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I. INTRODUCTIONThe aim of this paper is to derive general and expli
it expressions for the unrenormalizedand renormalized dressed propagators of fermions in parity-non
onserving theories withinter-generation mixing, and to dis
uss their important physi
al properties and impli
ations.The results presented here immediately apply to the Standard Theory of ElementaryParti
le Physi
s, usually referred to as the Standard Model (SM), as well as its extensions.As has been known for a long time, the quark �elds are subje
t to inter-generation mixing,as implemented by the Cabibbo-Kobayashi-Maskawa (CKM) [1℄ quark mixing matrix. Sin
eneutrino os
illations have been observed experimentally and lower mass bounds have beenestablished, the lepton �elds are known to also undergo inter-generation mixing. An earlytreatment of 
avor-
hanging self-energies, both for leptons and quarks in bound states,whi
h, however, fo
uses on �nite renormalization e�e
ts, may be found in Ref. [2℄. On theother hand, our treatment is quite general and takes into a

ount the full mixing amplitudes.The renormalization of the CKM matrix has been re
ently dis
ussed by several authors; see,for example, Ref. [3℄ and referen
es 
ited therein. Mixing renormalization has also beenworked out for theories involving Majorana neutrinos [4℄.This paper is organized as follows. Se
tion II dis
usses the derivation of the unrenormal-ized dressed propagators. The mass eigenvalues, the 
orresponding mass 
ounterterms, andthe e�e
t of inter-generation mixing on their determination are also analyzed. Se
tion IIIdis
usses the renormalization of the dressed propagators. Invoking the Aoki-Hioki-Kawabe-Konuma-Muta (AHKKM) renormalization 
onditions and employing very useful relationsfrom Matrix Algebra, it is shown expli
itly that the renormalized dressed propagators satisfyimportant physi
al properties. Se
tion IV 
ontains our 
on
lusions. The Appendix explainshow to derive the two-loop expression for the mass eigenvalues presented in Se
. II, and howto express the mass 
ounterterms in terms of the unrenormalized self-energies.II. UNRENORMALIZED DRESSED PROPAGATOR OF MIXED FERMIONSYSTEMAs is well known, the unrenormalized mass matrix 
an be brought to diagonal formwith non-negative eigenvalues by means of bi-unitary transformations on the left- and right-2



handed �elds. On this basis, the unrenormalized inverse propagator is �iIij(=p), whereIij(=p) = (=p�m0i )Æij � �ij(=p); (1)i, j are 
avor indi
es1 and the self-energies �ij(=p) are given by�ij(=p) = �=p(B+)ij + (A+)ij� a+ + �=p(B�)ij + (A�)ij� a�: (2)In Eq. (2), (A�)ij, (B�)ij are Lorentz-invariant fun
tions of p2 and a� = (1� 
5)=2 are the
hiral proje
tors.2Equations (1) and (2) 
an be written in 
ompa
t form, asI(=p) = (=pS+ � T+)a+ + (=pS� � T�)a�; (3)where S+ and T+ are matri
es de�ned by(S�)ij = Æij � (B�)ij; (T�)ij = m0i Æij + (A�)ij: (4)The unrenormalized dressed propagator is iP (=p) = i(I(=p))�1.3 Writing (I(=p))�1 = (=pU+ �V+)a+ + (=pU� � V�)a�, we �nd the relationsS+V+ + T�U+ = 0; (5)S�V� + T+U� = 0; (6)p2S+U� + T�V� = 1; (7)p2S�U+ + T+V+ = 1; (8)where 1 stands for the unit matrix.In order to express U� and V� in terms of S� and T�, we �rst solve for V� in Eq. (6) andinsert the result in Eq. (7). This leads toU� = �p2S+ � T�(S�)�1T+��1 ; (9)V� = �(S�)�1T+U�: (10)1 In this paper, repeated indi
es are not summed, unless a summation symbol is expli
itly in
luded.2 Throughout this paper, we adopt the notational 
onventions of Bjorken and Drell [5℄.3 Here and in the following, the matrix iP (=p) is referred to as the unrenormalized propagator. The parti
lepropagators are the elements of this matrix, namely iPij(=p). An analogous denomination is used in Se
. IIIfor the renormalized propagator iP̂ (=p) and the renormalized parti
le propagators iP̂ij(=p).3



