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Abstract

We discuss how the mass of new physics particles involved in a pair of short decay
chains leading to two invisible particles, for example slepton pair production, followed by
the decay into two leptons and two neutralinos, may be measured in central exclusive pro-
duction (CEP) with forward proton tagging. We show how the existing mass measurement
strategies in CEP may be improved by making full use of the mass–shell constraints, and
demonstrate that, with around 30 signal events, the masses of the slepton and neutralino
can be measured with an accuracy of a few GeV.

1 Introduction

Many theories beyond the Standard Model (SM) include a dark matter (DM) candidate as part
of the mass spectrum. Typically, the stability of the DM candidate is the result of an assumed
global Z2 parity, under which the new (SM) particles are odd (even). For example, in the
minimal supersymmetric extension of the SM (MSSM), this is the so–called R–parity Rp, while
in models with large extra dimensions, this could be a Kaluza–Klein (KK) parity.

If such a DM candidate is produced at the Large Hadron Collider (LHC), its presence could be
revealed through the observation of large missing transverse energy. The Z2 parity implies that
the DM candidate will be pair–produced at the LHC. This leads to complications in measuring
its properties, in particular its mass, since only the vector sum of the transverse momenta of the
two DM candidates in an event can be measured.

Strategies to circumvent this problem abound in the literature [1–24].1 Many of these assume
the existence of certain long decay chains. An important example in the MSSM is the pair

1 See also Ref. [25] for a review.

http://arxiv.org/abs/1110.4320v1


production of squarks (q̃), followed by the decay chain

q̃ → qχ̃0
2 ,

χ̃0
2 → l±l̃∓ ,

l̃∓ → l∓χ̃0
1 , (1)

where χ̃0
1,2 are the neutralinos (χ̃0

1 is the DM candidate), and l̃ is a slepton. The existence of
more constraints, e.g. mass–shell conditions and dilepton invariant mass edge measurements,
than undetermined 4–momenta2 would allow simultaneous determination of the mass of the new
particles. These long decay chains imply various challenges for the relevant mass measurement
techniques, e.g. correct identification of the decay topology and combinatoric problems in as-
signing the identified final state particles to appropriate stages of the decay chains, and so it is
advantageous to consider alternative methods to complement existing strategies.

The central exclusive production (CEP) of a system X can be written in the form

pp → p + X + p , (2)

where the ‘+’ signs represent the presence of large rapidity gaps. In this type of reaction,
only the system X is produced in the central detector, with no additional hadronic activity
in the absence of pile–up, see for example Ref. [26, 27] (and references therein) for a review.
The outgoing protons scatter at small angles and remain intact, so that additional kinematic
information can be obtained by installing proton tagging detectors far from the interaction
point [28]. In particular, in the presence of these detectors the momenta of the outgoing protons
can be measured precisely, and therefore the longitudinal momentum and invariant mass of the
central system X can be accurately determined.

In this paper, we present a mass measurement method utilising the additional longitudinal
kinematic information in the exclusive two–photon production of a pair of charged particles
(X+

1 , X
−
2 ),

pp → p + γγ + p , (3)

γγ → X+
1 X

−
2 ,

followed by the decay

X± → x± + χ , (4)

where x is a visible particle (or more generally, fully reconstructed system of particles), and χ
is an invisible particle that is not seen in the detector. For concreteness, we will consider the
specific case of the exclusive two–photon production of a pair of sleptons (l̃+1 , l̃

−
2 ), followed by

the decay into leptons (l+1 , l
−
2 ) and the lightest neutralinos (χ̃1, χ̃2) (note the different notations

compared with Eq. (1)), i.e.

pp → p + γγ + p ,

γγ → l̃+1 l̃
−
2 ,

l̃+1 l̃
−
2 → l+1 l

−
2 χ̃1χ̃2 , (5)

2In the present context, there are 6 (= 8 − 2) unknowns: the four momenta of the two χ̃0
1 (8), minus the

measured missing transverse momenta (2).
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leading to a signature with two tagged protons, an opposite–sign same–flavour lepton pair and
missing 4–momentum with no additional jet activity. The irreducible SM background comes
from the production of W pairs, i.e.

