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I. INTRODUCTIONThe aim of this paper is to derive general and expliit expressions for the unrenormalizedand renormalized dressed propagators of fermions in parity-nononserving theories withinter-generation mixing, and to disuss their important physial properties and impliations.The results presented here immediately apply to the Standard Theory of ElementaryPartile Physis, usually referred to as the Standard Model (SM), as well as its extensions.As has been known for a long time, the quark �elds are subjet to inter-generation mixing,as implemented by the Cabibbo-Kobayashi-Maskawa (CKM) [1℄ quark mixing matrix. Sineneutrino osillations have been observed experimentally and lower mass bounds have beenestablished, the lepton �elds are known to also undergo inter-generation mixing. An earlytreatment of avor-hanging self-energies, both for leptons and quarks in bound states,whih, however, fouses on �nite renormalization e�ets, may be found in Ref. [2℄. On theother hand, our treatment is quite general and takes into aount the full mixing amplitudes.The renormalization of the CKM matrix has been reently disussed by several authors; see,for example, Ref. [3℄ and referenes ited therein. Mixing renormalization has also beenworked out for theories involving Majorana neutrinos [4℄.This paper is organized as follows. Setion II disusses the derivation of the unrenormal-ized dressed propagators. The mass eigenvalues, the orresponding mass ounterterms, andthe e�et of inter-generation mixing on their determination are also analyzed. Setion IIIdisusses the renormalization of the dressed propagators. Invoking the Aoki-Hioki-Kawabe-Konuma-Muta (AHKKM) renormalization onditions and employing very useful relationsfrom Matrix Algebra, it is shown expliitly that the renormalized dressed propagators satisfyimportant physial properties. Setion IV ontains our onlusions. The Appendix explainshow to derive the two-loop expression for the mass eigenvalues presented in Se. II, and howto express the mass ounterterms in terms of the unrenormalized self-energies.II. UNRENORMALIZED DRESSED PROPAGATOR OF MIXED FERMIONSYSTEMAs is well known, the unrenormalized mass matrix an be brought to diagonal formwith non-negative eigenvalues by means of bi-unitary transformations on the left- and right-2



handed �elds. On this basis, the unrenormalized inverse propagator is �iIij(=p), whereIij(=p) = (=p�m0i )Æij � �ij(=p); (1)i, j are avor indies1 and the self-energies �ij(=p) are given by�ij(=p) = �=p(B+)ij + (A+)ij� a+ + �=p(B�)ij + (A�)ij� a�: (2)In Eq. (2), (A�)ij, (B�)ij are Lorentz-invariant funtions of p2 and a� = (1� 5)=2 are thehiral projetors.2Equations (1) and (2) an be written in ompat form, asI(=p) = (=pS+ � T+)a+ + (=pS� � T�)a�; (3)where S+ and T+ are matries de�ned by(S�)ij = Æij � (B�)ij; (T�)ij = m0i Æij + (A�)ij: (4)The unrenormalized dressed propagator is iP (=p) = i(I(=p))�1.3 Writing (I(=p))�1 = (=pU+ �V+)a+ + (=pU� � V�)a�, we �nd the relationsS+V+ + T�U+ = 0; (5)S�V� + T+U� = 0; (6)p2S+U� + T�V� = 1; (7)p2S�U+ + T+V+ = 1; (8)where 1 stands for the unit matrix.In order to express U� and V� in terms of S� and T�, we �rst solve for V� in Eq. (6) andinsert the result in Eq. (7). This leads toU� = �p2S+ � T�(S�)�1T+��1 ; (9)V� = �(S�)�1T+U�: (10)1 In this paper, repeated indies are not summed, unless a summation symbol is expliitly inluded.2 Throughout this paper, we adopt the notational onventions of Bjorken and Drell [5℄.3 Here and in the following, the matrix iP (=p) is referred to as the unrenormalized propagator. The partilepropagators are the elements of this matrix, namely iPij(=p). An analogous denomination is used in Se. IIIfor the renormalized propagator iP̂ (=p) and the renormalized partile propagators iP̂ij(=p).3



