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DESY 11-189Determining CP violation angle  with B deays into a salar/tensor mesonWei Wang �Deutshes Elektronen-Synhrotron DESY, D-22607 Hamburg, GermanyWe propose a new way for determining the CP violation angle  without any hadroni un-ertainty. The suggested method is to use the two triangles formed by the deay amplitudes ofB� ! (D0; �D0; D0CP )K��0(2)(1430). The advantages are that large CP asymmetries are expeted inthese proesses and only singly Cabibbo-suppressed D deay modes are involved. Measurementsof the branhing frations of the neutral Bd deays into DK�0(2)(1430) and the time-dependent CPasymmetries in Bs ! (D0; �D0)M (M = f0(980); f0(1370); f 02(1525); f1(1285); f1(1420); h1(1180))provide an alternative way to extrat the angle , whih will inrease the statistial signi�ane.PACS numbers: 13.25.Hw,12.15.HhCP violation in the standard model (SM) originatesfrom a single, irreduible phase in the 3�3 quark mixingmatrix alled the Cabibbo-Kobayashi-Maskawa (CKM)matrix. Preision test of its unitarity allows us to ex-plore the SM desription of the CP violation and revealany physis beyond the SM. One of the foremost tasksduring the past deades has been to study the so-alled(bd) unitarity triangle, the graphial representation ofthe ondition stemming from the unitarity of the CKMmatrix: VudV �ub + VdV �b + VtdV �tb = 0. Its sides anbe measured by leptoni and semileptoni meson deays,while the determinations of the angles (�; �; ), satisfying�+ � +  = 180Æ, rely mostly on nonleptoni B deays.Our knowledge of the angle � to a large extent bene�tsfrom the gold-plated hannel B ! J= KS and the ur-rent results already have a preision better than 1Æ [1, 2℄.The auray on the angle � is around 4Æ, thanks tothe measurements of harmless tree dominated proessesB ! �+��; B ! ����; B ! �+�� and B ! a�1 ��. Inontrast, results for the angle  are less aurate, with apreision of roughly 10Æ, whih is one of the main souresof the urrent unertainties on the apex of the unitarytriangle.Sine the angle  � arg(�VudV �ub=(VdV �b)) is the rel-ative weak phase involving the deays b ! �us andb ! u�s, several methods on the basis of the deaysB� ! DK�, with D being any admixture of D0 and�D0, have been proposed (for a review, see Ref. [3℄).The most produtive ones are the Gronau-London-Wyler(GLW) method [4{6℄, withD deaying into the CP eigen-states inluding �0KS ; �+��KS;K+K�; �+��, theAtwood-Dunietz-Soni (ADS) method [7, 8℄, using theCabibbo-favored and doubly Cabibbo-suppressed D de-ay modes, and the Giri-Grossman-So�er-Zupan (GGSZ)method [9℄, whih makes use of a Dalitz-plot distributionof the produts of the multi-body D deays. All threemethods are theoretially lean and do not require anytime-dependent measurement.In the GLWmethod, the sensitivity of the CP asymme-�Email:wei.wang�desy.de