Next we solve for V+ in Eq. (5) and insert the result in Eq. (8), whi
h leads toU+ = �p2S� � T+(S+)�1T���1 ; (11)V+ = �(S+)�1T�U+: (12)More 
onvenient forms for U� are obtained by writingU� = ��p2 � T�(S�)�1T+(S+)�1�S+��1 = (S+)�1(p2 �DC)�1; (13)U+ = ��p2 � T+(S+)�1T�(S�)�1�S���1 = (S�)�1(p2 � CD)�1; (14)where C = T+(S+)�1; D = T�(S�)�1: (15)It is also 
onvenient to introdu
e the matri
esE = (S+)�1T�; F = (S�)�1T+: (16)Using Eqs (9){(14), (15), and (16), the unrenormalized dressed propagator is given by iP ,where P = (=p+ E)(S�)�1(p2 � CD)�1a+ + (=p+ F )(S+)�1(p2 �DC)�1a�; (17)whi
h is fully expressed in terms of the self-energy matri
es S� and T�. The matri
es(p2 � CD)�1 and (p�DC)�1 are related by similarity transformations, as(p2 � CD)�1 = C(p2 �DC)�1C�1 = D�1(p2 �DC)�1D: (18)Writing (p2 � CD)�1 = �+det(p2 � CD) ; (p2 �DC)�1 = ��det(p2 �DC) ; (19)where �+ and �� are the 
orresponding adjoint matri
es,4 we see that the determinants areequal and that �+ and �� are related by the same similarity transformations as in Eq. (18).Thus, the squared mass eigenvaluesM2i are the zeros of det(p2�CD), namely they satisfydet(M2i � Y (M2i )) = 0; (20)Y (p2) = (CD)(p2): (21)4 Given a square matrix M , in this paper the adjoint matrix AdjM means the transpose of the matrixwhose elements are the 
ofa
tors of M (see, for example, Ref. [6℄.) We re
all that the 
ofa
tor Cij of theelement mij of M is (�1)i+j times the determinant of the matrix obtained by deleting the i-th row andthe j-th 
olumn of M . 4



The o�-diagonal elements of Y (p2) arise from inter-generation mixing and are, therefore, ofO(g2) or higher, where g is a generi
 weak-intera
tion gauge 
oupling. As a 
onsequen
e,if terms of O(g4) are negle
ted, only the diagonal elements of p2 � Y (p2) 
ontribute to thedeterminant, and the eigenvalues are of the form~M2i = ~Yii( ~M2i ) +O(g4); (22)where ~Yii(p2) denotes Yii(p2) in the absen
e of O(g4) 
ontributions. If, instead, terms ofO(g4) are retained, but three-loop 
ontributions and higher are negle
ted, there are two ad-ditional e�e
ts: (i) there are now terms of O(g4) in Yii(p2) and (ii) the non-diagonal elementsYij(p2) (i 6= j) 
ontribute to the determinant. As a 
onsequen
e, the mass eigenvalues arenow of the form M2i = Yii(M2i ) +Xj 6=i (YijYji)(M2i )M2i �M2j +O(g6; g4�s): (23)In the Appendix, we outline the derivation of Eq. (23) and show how Eqs. (4), (15), (21), and(23) 
an be used to express the mass 
ounterterms in terms of the unrenormalized self-energyfun
tions A� and B�, in the approximation of negle
ting three-loop-
ontributions.III. RENORMALIZED DRESSED PROPAGATOR OF MIXED FERMION SYS-TEMIn order to renormalize P [
f. Eq. (17)℄, we re
all that the unrenormalized propagatoris the Fourier transform of h0jT (	0(x)	0(0)) j0i, where the zero supers
ripts denote theunrenormalized �elds. In our 
ase, they are 
olumn and row �elds with 
omponents labeledby 
avor indi
es. In the following dis
ussion, we assume for simpli
ity that the fermions arestable. De
omposing the �elds into right- and left-handed 
omponents, as	0 = 	0+ +	0�; 	0 = 	0+ +	0�; (24)where 	0� = a�	 and 	0� = 	a�, and taking into a