Next we solve for V+ in Eq. (5) and insert the result in Eq. (8), whih leads toU+ = �p2S� � T+(S+)�1T���1 ; (11)V+ = �(S+)�1T�U+: (12)More onvenient forms for U� are obtained by writingU� = ��p2 � T�(S�)�1T+(S+)�1�S+��1 = (S+)�1(p2 �DC)�1; (13)U+ = ��p2 � T+(S+)�1T�(S�)�1�S���1 = (S�)�1(p2 � CD)�1; (14)where C = T+(S+)�1; D = T�(S�)�1: (15)It is also onvenient to introdue the matriesE = (S+)�1T�; F = (S�)�1T+: (16)Using Eqs (9){(14), (15), and (16), the unrenormalized dressed propagator is given by iP ,where P = (=p+ E)(S�)�1(p2 � CD)�1a+ + (=p+ F )(S+)�1(p2 �DC)�1a�; (17)whih is fully expressed in terms of the self-energy matries S� and T�. The matries(p2 � CD)�1 and (p�DC)�1 are related by similarity transformations, as(p2 � CD)�1 = C(p2 �DC)�1C�1 = D�1(p2 �DC)�1D: (18)Writing (p2 � CD)�1 = �+det(p2 � CD) ; (p2 �DC)�1 = ��det(p2 �DC) ; (19)where �+ and �� are the orresponding adjoint matries,4 we see that the determinants areequal and that �+ and �� are related by the same similarity transformations as in Eq. (18).Thus, the squared mass eigenvaluesM2i are the zeros of det(p2�CD), namely they satisfydet(M2i � Y (M2i )) = 0; (20)Y (p2) = (CD)(p2): (21)4 Given a square matrix M , in this paper the adjoint matrix AdjM means the transpose of the matrixwhose elements are the ofators of M (see, for example, Ref. [6℄.) We reall that the ofator Cij of theelement mij of M is (�1)i+j times the determinant of the matrix obtained by deleting the i-th row andthe j-th olumn of M . 4



The o�-diagonal elements of Y (p2) arise from inter-generation mixing and are, therefore, ofO(g2) or higher, where g is a generi weak-interation gauge oupling. As a onsequene,if terms of O(g4) are negleted, only the diagonal elements of p2 � Y (p2) ontribute to thedeterminant, and the eigenvalues are of the form~M2i = ~Yii( ~M2i ) +O(g4); (22)where ~Yii(p2) denotes Yii(p2) in the absene of O(g4) ontributions. If, instead, terms ofO(g4) are retained, but three-loop ontributions and higher are negleted, there are two ad-ditional e�ets: (i) there are now terms of O(g4) in Yii(p2) and (ii) the non-diagonal elementsYij(p2) (i 6= j) ontribute to the determinant. As a onsequene, the mass eigenvalues arenow of the form M2i = Yii(M2i ) +Xj 6=i (YijYji)(M2i )M2i �M2j +O(g6; g4�s): (23)In the Appendix, we outline the derivation of Eq. (23) and show how Eqs. (4), (15), (21), and(23) an be used to express the mass ounterterms in terms of the unrenormalized self-energyfuntions A� and B�, in the approximation of negleting three-loop-ontributions.III. RENORMALIZED DRESSED PROPAGATOR OF MIXED FERMION SYS-TEMIn order to renormalize P [f. Eq. (17)℄, we reall that the unrenormalized propagatoris the Fourier transform of h0jT (	0(x)	0(0)) j0i, where the zero supersripts denote theunrenormalized �elds. In our ase, they are olumn and row �elds with omponents labeledby avor indies. In the following disussion, we assume for simpliity that the fermions arestable. Deomposing the �elds into right- and left-handed omponents, as	0 = 	0+ +	0�; 	0 = 	0+ +	0�; (24)where 	0� = a�	 and 	0� = 	a�, and taking into aount the e�et of the hiral pro-jetors a�, it is easy to see that the �rst, seond, third, and fourth terms of P arise fromh0jT (	0�	0�) j0i, h0jT (	0+	0�) j0i, h0jT (	0+	0+) j0i, and h0jT (	0�	0+) j0i, respetively.Shifting the �elds aording to	0+ = Z1=2+ 	+; 	0+ = 	+(Z1=2+ )y; (25)	0� = Z1=2� 	�; 	0� = 	�(Z1=2� )y; (26)5