tries to  is proportional to the ratio of the two interferingamplitudes, whih is of the order 10%. The ADS methoddemands a detailed knowledge of the doubly Cabibbo-suppressed D deays, while the GGSZ method requires aDalitz-plot analysis of multibodyD deays. In this work,we propose a new method whih is based on B ! DMdeays with M being a light salar/tensor meson. Theproposed method has both advantages, namely on theone hand the interferene and the CP violation in the ho-sen deay modes are sizable and on the other hand nei-ther doubly Cabibbo-suppressedD deays nor the Dalitzplot are needed. Among the various B deays into ap-wave salar/tensor meson to be disussed, of parti-ular interest are the B� ! (D0; �D0; D0CP )K��0(2)(1430)modes, where K�0(2)(1430) is a salar (tensor) mesonwith JP = 0+(2+). The small (zero) deay onstant ofK�0 (1430)(K�2 (1430)) ompensates the large Wilson oef-�ient in the olor-allowed amplitude, resulting in similarsizes for the deay amplitudes of B� ! D0K��0(2)(1430)and B� ! �D0K��0(2)(1430). As a onsequene, there arelarge CP asymmetries. Measurements of branhing ra-tios (BRs) of the neutral Bd deays into DK�0(2)(1430)and time-dependent CP asymmetries inBs ! DM (M =f0(980); f0(1370); f 02(1525); f1(1285); f1(1420); h1(1180))provide an alternative way to extrat the angle . Forthe sake of brevity, hereafter we useK�0;2 and f0; f 02 to ab-breviate K�0;2(1430) and f0(980); f 02(1525), respetively.All three methods [4{9℄ to extrat  based on B� !(D0; �D0; D0CP )K� use the information that the six de-ay amplitudes form two triangles in the omplex plane,graphially representing the following identitiesp2A(B+ ! D0�K+) = A(B+ ! D0K+)�A(B+ ! �D0K+);p2A(B� ! D0�K�) = A(B� ! D0K�)�A(B� ! �D0K�); (1)where the onvention CP jD0i = j �D0i has been adoptedand D0+(D0�) denotes the CP even (odd) eigenstate. Theorresponding Feynman diagrams for these proesses aregiven in Fig. 1. Measurements of the deay rates of thesix proesses ompletely determine the sides and apexes
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q̄ q̄FIG. 1: Feynman diagrams for the olor-suppressed ontri-butions in the proess B� ! D0K��0(2)(1430) (a), B� !�D0K��0(2)(1430) (b), and the olor-allowed ontributions in theB� ! D0K��0(2)(1430) (). In the diagrams (a, b), the speta-tor quark an also be a �d or �s quark, in whih the light hadrononsists of K�0 (1430), f0(980) and f 02(1525).of the two triangles, in partiular the relative phase be-tween A(B� ! �D0K�) and A(B+ ! D0K+) is 2.The shape of the two triangles is governed by two quan-tities rKJB � ��A(B� ! �D0K�J )=A(B� ! D0K�J )�� ;ÆKJB � arg �eiA(B� ! �D0K�J )=A(B� ! D0K�J )� ;with KJ = K;K�0;2. The B� ! �D0K� is both Cabibbo-suppressed and olor suppressed. Thus the ratio rKB �jVubV �s=(VbV �us)a2=a1j � 0:1 is small and in fat theworld averages for the parameters [2℄rKB = 0:107� 0:010; ÆKB = (112+12�13)Æindiate that the two triangles are squashed. Physialobservables to be experimentally measured, de�ned asRKCP� = 2B(B� ! DCP�K�) + B(B+ ! DCP�K+)B(B� ! D0K�) + B(B+ ! �D0K+)= 1 + (rKB )2 � 2rKB os ÆKB os ;AKCP� = B(B� ! DCP�K�)� B(B+ ! DCP�K+)B(B� ! DCP�K�) + B(B+ ! DCP�K+)= �2rKB sin ÆKB sin =RKCP�;have a mild sensitivity to the angle , and their valuesare expeted to be RKCP� � 1 and AKCP� � 0.Sine the K�0(2) have the same avor struture as theK meson, the relations given in Eq. (1) also apply toB� ! (D0; �D0; D0CP )K��0(2)(1430). We wish to point outthat, beause of the suppression of the olor-allowed de-ay amplitudes, the low sensitivity problem is highly im-proved and in partiular large CP asymmetries are ex-peted. Although the K�0(2)-emission diagram, as de-pited in Fig. 1(), has a large Wilson oeÆient a1 � 1,the emitted meson is generated by a loal vetor or axial-vetor urrent (at the lowest order in �s), whose matrixelement between the QCD vauum and the K�0 (K�2 ) stateis small (identially zero).A rude and model-dependent estimate of the ampli-tudes an be made with the help of the fatorization hy-