ount the e�e
t of the 
hiral pro-je
tors a�, it is easy to see that the �rst, se
ond, third, and fourth terms of P arise fromh0jT (	0�	0�) j0i, h0jT (	0+	0�) j0i, h0jT (	0+	0+) j0i, and h0jT (	0�	0+) j0i, respe
tively.Shifting the �elds a

ording to	0+ = Z1=2+ 	+; 	0+ = 	+(Z1=2+ )y; (25)	0� = Z1=2� 	�; 	0� = 	�(Z1=2� )y; (26)5



where 	� are the renormalized �elds, we see that the four terms in P are multiplied onthe left and right by various 
ombinations of Z1=2� and (Z1=2� )y fa
tors. Sin
e the time-ordered produ
ts are now expressed in terms of renormalized �elds, in order to obtain therenormalized propagator iP̂ , we must divide out su
h fa
tors. Spe
i�
ally, the �rst term inP must be multiplied on the left by Z�1=2� and on the right by (Z�1=2� )y, the se
ond term byZ�1=2+ on the left and (Z�1=2� )y on the right, the third term by Z�1=2+ on the left and (Z�1=2+ )yon the right, and the fourth term by Z�1=2� on the left and (Z�1=2+ )y on the right.Thus, the renormalized propagator is iP̂ , whereP̂ = (=pZ�1=2� + Z�1=2+ E)(S�)�1(p2 � CD)�1(Z�1=2� )ya++ (=pZ�1=2+ + Z�1=2� F )(S+)�1(p2 �DC)�1(Z�1=2+ )ya�: (27)Re
alling Eqs. (15) and (16), we see that the third and fourth terms are related to the �rstand se
ond ones, respe
tively, by the ex
hange +$ �.We now note that the Z�1=2 fa
tors in Eq. (27) 
an be absorbed in a rede�nition of theself-energy matri
es S� and T�, namelyŜ� = (Z1=2� )yS�Z1=2� ; T̂� = (Z1=2� )yT�Z1=2� : (28)Using Eq. (28), P̂ 
an be written in the 
ompa
t formP̂ = (=p+ Ê)(Ŝ�)�1(p2 � ĈD̂)�1a+ + (=p+ F̂ )(Ŝ+)�1(p2 � D̂Ĉ)�1a�; (29)where Ĉ = T̂+Ŝ�1+ ; D̂ = T̂�Ŝ�1� ; Ê = Ŝ�1+ T̂�; F̂ = Ŝ�1� T̂+: (30)In parti
ular, ĈD̂ and CD are related by a similarity transformation, asĈD̂ = (Z1=2� )yCD(Z1=2� )y�1; (31)so that det(p2 � ĈD̂) = det(p2 � CD) and the mass eigenvalues are the zeros of eitherdeterminant. The matri
es Ŝ�, T̂�, Ĉ, D̂, Ê, and F̂ are the renormalized 
ounterparts ofS�, T�, C, D, E, and F , respe
tively.In analogy with Eq. (18), we have the relations(p2 � ĈD̂)�1 = Ĉ(p2 � D̂Ĉ)�1Ĉ�1 = D̂�1(p2 � D̂Ĉ)�1D̂: (32)6