pp → p + γγ + p ,

γγ → W+
1 W−

2 ,

W+
1 W−

2 → l+1 l
−
2 ν1ν̄2 . (6)

Compared to the long decay chain discussed in Eq. (1), the two–photon production process
benefits from a clean, purely leptonic signature, with no combinatoric ambiguity. Furthermore,
assuming the slepton only decays into the lightest neutralino, the process is essentially a two
scale problem that depends on the (true) masses of the slepton and the lightest neutralino,
(mtrue

l̃
, mtrue

χ̃ ), together with discrete parameters such as the particles’ charges and spins.
The irreducible SM background is also under good experimental control. This is because

in the case of the signal, two–photon production must create two same–flavour sleptons. In
the absence of large lepton flavour violation, this will lead to two same–flavour leptons in the
final state. For the SM background there is no such constraint on the flavour of the final–state
leptons: a measurement of the opposite flavour final states e±µ∓ would therefore allow a cross
check of the background determination.

However, the cross section for the exclusive two–photon production of slepton pairs is small
when compared to the inclusive production cross section from hard inelastic scattering, which
is roughly two orders of magnitude larger [29, 30]: as a result, mass measurement in this central
exclusive channel is only realistic at the 14 TeV LHC for ml̃ up to about 200 GeV. However if
the coloured sparticles, i.e. the squarks and the gluinos, are too heavy to be produced copiously
at the LHC, the presence and properties of light colour singlet sparticles may be best measured
via two–photon production. If (as we hope) the coloured sparticles are produced in abundance,
and long decay chains are observed, the present method might still be used as an independent
check or to provide external constraints on the long decay chains.

The system in Eq. (5) has four unknowns: only the vector sum of the 4–momenta of χ̃1 and
χ̃2 is measurable. Given a consistent mass hypothesis3 (ml̃, mχ̃), the four quadratic mass shell
constraints allow the system of equations to be solved analytically, up to a two–fold degeneracy.
As a result, a (ml̃, mχ̃) mass region consistent with the measured 4–momenta can be obtained on
an event–by–event basis. We believe this consistent mass regions contains all information that
can be derived from the measured 4–momenta. Neglecting finite detector resolution effects, the
(different) consistent mass region from each event must contain the true mass point (mtrue

l̃
, mtrue

χ̃ ).
Combining the consistent regions from a number of events will develop a peaking structure
around this point, hence in principle allowing determination of the true masses.

In determining the true masses and in separating the signal from SM background, we find
the maximum values of ml̃ (m

max

l̃
) and mχ̃ (mmax

χ̃ ) within the consistent mass region particularly
useful. This is because, by construction, mmax

l̃
and mmax

χ̃ are bounded from below by mtrue

l̃
and

mtrue
χ̃ respectively. They are also bounded from above by half the γγ invariant mass (mγγ) and

3The technical definition of a consistent mass hypothesis will be given in the next section.
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Figure 1: Cross sections for pair production of spin–1 (V +V −), spin–1/2 (F+F−) and spin–0
(S+S−) charged particles in central exclusive two–photon production as a function of the particle
mass (mtrue) at the 14 TeV LHC, calculated using the PhoCEP Monte Carlo event generator.

half the missing energy (Emiss). An additional advantage is the relative ease in constructing
likelihood functions from mmax

l̃
and mmax

χ̃ , which could be particularly useful given a small data
sample, as is likely the case in light of the small two–photon production cross section.

The main aim of this paper is to study how well the slepton and neutralino masses may be
determined using mmax

l̃
and mmax

χ̃ computed in each event. These masses can also be estimated
from mγγ and Emiss [31, 32], which have threshold values at 2mtrue

l̃
and 2mtrue

χ̃ respectively. We
shall compare the two methods and illustrate the improvements that can be made by making
use of the mass–shell constraints. The potential for measuring properties of the SM Higgs
boson [33, 34], long–lived gluinos [35], stops [36], MSSM Higgs [36, 37], NMSSM Higgs [38] and
other BSM Higgs scenarios [39, 40] in the central exclusive mode with tagged forward protons
have also been discussed in the literature.