pothesis A(B� ! �D0K��0 ) = �VubV �sC;A(B� ! D0K��0 ) = �VbV �us(C � T ); (2)where C = GF fDa2(m2B � m2K�0 )FBK�00 (m2D)=p2, T =GF fK�0 a1(m2B � m2D)FBD0 (m2K�0 )=p2, and GF is theFermi onstant. The deay onstant, de�ned viahK��0 (1430)j�s�uj0i = fK�0 p�K�0 ;vanishes in the SU(3) symmetry limit and may get anonzero but small value due to the symmetry break-ing e�ets. The urrent experimental data on � !K��0 (1430)��� plaes an upper bound [10℄jfK�0 j < 107MeV;whih is not very stringent. Adopting an estimate basedon QCD sum rules [11℄fK�0 = �24MeV; or fK�0 = 36MeV;whih ontains a sign ambiguity, we �nd the relation2a1jfK�0 j � a2fD, with the D meson deay onstant ex-trated from D� ! ����: fD = (221 � 18)MeV [10℄.Using one set of results for the B ! K�0 form fatorsalulated in the perturbative QCD approah [12℄ (or-responding to fK�0 = 36 MeV), the B ! D form fa-tors from Ref. [13℄ and a2 = 0:2; a1 = 1 we estimateC=T � 1:2 andrK�0B = jCVubV �s=[VbV �us(C � T )℄j � 2: (3)The orresponding BRs are roughlyB(B� ! �D0K��0 ) � 4� 10�6: (4)Sine the strong phase an not be omputed at present,we take several benhmark values to illustrate the de-pendene of RK�0CP+ and AK�0CP+ in Fig. 2. In panels (a,b),rK�0B = 2 is employed, and in panels (,d) rK�0B = 1. Inthe last two panels (e,f), we onsider the ase in whihthe ratio is not enhaned too muh rK�0B = 0:3. Thesolid (green), dashed (blak), dotted (blue) and dot-dashed (orange) lines in diagrams (a,,e) are obtainedwith ÆK�0B = (30; 60; 120; 150)Æ respetively, while theorresponding lines in diagrams (b,d,f) orrespond toÆK�0B = (30; 60;�30;�60)Æ. The shadowed (light-green)region denotes the urrent bounds on  = (68+10�11)Æ froma ombined analysis of B� ! DK� [2℄, in whih thevertial (red) line orresponds to the entral value. TheCP odd quantities an be obtained similarly, for instaneRK�0CP� = (RK�0CP+)ÆK�0B !180Æ�ÆK�0B .Turning to the B� ! DK��2 mode in whih the ma-trix element of the vetor and the axial-vetor urrent be-tween the QCD vauum and the K�2 state is zero, we �nd



3
50 60 70 80 90 100

2
3
4
5
6
7
8

Γ HaL

R
C

P+
K

0*

50 60 70 80 90 100

-0.5

0.0

0.5

Γ HbL
A

C
P+

K
0*

50 60 70 80 90 100
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Γ HcL

R
C

P+
K

0*

50 60 70 80 90 100
-1.0

-0.5

0.0

0.5

1.0

Γ HdL

A
C

P+
K

0*

50 60 70 80 90 100

0.8

1.0

1.2

1.4

Γ HeL

R
C

P+
K

0*

50 60 70 80 90 100

-0.4
-0.2

0.0
0.2
0.4

Γ HfL

A
C

P+
K

0*

FIG. 2: The dependene of RK�0CP+ and AK�0CP+ on . Inpanels (a,b), rK�0B = 2 is employed, in panels (,d) rK�0B = 1and in panels (e,f) rK�0B = 0:3. The solid (green), dashed(blak), dotted (blue) and dot-dashed (orange) lines in dia-grams (a,,e) orrespond to ÆK�0B = (30; 60; 120; 150)Æ respe-tively, while the orresponding lines in diagrams (b,d,f) or-respond to ÆK�0B = (30; 60;�30;�60)Æ. The shadowed (light-green) region denotes the urrent bounds on  = (68+10�11)Æfrom a ombined analysis of B� ! DK� [2℄, in whih thevertial (red) line orresponds to the entral value.a vanishing olor-allowed amplitude T . Aordingly, theratio rK�2B is from the produt of CKM matrix elementswhih is roughly 0.5. An estimate of the branhing ratiosan be made by using the data on the B ! J= K�2B(B� ! D0K��2 )B(B ! J= K�02 ) ' xK�2 ����VbV �usVbV �s fDfJ= ����2 � 0:8%;(5)with xK�2 being the ratio of the form fator produtswhih is evaluated from a reent alulation of B ! K�2form fators [14℄: xK�2 ' 0:5. The branhing ratioB(B ! J= K�02 ) = (4:0 � 2:4) � 10�4 [15℄ extratedfrom the data on B� ! J= K��+�� [16℄ givesB(B� ! D0K��2 ) ' 3� 10�6: (6)The method to use the two triangles formed by thesix deay amplitudes for determining  is also valid inthe neutral Bd deays into DK�00;2, in whih the tree am-plitude T is identially zero. The K�0;2 is self-tagging,thus no time-dependent measurement is required. Sinethe amplitudes involvingD0 and �D0 arise from the sametype of diagram, one expets that ÆK�0B � 0. If true,the CP asymmetries AK�0CP� would be still lose to 0 butRK�0CP� an largely deviate from 1.