We note that ĈD̂ and F̂ Ê are also related by a similarity transformation and so are (p2 �ĈD̂)�1 and (p2 � F̂ Ê)�1, namelyŜ�1� ĈD̂Ŝ� = F̂ Ê; Ŝ�1� (p2 � ĈD̂)�1Ŝ� = (p2 � F̂ Ê)�1: (33)Inter
hanging +$ �, we obtainŜ�1+ D̂ĈŜ+ = ÊF̂ ; Ŝ�1+ (p2 � D̂Ĉ)�1Ŝ+ = (p2 � ÊF̂ )�1: (34)Using Eqs. (30), (32), (33), and (34), Eq. (29) 
an be 
ast in the alternative formP̂ = a�(p2 � F̂ Ê)�1Ŝ�1� (=p+ Ĉ) + a+(p2 � ÊF̂ )�1Ŝ�1+ (=p+ D̂): (35)It di�ers from Eq. (29) in that the 
hiral proje
tors a� are on the left side of the expression.In both Eqs. (29) and (35), the 
ofa
tors of a� and a+ are related by the ex
hange +$ �.Writing (p2 � ĈD̂)�1 = �̂+det(p2 � ĈD̂) ; (p2 � D̂Ĉ)�1 = �̂�det(p2 � D̂Ĉ) ; (36)(p2 � F̂ Ê)�1 = �̂+det(p2 � F̂ Ê) ; (p2 � ÊF̂ )�1 = �̂�det(p2 � ÊF̂ ) ; (37)where �̂� and �̂� are the 
orresponding adjoint matri
es (
f. Footnote 4), the similarityrelations in Eqs. (32){(34) tell us thatdet(p2 � ĈD̂) = det(p2 � D̂Ĉ) = det(p2 � F̂ Ê) = det(p2 � ÊF̂ ); (38)and Ŝ�1� �̂� = �̂�Ŝ�1� ; (39)a relation that plays an important rôle in our dis
ussion of the propagator's properties. Were
all that in the previous equations, Ŝ�, T̂�, Ĉ, D̂, Ê, F̂ , �̂�, and �̂� are fun
tions of p2.We now turn our attention to the renormalization 
onditions. As emphasized in the semi-nal work of AHKKM [7℄, a fundamental physi
al property of the renormalized propagator iP̂is that, as =p! mn, where mn is one of the mass eigenvalues, the pole (=p�mn)�1 should bepresent only in the diagonal element iP̂nn of the renormalized propagator matrix. In orderto implement this property, as well as the 
onventional requirement that the pole residueequals the imaginary unit, AHKKM proposed suitable 
onditions on the renormalized in-verse propagators, whi
h were des
ribed both graphi
ally and mathemati
ally.7



Re
alling Eq. (3), in our general matrix notation the renormalized inverse propagator is�iÎ(=p), where Î(=p) = (=pŜ+ � T̂+)a+ + (=pŜ� � T̂�)a�: (40)An alternative expression iŝI(=p) = a�(=pŜ+ � T̂�) + a+(=pŜ� � T̂+); (41)where the 
hiral proje
tors a� are pla
ed on the left. The homogeneous AHKKM renormal-ization 
onditions read un(=p)Înl(=p) = 0; (42)Îln(=p)un(=p) = 0; (43)where un(=p) is a spinor that satis�es =pun(=p) = mnun(=p), un(=p) its hermitian adjoint, and nand l are 
avor indi
es.Inserting Eq. (40) into Eq. (42), we havehmnŜ�(m2n)� T̂�(m2n)inl = 0: (44)Multiplying on the right by Ŝ�1� (m2n)lj, summing over l, and remembering the de�nitions inEq. (30), this be
omes Ĉnj(m2n) = D̂nj(m2n) = mnÆnj; (45)whi
h implies (ĈD̂)nn(m2n) = m2n; (ĈD̂)nj(m2n) = 0 (j 6= n); (46)with the analogous result for (D̂Ĉ)(m2n).Inserting Eq. (41) into Eq. (43), re
alling the de�nitions in Eq. (30), and 
arrying outthe analogous analysis, we obtain̂Ein(m2n) = F̂in(m2n) = mnÆin; (47)whi
h leads to (ÊF̂ )nn(m2n) = m2n; (ÊF̂ )in(m2n) = 0 (i 6= n); (48)and the analogous result for (F̂ Ê)(m2n).Equation (46) tells us that, as p2 ! m2n, all the elements in the n-th row of p2� ĈD̂ andp2�D̂Ĉ vanish. Therefore, the only non-vanishing 
ofa
tors of (p2�ĈD̂) and (p2�D̂Ĉ) are8