where 	� are the renormalized �elds, we see that the four terms in P are multiplied onthe left and right by various ombinations of Z1=2� and (Z1=2� )y fators. Sine the time-ordered produts are now expressed in terms of renormalized �elds, in order to obtain therenormalized propagator iP̂ , we must divide out suh fators. Spei�ally, the �rst term inP must be multiplied on the left by Z�1=2� and on the right by (Z�1=2� )y, the seond term byZ�1=2+ on the left and (Z�1=2� )y on the right, the third term by Z�1=2+ on the left and (Z�1=2+ )yon the right, and the fourth term by Z�1=2� on the left and (Z�1=2+ )y on the right.Thus, the renormalized propagator is iP̂ , whereP̂ = (=pZ�1=2� + Z�1=2+ E)(S�)�1(p2 � CD)�1(Z�1=2� )ya++ (=pZ�1=2+ + Z�1=2� F )(S+)�1(p2 �DC)�1(Z�1=2+ )ya�: (27)Realling Eqs. (15) and (16), we see that the third and fourth terms are related to the �rstand seond ones, respetively, by the exhange +$ �.We now note that the Z�1=2 fators in Eq. (27) an be absorbed in a rede�nition of theself-energy matries S� and T�, namelyŜ� = (Z1=2� )yS�Z1=2� ; T̂� = (Z1=2� )yT�Z1=2� : (28)Using Eq. (28), P̂ an be written in the ompat formP̂ = (=p+ Ê)(Ŝ�)�1(p2 � ĈD̂)�1a+ + (=p+ F̂ )(Ŝ+)�1(p2 � D̂Ĉ)�1a�; (29)where Ĉ = T̂+Ŝ�1+ ; D̂ = T̂�Ŝ�1� ; Ê = Ŝ�1+ T̂�; F̂ = Ŝ�1� T̂+: (30)In partiular, ĈD̂ and CD are related by a similarity transformation, asĈD̂ = (Z1=2� )yCD(Z1=2� )y�1; (31)so that det(p2 � ĈD̂) = det(p2 � CD) and the mass eigenvalues are the zeros of eitherdeterminant. The matries Ŝ�, T̂�, Ĉ, D̂, Ê, and F̂ are the renormalized ounterparts ofS�, T�, C, D, E, and F , respetively.In analogy with Eq. (18), we have the relations(p2 � ĈD̂)�1 = Ĉ(p2 � D̂Ĉ)�1Ĉ�1 = D̂�1(p2 � D̂Ĉ)�1D̂: (32)6



We note that ĈD̂ and F̂ Ê are also related by a similarity transformation and so are (p2 �ĈD̂)�1 and (p2 � F̂ Ê)�1, namelyŜ�1� ĈD̂Ŝ� = F̂ Ê; Ŝ�1� (p2 � ĈD̂)�1Ŝ� = (p2 � F̂ Ê)�1: (33)Interhanging +$ �, we obtainŜ�1+ D̂ĈŜ+ = ÊF̂ ; Ŝ�1+ (p2 � D̂Ĉ)�1Ŝ+ = (p2 � ÊF̂ )�1: (34)Using Eqs. (30), (32), (33), and (34), Eq. (29) an be ast in the alternative formP̂ = a�(p2 � F̂ Ê)�1Ŝ�1� (=p+ Ĉ) + a+(p2 � ÊF̂ )�1Ŝ�1+ (=p+ D̂): (35)It di�ers from Eq. (29) in that the hiral projetors a� are on the left side of the expression.In both Eqs. (29) and (35), the ofators of a� and a+ are related by the exhange +$ �.Writing (p2 � ĈD̂)�1 = �̂+det(p2 � ĈD̂) ; (p2 � D̂Ĉ)�1 = �̂�det(p2 � D̂Ĉ) ; (36)(p2 � F̂ Ê)�1 = �̂+det(p2 � F̂ Ê) ; (p2 � ÊF̂ )�1 = �̂�det(p2 � ÊF̂ ) ; (37)where �̂� and �̂� are the orresponding adjoint matries (f. Footnote 4), the similarityrelations in Eqs. (32){(34) tell us thatdet(p2 � ĈD̂) = det(p2 � D̂Ĉ) = det(p2 � F̂ Ê) = det(p2 � ÊF̂ ); (38)and Ŝ�1� �̂� = �̂�Ŝ�1� ; (39)a relation that plays an important rôle in our disussion of the propagator's properties. Wereall that in the previous equations, Ŝ�, T̂�, Ĉ, D̂, Ê, F̂ , �̂�, and �̂� are funtions of p2.We now turn our attention to the renormalization onditions. As emphasized in the semi-nal work of AHKKM [7℄, a fundamental physial property of the renormalized propagator iP̂is that, as =p! mn, where mn is one of the mass eigenvalues, the pole (=p�mn)�1 should bepresent only in the diagonal element iP̂nn of the renormalized propagator matrix. In orderto implement this property, as well as the onventional requirement that the pole residueequals the imaginary unit, AHKKM proposed suitable onditions on the renormalized in-verse propagators, whih were desribed both graphially and mathematially.7