The long-distane ontributions in the form of �nalstate interations (FSI) might hange the fatorizationanalysis in at least two aspets. First, FSI an give non-trivial strong phases to C and T whih are zero in thefatorization approah. Seond, FSI might also modifythe size of the amplitudes and the rK�0;2B . Despite thesehanges, no hadroni unertainties will be introdued asthe CKM matrix elements in the �nal state interationsare the same as the ones in Eq. (2). To aount forsuh e�ets, we also show in Fig. 2 the dependene ofRK�0CP+ and AK�0CP+ on  with di�erent ratios of amplitudes:rK�0B = 1 and rK�0B = 0:3. The latter orresponds to thesign of Wilson oeÆient a2 reversed namely a2 = �0:2.In this ase, despite a small ratio rK�0B = 0:3 the branhingfrations B(B� ! D0K��0;2 ) an reah 10�5.The D0CP meson in the �nal state an be reon-struted in the CP eigenstates, inluding the modes�0KS ; �+��KS;K+K�; �+��. These modes have quitelarge BRs, for instane, B(D0 ! �+��KS) ' 3% [10℄.The K�0;2 have signi�ant deay rates into K�, withB(K�0 ! K�) = (93 � 10)% and B(K�2 ! K�) =(49:9�1:2)%, and the �nal mesons are also easy to detetin experiments at hadron olliders. Moreover, sine theCKM matrix elements for the K�0 and K�2 are the same,no knowledge of the resonane struture in this method isrequired and therefore the angle  an be extrated with-out any hadroni unertainty. Compared with the BR ofB� ! �D0K�, of order 10�6, whih is an unavoidableentry in the urrently-adopted methods to determine ,the summed BRs for the hannels involving K�0 and K�2 ,of order 10�5, are omparable or even larger, and henetheir measurements will not be statistially limited. Thelarge amount of data aumulated by LHCb reently andin future will lead to a promising prospet of the proposedmethod.In the above disussion, we have negleted e�etsaused by the CP violation in D deays whih is an-tiipated to be small in the standard model. Basedon the 0.62 fb�1 of data olleted in 2011, the LHCbollaboration [17℄ has measured the di�erene betweenCP asymmetries in singly Cabibbo-suppressed deaysD0 ! K+K� and D0 ! �+��, �ACP � ACP (D0 !K+K�)�ACP (D0 ! �+��), given by�ACP = (�0:82� 0:21(stat.)� 0:11(sys.))% ; (7)where the �rst unertainty is statistial and the seondis systemati. Together with the CDF results [18℄ andprevious world average from Heavy Flavor AveragingGroup [19℄, the new world average for �ACP is foundto be [20℄ �ACP = �(0:645� 0:180)% : (8)Although the new world-averaged �ACP is about 3:6�away from zero, its magnitude is smaller than 1 perent.As a onsequene, the CP violation e�ets in harm de-ays are less important in our method to determine , es-peially when ompared to large unertainties in urrent



4knowledge of . Moreover, sine the diret CP violationin D0 ! K+K� and D0 ! �+�� modes is expetedto have opposite signs, part of the CP violation e�etswill anel when both deay modes are used in the re-onstrution of D meson.Now we turn to the Bs ! DM deays, whose Feynmandiagrams are depited in Fig. 1 with �q = �s. It is proposedin Ref. [5, 21℄ that the time-dependent CP asymmetriesin Bs ! D� an be used to extrat  and this methodis applied to a pure annihilation mode Bs ! D��� inRef. [22℄ and modes like Bs ! D�(�0) in Ref. [23℄. Inthe example of Bs ! Df0, there are four deay modeshaving the amplitudesA( �Bs ! �D0f0) = VubV �sA1; A(Bs ! D0f0) = V �ubVsA1;A( �Bs ! D0f0) = VbV �usA2; A(Bs ! �D0f0) = V �bVusA2:(9)For eah amplitude, there is only one weak phase in theSM, and therefore no diret CP asymmetry is expeted.Any nonzero value from the experiment would be a signalfor new physis. We de�ne the relative size and strongphase of the two amplitudes asrf0Bs = jVubV �sA1=(VbV �usA2)j ; Æf0Bs = arg (A1=A2) :(10)Sine both A1 and A2 are from the same Feynman dia-grams, it is likely that A1 ' A2, whih implies rf0Bs � 0:5and Æf0Bs � 0.The neutral Bs system is desribed by the mixingjBLi = pjB0s i+ qj �B0s i; jBH i = pjB0s i � qj �B0s i;with jpj2 + jqj2 = 1, and q=p denotes the weak phase inthe Bs � �Bs mixing q=p = V �tbVts=(VtbV �ts) = e�2i�s : Inthe SM, this ratio is lose to unity and the phase �s isnegligibly small �s ' �0:019 rad. The normalized time-dependent deay widths are [24, 25℄:�( �B0s (t)! D0( �D0)f0) = e�t=�Bs h1+ os(�mt)CD0( �D0)f0 + sin(�mt)SD0( �D0)f0i;(11)where �� is the averaged deay width. For the orrespond-ing B0s deays, the plus signs in front of osine and sineterms should be replaed by minus signs. Substitutingthe amplitudes de�ned in Eq. (9), we haveCD0f0 = C �D0f0 = [1� (rf0Bs)2℄=[1 + (rf0Bs)2℄;SD0f0 = �2rf0Bs sin( + Æf0Bs + 2�s)=[1 + (rf0Bs)2℄;S �D0f0 = �2rf0Bs sin(� + Æf0Bs + 2�s)=[1 + (rf0Bs)2℄: (12)The equality CD0f0 = C �D0f0 is a onsequene of theuniqueness of the weak phase in deay amplitudes. Sineboth the strong phase di�erene Æf0Bs and the Bs � �Bsmixing phase are expeted small, SD0f0 and S �D0f0 willhave similar magnitudes but di�er in sign.