Note that the decay chain considered can be applied to new physics models with different
particle spins, for example the pair production of charged spin–1/2 fermions followed by the
decay into neutral spin–1 bosons, as might be expected from a KK model. In fact, it can be
shown that, given the same masses and charges, the production cross section for spin–0 bosons
is the smallest when compared with spin–1/2 fermions and spin–1 bosons, see Fig. 1. In this
paper, we shall concentrate on the first case, which is the most conservative, and use the SUSY
decay chain in Eq. (5) as our working example.

The paper is organised as follows. In Section 2, we present the analytic solutions consistent
with the 4–momenta measurable in Eq. (5), and derive the quantities mmax

l̃
and mmax

χ̃ . We then
present the numerical results in Section 3, and compare between the performance of (mmax

l̃
, mmax

χ̃ )
and (mγγ , Emiss) in determining (mtrue

l̃
, mtrue

χ̃ ), after including the CEP dynamics simulated by
a new event generator PhoCEP[41]. This is followed by an estimate of (mtrue

l̃
, mtrue

χ̃ ) using the
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likelihood method advertised above assuming an integrated luminosity of 300 fb−1 at the 14 TeV
LHC, which is the main result of our paper. We conclude in Section 4.

2 The consistent solutions

The 4–momenta of the particles in the decay chain in Eq. (5) are subjected to the constraints

pγγ = pl̃1 + pl̃2 ,

pl̃i = pχ̃i
+ pli ,

p2
l̃i

= m2

l̃
,

p2χ̃i
= m2

χ̃ , (7)

where (i = 1, 2) and pγγ is the 4–momentum vector sum of the two γ’s. For simplicity, the
sign of the sleptons and leptons are dropped. In the above expressions, only pγγ and pli are
directly measurable. The 4–momenta of the SUSY particles, pl̃i and pχ̃i

, can be expressed as
linear combinations of pγγ , pli and P , a space–like 4–momentum vector defined by

Pµ ≡ ǫµνρσp
ν
γγp

ρ
l1
pσl2 , (8)

which has the property

P · pγγ = P · pl1 = P · pl2 = 0 . (9)

Eq. (7) implies

pχ̃1
=

1

2
(1− a)pγγ −

1

2
(b+ 1)pl1 +

1

2
(c− 1)pl2 − dP ,

pχ̃2
=

1

2
(1 + a)pγγ +

1

2
(b− 1)pl1 −

1

2
(c+ 1)pl2 + dP ,

pl̃1 =
1

2
(1− a)pγγ −

1

2
(b− 1)pl1 +

1

2
(c− 1)pl2 − dP ,

pl̃2 =
1

2
(1 + a)pγγ +

1

2
(b− 1)pl1 −

1

2
(c− 1)pl2 + dP , (10)
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with mass–shell conditions

m2
χ̃1

=
1

4
(1− a)2m2

γγ + d2P 2

−1

2
(1− a)(b+ 1)pγγ · pl1 +

1

2
(1− a)(c− 1)pγγ · pl2 −

1

2
(b+ 1)(c− 1)pl1 · pl2 ,

m2
χ̃2

=
1

4
(1 + a)2m2

γγ + d2P 2

+
1

2
(1 + a)(b− 1)pγγ · pl1 −

1

2
(1 + a)(c+ 1)pγγ · pl2 −

1

2
(b− 1)(c+ 1)pl1 · pl2 ,

m2

l̃1
=

1

4
(1− a)2m2

γγ + d2P 2

−1

2
(1− a)(b− 1)pγγ · pl1 +

1

2
(1− a)(c− 1)pγγ · pl2 −

1

2
(b− 1)(c− 1)pl1 · pl2 ,

m2

l̃2
=

1

4
(1 + a)2m2

γγ + d2P 2

+
1

2
(1 + a)(b− 1)pγγ · pl1 −

1

2
(1 + a)(c− 1)pγγ · pl2 −

1

2
(b− 1)(c− 1)pl1 · pl2 , (11)

where the parameters a, b, c and d are to be determined. For simplicity, we have neglected the
lepton mass ml throughout, although we note that consistent solution regions can also readily
be defined for general mass values.