Realling Eq. (3), in our general matrix notation the renormalized inverse propagator is�iÎ(=p), where Î(=p) = (=pŜ+ � T̂+)a+ + (=pŜ� � T̂�)a�: (40)An alternative expression iŝI(=p) = a�(=pŜ+ � T̂�) + a+(=pŜ� � T̂+); (41)where the hiral projetors a� are plaed on the left. The homogeneous AHKKM renormal-ization onditions read un(=p)Înl(=p) = 0; (42)Îln(=p)un(=p) = 0; (43)where un(=p) is a spinor that satis�es =pun(=p) = mnun(=p), un(=p) its hermitian adjoint, and nand l are avor indies.Inserting Eq. (40) into Eq. (42), we havehmnŜ�(m2n)� T̂�(m2n)inl = 0: (44)Multiplying on the right by Ŝ�1� (m2n)lj, summing over l, and remembering the de�nitions inEq. (30), this beomes Ĉnj(m2n) = D̂nj(m2n) = mnÆnj; (45)whih implies (ĈD̂)nn(m2n) = m2n; (ĈD̂)nj(m2n) = 0 (j 6= n); (46)with the analogous result for (D̂Ĉ)(m2n).Inserting Eq. (41) into Eq. (43), realling the de�nitions in Eq. (30), and arrying outthe analogous analysis, we obtain̂Ein(m2n) = F̂in(m2n) = mnÆin; (47)whih leads to (ÊF̂ )nn(m2n) = m2n; (ÊF̂ )in(m2n) = 0 (i 6= n); (48)and the analogous result for (F̂ Ê)(m2n).Equation (46) tells us that, as p2 ! m2n, all the elements in the n-th row of p2� ĈD̂ andp2�D̂Ĉ vanish. Therefore, the only non-vanishing ofators of (p2�ĈD̂) and (p2�D̂Ĉ) are8



those orresponding to the elements of that row, namely the ofators Cnl. Sine the adjointmatries are the transpose of the ofator matries (f. Footnote 4), we onlude that theonly non-vanishing elements of �̂�(m2n) are those in the n-th olumn, namely the elements(�̂�)in(m2n). Similarly, from Eq. (48) we see that, as p2 ! m2n, all the elements in the n-tholumn of p2 � F̂ Ê and p2 � ÊF̂ vanish. Consequently, the only non-vanishing elements of�̂�(m2n) are those in the n-th row, namely (�̂�)nj(m2n). In ombination with Eq. (39), theseresults imply that, as p2 ! m2n, the only non-vanishing elements of the matries Ŝ�1� �̂� and�̂�Ŝ�1� are the diagonal nn elements (Ŝ�1� �̂�)nn(m2n) = (�̂�Ŝ�1� )nn(m2n). Thus,(Ŝ�1� �̂�)ij(m2n) = (�̂�Ŝ�1� )ij(m2n) = 0 (i or j 6= n): (49)To examine the e�et of these results on the renormalized propagators, we insert Eq. (36)and Eq. (37) into Eq. (29) and Eq. (35), respetively. Realling Eq. (38), we obtainP̂ = (=p+ Ê)(Ŝ�)�1�̂+a+ + (=p+ F̂ )(Ŝ+)�1�̂�a�det(p2 � ĈD̂) (50)from Eq. (29), and P̂ = a��̂+(Ŝ�)�1(=p+ Ĉ) + a+�̂�(Ŝ+)�1(=p+ D̂)det(p2 � F̂ Ê) (51)from Eq. (35).Using Eqs. (45), (47), and (49), one readily veri�es that, as p2 ! m2n, the only non-vanishing elements in the numerators of Eqs. (50) and (51) are, in fat, the diagonal nn ele-ments. Thus, the expliit expressions of the renormalized propagator iP̂ , given in Eqs. (29),(35), (50), and (51), indeed satisfy the fundamental physial property that the (=p�mn)�1pole is present only in the diagonal element iP̂nn of the propagator matrix.The inhomogeneous AHKKM renormalization onditions are1=p�mn Înn(=p)un(=p) = un(=p); (52)un(=p)Înn(=p) 1=p�mn = un(=p): (53)Inserting Eq. (40) into Eq. (52), expanding the numerator about =p = mn, and using Eq. (44),we �nd the renormalization onditions�Ŝ�(m2n) +mn hmn(Ŝ+ + Ŝ�)� T̂+ � T̂�i0�nn = 1;(Ŝ�)nn(m2n) = (Ŝ+)nn(m2n); (54)9