those 
orresponding to the elements of that row, namely the 
ofa
tors Cnl. Sin
e the adjointmatri
es are the transpose of the 
ofa
tor matri
es (
f. Footnote 4), we 
on
lude that theonly non-vanishing elements of �̂�(m2n) are those in the n-th 
olumn, namely the elements(�̂�)in(m2n). Similarly, from Eq. (48) we see that, as p2 ! m2n, all the elements in the n-th
olumn of p2 � F̂ Ê and p2 � ÊF̂ vanish. Consequently, the only non-vanishing elements of�̂�(m2n) are those in the n-th row, namely (�̂�)nj(m2n). In 
ombination with Eq. (39), theseresults imply that, as p2 ! m2n, the only non-vanishing elements of the matri
es Ŝ�1� �̂� and�̂�Ŝ�1� are the diagonal nn elements (Ŝ�1� �̂�)nn(m2n) = (�̂�Ŝ�1� )nn(m2n). Thus,(Ŝ�1� �̂�)ij(m2n) = (�̂�Ŝ�1� )ij(m2n) = 0 (i or j 6= n): (49)To examine the e�e
t of these results on the renormalized propagators, we insert Eq. (36)and Eq. (37) into Eq. (29) and Eq. (35), respe
tively. Re
alling Eq. (38), we obtainP̂ = (=p+ Ê)(Ŝ�)�1�̂+a+ + (=p+ F̂ )(Ŝ+)�1�̂�a�det(p2 � ĈD̂) (50)from Eq. (29), and P̂ = a��̂+(Ŝ�)�1(=p+ Ĉ) + a+�̂�(Ŝ+)�1(=p+ D̂)det(p2 � F̂ Ê) (51)from Eq. (35).Using Eqs. (45), (47), and (49), one readily veri�es that, as p2 ! m2n, the only non-vanishing elements in the numerators of Eqs. (50) and (51) are, in fa
t, the diagonal nn ele-ments. Thus, the expli
it expressions of the renormalized propagator iP̂ , given in Eqs. (29),(35), (50), and (51), indeed satisfy the fundamental physi
al property that the (=p�mn)�1pole is present only in the diagonal element iP̂nn of the propagator matrix.The inhomogeneous AHKKM renormalization 
onditions are1=p�mn Înn(=p)un(=p) = un(=p); (52)un(=p)Înn(=p) 1=p�mn = un(=p): (53)Inserting Eq. (40) into Eq. (52), expanding the numerator about =p = mn, and using Eq. (44),we �nd the renormalization 
onditions�Ŝ�(m2n) +mn hmn(Ŝ+ + Ŝ�)� T̂+ � T̂�i0�nn = 1;(Ŝ�)nn(m2n) = (Ŝ+)nn(m2n); (54)9