Here mχ̃ and ml̃ need not be the true masses, but input parameters consistent with a positive
d2. The structure of the system is such that upon subtracting the different expressions in Eq. (11),
the additive d2P 2 term and the terms bilinear or quadratic in (a, b, c) drop out. This leads to
three equations linear in (a, b, c). Defining the quantities

Λ∆ ≡
∆m2

l̃χ̃

pl1 · pl2
, Λ1 ≡

pγγ · pl1
pl1 · pl2

, Λ2 ≡
pγγ · pl2
pl1 · pl2

, Λγγ ≡
m2

γγ

pl1 · pl2
, (12)

where

∆m2

l̃χ̃
≡ m2

l̃
−m2

χ̃ , (13)

the solutions for the parameters (a, b, c) are given by

a = Λ∆

(Λ2 − Λ1)

Λγγ − 2Λ1Λ2

,

b = 1− Λ2 + Λ∆

Λγγ − Λ2(Λ1 + Λ2)

Λγγ − 2Λ1Λ2

,

c = 1− Λ1 + Λ∆

Λγγ − Λ1(Λ1 + Λ2)

Λγγ − 2Λ1Λ2

. (14)

Inserting Eq. (14) into Eq. (11), all four mass constraints give

Λχ̃ = caΛ
2
∆ + cbΛ∆ + cc + d2ΛP , (15)
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where

Λχ̃ ≡
m2

χ̃

pl1 · pl2
, Λl̃ ≡

m2

l̃

pl1 · pl2
, ΛP ≡ P 2

pl1 · pl2
, (16)

and

ca =
1

4

(Λ1 + Λ2)
2 − 2Λγγ

Λγγ − 2Λ1Λ2

,

cb =
1

2
(Λ1 + Λ2 − 2) ,

cc =
1

4
(Λγγ − 2Λ1Λ2) . (17)

Note that in Eq. (15), ca, cb, cc and ΛP are constructed from directly measureable 4–momenta.
A mass hypothesis (ml̃, mχ̃) is consistent with the measured 4–momenta if it results in a positive
d2, in which case a two–fold degenerate solution for (pχ̃1

, pχ̃2
, pl̃1, pl̃2) corresponding to ±|d| is

obtained.
The boundary of consistent solutions on the (ml̃, mχ̃) plane is given by Eq. (15) by setting

d = 0. To see this, note that since P is space–like, ΛP < 0. This means that for a given Λ∆, Λχ̃

decreases as d2 increases. An upper boundary on the (∆m2

l̃χ̃
, m2

χ̃) plane therefore has d2 = 0.

The consistent region is bounded from above by this quadratic curve, and below by the x–axis,
i.e. m2

χ̃ = 0, which can be transformed into a boundary in the (ml̃, mχ̃) plane. Within the
boundary, d2 > 0. By construction, the solutions are time–like.

More observations on the properties of the consistent solutions can be made. First, the sign
of the energy component of the two solutions (for ±|d|) must be the same, since it is always
possible to boost to a frame where the energy component of the space–like vector P is zero,
in which case the two solutions have the same energies. Second, since the consistent solutions
are continuous functions of mχ̃ and ml̃, it follows that the energies of all consistent solutions
must have the same sign. The energies must then be positive, due to the fact that the true
masses must be a consistent solution, and hence lies within the boundary. Third, the solution
is clearly symmetric when exchanging Λ1 and Λ2. This means that the boundary obtained for
the mass–shell conditions for pχ̃1

and pχ̃2
must be the same, consistent with the fact that both

constraints lead to Eq. (15).
As discussed in Section 1, the consistent mass region may be characterised by the maximum

values of mχ̃ and ml̃, i.e. m
max
χ̃ and mmax

l̃
. They correspond to the stationary values of Λχ̃ and

Λl̃ as functions of Λ∆ in Eq. (15). The results are

(mmax
χ̃ )2 = (pl1 · pl2)×

(

cc −
c2b
4ca

)

,

(mmax

l̃
)2 = (pl1 · pl2)×

(

cc −
(cb + 1)2

4ca

)

. (18)

By construction, mmax
χ̃ and mmax

l̃
are bounded from below by the true mχ̃ and ml̃ respectively.