where the prime symbol stands for the derivative with respet to p2, evaluated at p2 = m2n.Inserting Eq. (41) into Eq. (53), we obtain the same result.In order to analyze the e�et of Eq. (54), we evaluate the residue of the (=p�mn)�1 polein P̂ using Eq. (50) and fous on the a+ term. We expand det(p2 � ĈD̂) about p2 = m2nthrough O(p2 � m2n). Sine p2 = m2n is a zero of the determinant, the �rst term vanishes,and we have det(p2 � ĈD̂) = hdet(p2 � ĈD̂)i0 (p2 �m2n) + � � � : (55)Using the well known expression(detM)0 = Tr (M 0 AdjM) ; (56)the r.h.s. of Eq. (55) beomes Trn�̂+(m2n) h1� (ĈD̂)0io (p2 � m2n) + � � � . Multiplying by=p�mn, taking the limit =p ! mn, and realling Eqs. (47) and (49), we see that the residueof the (=p�mn)�1 pole in the a+ term of Eq. (50) isRes+ = (Ŝ�1� �̂+)nnTrn�̂+ h1� (ĈD̂)0io : (57)Here and in the following, it is understood that all the funtions are evaluated at p2 = m2n.To simplify this expression, we insert Ŝ�Ŝ�1� = 1 in the argument of the trae. Reallingagain Eq. (49), we �ndTrnŜ�Ŝ�1� �̂+ h1� (ĈD̂)0io = �Ŝ�1� �̂+�nn nh1� (ĈD̂)0i Ŝ�onn ; (58)and the residue beomes Res+ = 1nh1� (ĈD̂)0i Ŝ�onn : (59)Taking into aount Eqs. (45){(47), Eq. (59) beomesRes+ = 1�Ŝ� +mn hmn(Ŝ+ + Ŝ�)� T̂+ � T̂�i0�nn : (60)Thus, the renormalization ondition of Eq. (54) indeed implies thatRes+ = 1: (61)Calling Res� the residue of the (=p � mn)�1 pole in the a� term of Eq. (50), an analogousanalysis shows that Res� = 1: (62)10



We onlude that, when the inhomogeneous renormalization ondition of Eq. (52) is imposed,the poles in our expliit expressions for the renormalized propagator [f. Eqs. (29), (35), (50),and (51)℄ have residues i.IV. CONCLUSIONSWe derived general and expliit expressions for the unrenormalized and renormalizeddressed propagators of fermions in parity-nononserving theories with inter-generation mix-ing [f. Eqs. (17), (29), (35), (50), and (51)℄. We analyzed the determination of the masseigenvalues and the orresponding mass ounterterms in the approximation of negletingthree-loop ontributions [f. Eqs. (23) and (A9)℄. In partiular, we disussed the e�et ofinter-generation mixing on these determinations. Using the AHKKM renormalization on-ditions and applying very useful relations from Matrix Algebra, we showed expliitly thatour renormalized dressed propagator [f. Eqs. (29), (35), (50), and (51)℄, whih is valid to allorders in perturbation theory, satis�es important physial properties. In turn, this demon-strates in a lear manner that the AHKKM renormalization onditions are also valid to anyorder of perturbation theory.AknowledgmentsThis work was supported in part by the German Researh Foundation through the Collab-orative Researh Center No. 676 Partiles, Strings and the Early Universe | The Strutureof Matter and Spae Time. The work of A. Sirlin was supported in part by the NationalSiene Foundation through Grant No. PHY{0758032.Appendix A: AppendixIn this appendix, we outline the derivation of Eq. (23) in the approximation of negletingthree-loop ontributions and show how it an be applied to express the mass ountertermsin terms of the basi self-energy funtions (A�)ij and (B�)ij in Eq. (2). For simpliity, weonsider the three-generation ase.As explained in the paragraph ontaining Eqs. (20) and (21), the mass eigenvalues are11