where the prime symbol stands for the derivative with respe
t to p2, evaluated at p2 = m2n.Inserting Eq. (41) into Eq. (53), we obtain the same result.In order to analyze the e�e
t of Eq. (54), we evaluate the residue of the (=p�mn)�1 polein P̂ using Eq. (50) and fo
us on the a+ term. We expand det(p2 � ĈD̂) about p2 = m2nthrough O(p2 � m2n). Sin
e p2 = m2n is a zero of the determinant, the �rst term vanishes,and we have det(p2 � ĈD̂) = hdet(p2 � ĈD̂)i0 (p2 �m2n) + � � � : (55)Using the well known expression(detM)0 = Tr (M 0 AdjM) ; (56)the r.h.s. of Eq. (55) be
omes Trn�̂+(m2n) h1� (ĈD̂)0io (p2 � m2n) + � � � . Multiplying by=p�mn, taking the limit =p ! mn, and re
alling Eqs. (47) and (49), we see that the residueof the (=p�mn)�1 pole in the a+ term of Eq. (50) isRes+ = (Ŝ�1� �̂+)nnTrn�̂+ h1� (ĈD̂)0io : (57)Here and in the following, it is understood that all the fun
tions are evaluated at p2 = m2n.To simplify this expression, we insert Ŝ�Ŝ�1� = 1 in the argument of the tra
e. Re
allingagain Eq. (49), we �ndTrnŜ�Ŝ�1� �̂+ h1� (ĈD̂)0io = �Ŝ�1� �̂+�nn nh1� (ĈD̂)0i Ŝ�onn ; (58)and the residue be
omes Res+ = 1nh1� (ĈD̂)0i Ŝ�onn : (59)Taking into a

ount Eqs. (45){(47), Eq. (59) be
omesRes+ = 1�Ŝ� +mn hmn(Ŝ+ + Ŝ�)� T̂+ � T̂�i0�nn : (60)Thus, the renormalization 
ondition of Eq. (54) indeed implies thatRes+ = 1: (61)Calling Res� the residue of the (=p � mn)�1 pole in the a� term of Eq. (50), an analogousanalysis shows that Res� = 1: (62)10



We 
on
lude that, when the inhomogeneous renormalization 
ondition of Eq. (52) is imposed,the poles in our expli
it expressions for the renormalized propagator [
f. Eqs. (29), (35), (50),and (51)℄ have residues i.IV. CONCLUSIONSWe derived general and expli
it expressions for the unrenormalized and renormalizeddressed propagators of fermions in parity-non
onserving theories with inter-generation mix-ing [
f. Eqs. (17), (29), (35), (50), and (51)℄. We analyzed the determination of the masseigenvalues and the 
orresponding mass 
ounterterms in the approximation of negle
tingthree-loop 
ontributions [
f. Eqs. (23) and (A9)℄. In parti
ular, we dis
ussed the e�e
t ofinter-generation mixing on these determinations. Using the AHKKM renormalization 
on-ditions and applying very useful relations from Matrix Algebra, we showed expli
itly thatour renormalized dressed propagator [
f. Eqs. (29), (35), (50), and (51)℄, whi
h is valid to allorders in perturbation theory, satis�es important physi
al properties. In turn, this demon-strates in a 
lear manner that the AHKKM renormalization 
onditions are also valid to anyorder of perturbation theory.A
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e Foundation through Grant No. PHY{0758032.Appendix A: AppendixIn this appendix, we outline the derivation of Eq. (23) in the approximation of negle
tingthree-loop 
ontributions and show how it 
an be applied to express the mass 
ountertermsin terms of the basi
 self-energy fun
tions (A�)ij and (B�)ij in Eq. (2). For simpli
ity, we
onsider the three-generation 
ase.As explained in the paragraph 
ontaining Eqs. (20) and (21), the mass eigenvalues are11



