., Abbass, H.: Tracking moving targets and the non-stationary traveling
salesman problem. Complexity International 11, 171 – 179 (2005)

11. Jindal, P., Kumar, A., Kumar, S.: Multiple Target Intercepting Traveling Salesman Prob-
lem. International Journal on Computer Science and Technology 2(2), 327 – 331 (2011)

12. Lawler, E., Lenstra, J., Rinnooy, A., Shmoys, D.: The Traveling Salesman Problem: a
Guided Tour of Combinatorial Optimization. John Wiley and Sons, Chichester, New York
(1985)

13. Liu, C.H.: The Moving-Target Traveling Salesman Problem with Re-
supply. Tech. rep., The National Chung Cheng University Library,
http://ccur.lib.ccu.edu.tw/handle/987654321/7877 (2013)

14. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone
programming. Linear Algebra and its Applications 284(13), 193–228 (1998)

15. Menezes, M.B., Ketzenberg, M., Oliva, R., Metters, R.: Service delivery to moving demand
points using mobile servers. International Journal of Production Economics 168(C), 158–
166 (2015)

16. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of traveling
salesman problems. Journal of the ACM (JACM) 7(4), 326–329 (1960)

17. Reinelt, G.: The Traveling Salesman: Computational Solutions for TSP Applications.
Springer Verlag, Berlin (1994)

18. Stieber, A., Fügenschuh, A., Epp, M., Knapp, M., Rothe, H.: The multiple traveling sales-
men problem with moving targets. Optimization Letters 9(8), 1569–1583 (2014)