the zeros of det(p2�Y (p2)), where Y (p2) = (CD)(p2) and the matries C and D are de�nedin Eq. (15). Using Eqs. (4), (15), and (21), we �ndY = (M0)2 + Z; (A1)where M0 is the diagonal bare mass matrix with elements m0i andZ = (M0)2B�(1 +B�) +M0(A� + A�B� +B+A�) +M0B+(1 +B+)M0+ A+(1 +B+)M0 + A+M0B� +M0B+M0B� + A+A�: (A2)In Eq. (A1), we have separated out the squared bare mass term (M0)2 and the one- andtwo-loop ontributions ontained in Z. We reall that A�, B�, Y , and, onsequently, Z arefuntions of p2. It is further onvenient to split(M0)2 = M2 + ÆM2; (A3)where M is the renormalized mass matrix whose elements are the mass eigenvalues and ÆM2is the mass ounterterm matrix. Thus,Y = M2 +X; (A4)where X = ÆM2 + Z: (A5)We note that, in Eq. (A4), M2 ontains the zeroth-order terms, while X ontains the one-and two-loop ontributions.Negleting three-loop ontributions, in the three-generation ase the eigenvalue equationdet(p2 � Y (p2)) = 0 beomes(p2�Y11)(p2�Y22)(p2�Y33)�(p2�Y11)Y23Y32�(p2�Y22)Y13Y31�(p2�Y33)Y12Y21 = 0: (A6)Consider the neighborhood of p2 = M21 , where M1 is one of the mass eigenvalues: dividingby (p2 � Y22)(p2 � Y33), we have(p2 � Y11) �1� Y23Y32(p2 � Y22)(p2 � Y33)� = Y13Y31p2 � Y33 + Y12Y21p2 � Y22 : (A7)The fators Y23Y32, Y13Y31, and Y12Y21 are of two-loop order or higher. As p2 !M21 , we seefrom Eq. (A4) that, to leading order, we have p2�Y22 =M21 �M22 and p2�Y33 =M21 �M23 .Thus, negleting three-loop ontributions, as p2 !M21 , Eq. (A7) redues toM21 = Y11(M21 ) + (Y12Y21)(M21 )M21 �M22 + (Y13Y31)(M21 )M21 �M23 ; (A8)12



whih is a partiular ase of Eq. (23).Realling Eqs. (23), (A1), and (A3), the mass ounterterms are thenÆM2i = (m0i )2 �M2i= (m0i )2 � Yii(M2i )�Xj 6=i (YijYji)(M2i )M2i �M2j= �Zii(M2i )�Xj 6=i (ZijZji)(M2i )M2i �M2j ; (A9)where Z is de�ned in Eq. (A2). In the last equality of Eq. (A9), we have replaed Yij ! Zij,sine both are equal when i 6= j [f. Eq. (A1)℄.We note that, subjet to our approximation, the amplitudes involving linear powers ofA� and B� in Eq. (A2) ontain both one- and two-loop ontributions.Using Eq. (A2), we �nd for the diagonal termsZii = (m0i )2(B+ +B� +B2+ +B2�)ii +m0i (A+ + A� + A+B+ + A�B� +B+A�)ii + (A+A�)ii+ 3Xj=1 �m0j(A+)ij(B�)ji +m0im0j(B+)ij(B�)ji� : (A10)We note that Zii depends not only on the bare fermion masses m0i and m0j displayed inEq. (A10), but also on additional ones present in the loop diagrams. We refer generiallyto the latter as m0l . Consistently with our approximation, in the ontributions of two-looporder, we replae the bare masses m0i , m0j , and m0l by the mass eigenvalues Mi, Mj, and Ml,respetively. In the ontributions of one-loop order, we replaem0i = hM2i � Z(1)ii (M2i )i1=2 ; (A11)and similarly for m0l . In Eq. (A11), the supersript (1) stands for the one-loop ontribution,namely Z(1)ii =M2i (B(1)+ +B(1)� )(M2i ) +Mi(A(1)+ + A(1)� )(M2i ); (A12)with an analogous expression for Z(1)ll .The ontributions involving ZijZji with j 6= i in Eq. (A9) are already of two-loop order orhigher, so that in the o�-diagonal amplitudes Zij with j 6= i, we simply replaem0i ; m0j ; m0l !Mi;Mj;Ml. In this way, subjet to the approximation of negleting three-loop ontributions,
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the mass ounterterms ÆM2i given in Eq. (A9) are fully expressed in terms of the basi self-energies A�(M2i ) and B�(M2i ) of Eq. (2) and the mass eigenvalues.
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