So far we have shown that analytic boundaries containing mass hypotheses consistent with
the measured 4–momenta can be obtained on an event–by–event basis. In the next section, we
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Before cuts (fb) After cuts (fb)
SM 1.00 0.72

SUSY 0.15 0.13

Table 1: Cross sections for the SUSY model with (mtrue

l̃
, mtrue

χ̃ ) = (150, 100) GeV and the SM
background at the 14 TeV LHC before and after the lepton cuts −2.5 < ηl < 2.5 and pT > 10
GeV. Cuts on the fractional momentum loss of the outgoing protons 0.0015 < ξi < 0.15, are
applied in both cases. Branching fraction of the W into one lepton flavour is included.

present examples showing the densities of consistent solutions given a large number of events,
and show the extent to which the quantities mmax

l̃
and mmax

χ̃ can be used to determine the true
masses, crucially in a small event sample.

3 Numerical study

Our numerical study is performed using the new Monte Carlo (MC) event generator PhoCEP[41].
It simulates the two–photon exclusive production of a W+W− pair and a charged scalar pair,
S+S−, via the decay chains given in Eqs. (5) and (6), as well as the production of two charged
fermions, F+F−, although we do not discuss this process in detail in this paper. The equivalent
photon approximation [28, 42] is used to calculate the photon luminosity dLγγ/dW due to
photon emission from the incoming protons, and this is then combined with the known γγ → X
(X = W+W−, S+S−, F+F−) subprocess cross sections to give the full CEP cross section

dσpp→pXp

dΩ
=

∫

dσγγ→X(W )

dΩ

dLγγ

dW
dW , (19)

where W is the γγ cms energy. The produced particles are then decayed according to the decay
chains given in Eqs. (5) and (6), and in the case of W+W− production full spin correlations for
the subsequent decay are included. The MC generates unweighted events, and full kinematic
cuts on the final state particles and outgoing protons can readily be implemented. The survival
factor S2, representing the probability that the outgoing protons do not undergo soft rescattering
and therefore spoil the exclusivity of the final state, is estimated to be roughly 90% for two–
photon exclusive production [27], and for simplicity is not included in the MC. The differential
cross sections for the γγ → X subprocesses are summarised in Appendix A.

In the following, we present numerical results of the methods discussed in Section 2. For
concreteness, we focus on a SUSY model

• SUSY model: (mtrue

l̃
, mtrue

χ̃ ) = (150, 100) GeV

and compare with results for SM W+W− pair production, which constitutes an irreducible
background to the SUSY process. For the SUSY model, the slepton is assumed to always decay
into a lepton and a neutralino. The branching fraction of the SM W into one lepton flavour is
taken as 10.8% [43].

In our simulation, a final state proton is assumed to be tagged with 100% efficiency if the
fractional momentum loss lies within the range

8
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Figure 2: Density of the consistent mass regions for a SUSY (solid red) and SM (dashed blue)
sample. From the outermost to the innermost, each set of contours delineate parameter regions
with probability density larger than 0.1, 0.3, 0.5, 0.7 and 0.9. The mass parameters for the
SUSY model are (mtrue

l̃
, mtrue

χ̃ ) = (150, 100) GeV. No detector smearing is included.

• 0.0015 < ξi < 0.15 i = 1, 2 ,

which corresponds to the expected coverage under the assumption that roman pot detectors are
installed at a distance of 220 and 420m from interaction point, see for example Ref. [44].

The following lepton pseudo–rapidity (ηl) and transverse momentum (pT ) cuts

• −2.5 < ηl < 2.5 ,

• pT > 10 GeV ,

are applied to the opposite–sign same–flavour lepton pairs. We assume 100% detection efficiency
if a lepton passes the above cuts. The cross sections before and after the lepton cuts at the 14
TeV LHC are displayed in Table 1.

In Fig. 2, the density of the consistent (ml̃, mχ̃) regions are shown. In both the SUSY and
SM samples, a peaking structure located in the vicinity of the true mass point develops. Finite
detector resolution effects will smear the spike structure slightly. However, given the LHC’s
ability to measure accurately the 4–momenta of the forward protons (in the presence of proton
taggers) and the charged leptons, the smearing effects should be relatively mild. The position
of the high density regions are significantly different such that the SUSY signal can be easily
separated from the background.