the zeros of det(p2�Y (p2)), where Y (p2) = (CD)(p2) and the matri
es C and D are de�nedin Eq. (15). Using Eqs. (4), (15), and (21), we �ndY = (M0)2 + Z; (A1)where M0 is the diagonal bare mass matrix with elements m0i andZ = (M0)2B�(1 +B�) +M0(A� + A�B� +B+A�) +M0B+(1 +B+)M0+ A+(1 +B+)M0 + A+M0B� +M0B+M0B� + A+A�: (A2)In Eq. (A1), we have separated out the squared bare mass term (M0)2 and the one- andtwo-loop 
ontributions 
ontained in Z. We re
all that A�, B�, Y , and, 
onsequently, Z arefun
tions of p2. It is further 
onvenient to split(M0)2 = M2 + ÆM2; (A3)where M is the renormalized mass matrix whose elements are the mass eigenvalues and ÆM2is the mass 
ounterterm matrix. Thus,Y = M2 +X; (A4)where X = ÆM2 + Z: (A5)We note that, in Eq. (A4), M2 
ontains the zeroth-order terms, while X 
ontains the one-and two-loop 
ontributions.Negle
ting three-loop 
ontributions, in the three-generation 
ase the eigenvalue equationdet(p2 � Y (p2)) = 0 be
omes(p2�Y11)(p2�Y22)(p2�Y33)�(p2�Y11)Y23Y32�(p2�Y22)Y13Y31�(p2�Y33)Y12Y21 = 0: (A6)Consider the neighborhood of p2 = M21 , where M1 is one of the mass eigenvalues: dividingby (p2 � Y22)(p2 � Y33), we have(p2 � Y11) �1� Y23Y32(p2 � Y22)(p2 � Y33)� = Y13Y31p2 � Y33 + Y12Y21p2 � Y22 : (A7)The fa
tors Y23Y32, Y13Y31, and Y12Y21 are of two-loop order or higher. As p2 !M21 , we seefrom Eq. (A4) that, to leading order, we have p2�Y22 =M21 �M22 and p2�Y33 =M21 �M23 .Thus, negle
ting three-loop 
ontributions, as p2 !M21 , Eq. (A7) redu
es toM21 = Y11(M21 ) + (Y12Y21)(M21 )M21 �M22 + (Y13Y31)(M21 )M21 �M23 ; (A8)12



whi
h is a parti
ular 
ase of Eq. (23).Re
alling Eqs. (23), (A1), and (A3), the mass 
ounterterms are thenÆM2i = (m0i )2 �M2i= (m0i )2 � Yii(M2i )�Xj 6=i (YijYji)(M2i )M2i �M2j= �Zii(M2i )�Xj 6=i (ZijZji)(M2i )M2i �M2j ; (A9)where Z is de�ned in Eq. (A2). In the last equality of Eq. (A9), we have repla
ed Yij ! Zij,sin
e both are equal when i 6= j [
f. Eq. (A1)℄.We note that, subje
t to our approximation, the amplitudes involving linear powers ofA� and B� in Eq. (A2) 
ontain both one- and two-loop 
ontributions.Using Eq. (A2), we �nd for the diagonal termsZii = (m0i )2(B+ +B� +B2+ +B2�)ii +m0i (A+ + A� + A+B+ + A�B� +B+A�)ii + (A+A�)ii+ 3Xj=1 �m0j(A+)ij(B�)ji +m0im0j(B+)ij(B�)ji� : (A10)We note that Zii depends not only on the bare fermion masses m0i and m0j displayed inEq. (A10), but also on additional ones present in the loop diagrams. We refer generi
allyto the latter as m0l . Consistently with our approximation, in the 
ontributions of two-looporder, we repla
e the bare masses m0i , m0j , and m0l by the mass eigenvalues Mi, Mj, and Ml,respe
tively. In the 
ontributions of one-loop order, we repla
em0i = hM2i � Z(1)ii (M2i )i1=2 ; (A11)and similarly for m0l . In Eq. (A11), the supers
ript (1) stands for the one-loop 
ontribution,namely Z(1)ii =M2i (B(1)+ +B(1)� )(M2i ) +Mi(A(1)+ + A(1)� )(M2i ); (A12)with an analogous expression for Z(1)ll .The 
ontributions involving ZijZji with j 6= i in Eq. (A9) are already of two-loop order orhigher, so that in the o�-diagonal amplitudes Zij with j 6= i, we simply repla
em0i ; m0j ; m0l !Mi;Mj;Ml. In this way, subje
t to the approximation of negle
ting three-loop 
ontributions,
13



the mass 
ounterterms ÆM2i given in Eq. (A9) are fully expressed in terms of the basi
 self-energies A�(M2i ) and B�(M2i ) of Eq. (2) and the mass eigenvalues.
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