The BRs of �Bs ! Df0(f 02) an be estimated by usingthe experimental data on Bs ! J= f0(f 02) together withthe ratio of the BRsB( �B0s ! D0f0)B( �B0s ! J= f0) ' xf0Bs ����VbV �usVbV �s fDfJ= ����2 � (1:3� 1:5)%;B( �B0s ! D0f 02)B( �B0s ! J= f 02) ' xf 02Bs ����VbV �usVbV �s fDfJ= ����2 � 0:8%;with the produt of the form fators xf0Bs = (0:8�1:0) [12,26℄ and xf 02Bs = 0:50 [14℄. A reent measurement [27℄B( �B0s ! J= f0) � B( �B0s ! J= f 02)� 0:2B( �B0s ! J= �) � 2� 10�4shows that the Bs ! D0f0(f2) deays have a BR of order10�6. In this estimate the deays f0 into �+�� and f 02into K+K� have been taken into aount.It is straightforward to inorporate the Bs de-ays into other light p-wave mesons, like f0(1370),h1(1170); h1(1380), f1(1285) and f1(1420). But they re-quire high statistis to have an impat on , due to eitherthe suppressed prodution rates in Bs deays [28℄ or thediÆulty in the reonstrution of the deay modes [10℄.Finally, we remark on the BR estimate, whih is ob-tained under the fatorization approah in onjuntionwith the experimental data. The validity of this methodan be tested by onsidering the ratios in the proesses�B0 ! (D0; J= )( �K0; �K�0):yK � B( �B0 ! D0 �K0)=B( �B0 ! J= �K0) � 1:4%;yK� � B( �B0 ! D0 �K�0)=B( �B0 ! J= �K�0) � 0:5%;(13)where the form fator produts are used from Ref. [13℄.Compared with the data yK � 6:0% and yK� '3:2% [10℄, these ratios are theoretially undershot. Ifit is the same in B=Bs deays into K�0;2=(f0; f 02), the esti-mated BRs will be enhaned roughly by a fator of (4{6),whih makes the proposed method more appealing.In summary, we have explored the possibilityto extrat the CP violation angle  with B !(D0; �D0; D0CP )K�0(2)(1430) and Bs ! (D0; �D0)M (M =f0(980); f0(1370); f 02(1525); f1(1285); f1(1420); h1(1180)).A lean method is to use the two triangles formed by thedeay amplitudes of B� ! (D0; �D0; D0CP )K��0(2)(1430).We expet that B� ! D0K��0(2)(1430) andB� ! �D0K��0(2)(1430) have similar deay rates andthe CP asymmetries have a strong orrelation with. Our method does not require the separation ofthe Cabibbo-suppressed D deays, whih are usuallyburied under the ombinatorial bakground. With thehelp of the fatorization approah and the relevantexperimental data we estimate the branhing ratios ofthese modes to be of order 10�5 � 10�6. Measurementsof the branhing frations of Bd ! DK�0(2)(1430) andtime-dependent CP asymmetries in Bs ! DM provide



5an alternative way to extrat the angle . No knowledgeof the resonane struture in this method is requiredand therefore the angle  an be extrated without anyhadroni unertainty.Aknowledgement: The author is grateful to A. Ali for arefully reading the manusript and very useful sugges-tions, H.N. Li, C.D. L�u and Y.M. Wang for useful om-ments. This work is supported by the Alexander vonHumboldt Foundation.
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