Next we show in Fig. 3 scatter plots for mmax
χ̃ andmmax

l̃
, each of which contains 10,000 events.

Recall that, by construction these two quantities are bounded from below by mtrue
χ̃ and mtrue

l̃
.

As we can see, in both the SUSY and SM samples (mmax

l̃
, mmax

χ̃ ) cluster close to the true mass
point (mtrue

l̃
, mtrue

χ̃ ). This indicates that a good estimation of the true mass parameters and

9
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Figure 3: Scatter plots showing the (mmax

l̃
, mmax

χ̃ ) values consistent with each event. Left: SUSY
(mtrue

l̃
, mtrue

χ̃ ) = (150, 100) GeV. Right: SM. Each plot contains 10,000 events. No detector
smearing is included.

identification of the presence of a SUSY signal from the SM background could in principle be
achievable.

To show the enhancement obtained by utilising the additional kinematic information, in
particular in mass determination, we compare our results with an alternative method which
measures the end points of the missing energy (Emiss) and mγγ distributions [31]. The end point
values of these distributions are at 2mtrue

χ̃ and 2mtrue

l̃
respectively. These distributions take into

account the sum of longitudinal momenta and energy of the neutralinos that can be measured
in CEP with tagged forward protons, but do not include information from mass constraints.

In Fig. 4, we show the mmax
χ̃ and mmax

l̃
distributions. The Emiss and mγγ distributions are

displayed in Fig. 5. Compared to the mmax
χ̃ and mmax

l̃
distributions, the Emiss and mγγ distri-

butions are generally broader. This qualitative difference is due to the fact that both Emiss/2
and mmax

χ̃ (mγγ/2 and mmax

l̃
) are bounded from below by mtrue

χ̃ (mtrue

l̃
), while mmax

χ̃ (mmax

l̃
)

is in addition bounded from above by Emiss/2 (mγγ/2). To compare the difference between
these two methods over a range of masses, we show two additional SUSY models, specified by
(mtrue

l̃
, mtrue

χ̃ ) = (100, 50) GeV and (mtrue

l̃
, mtrue

χ̃ ) = (200, 100) GeV in addition to the ‘reference’
SUSY model and the SM background. We see that, compared with the (Emiss, mγγ) distribu-
tions, the (mmax

χ̃ , mmax

l̃
) distributions benefit from a better signal–to–background ratio (S/B) in

the signal region, which improves as the mass scale increases. Here, the signal region for a distri-
bution is defined as the region above the lower threshold value determined by (mtrue

l̃
, mtrue

χ̃ ). For
example, for (mtrue

l̃
, mtrue

χ̃ ) = (150, 100) GeV, the S/B ratio in the signal region is approximately
1 for both mmax

l̃
and mmax

χ̃ distributions, while it is approximately 1/4 and 1/3 for the Emiss and
mγγ distributions respectively. Importantly, the distribution of the signal Emiss distributions
near the endpoint becomes increasingly smooth as the mass scale increases, leading to possibly
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Figure 4: Histograms showing the mmax
χ̃ (left) and mmax

l̃
(right). No detector smearing is in-

cluded.
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Figure 5: Histograms showing the Emiss (left) and mγγ (right) distributions. No detector smear-
ing included.

large uncertainties in determining the endpoint value. In contrast, the impact on the mmax
χ̃

distribution is relatively mild.
To estimate the precision in determining (mtrue

l̃
, mtrue

χ̃ ) that can be obtained by measuring
(mmax

l̃
, mmax

χ̃ ) at the LHC, we perform a pseudo–experiment which includes detector smearing
effects. The 4–momenta of the final state leptons are smeared via

(

δE

E

)2

=
a2

E
+ b2 , (20)
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where a = 0.1
√
GeV and b = 0.007 [45, 46]. The fractional momentum loss ξ of the final state

protons is smeared via4

δξ

ξ
= 0.04 . (21)

In the pseudo–experiment, the number of events we generate for both the SUSY signal,
(mtrue

l̃
, mtrue

χ̃ ) = (150, 100) GeV, and SM background is based on the cross sections displayed

in Table 1, assuming an integrated luminosity of 300 fb−1, i.e. 216 and 38 events for the SM
and SUSY model respectively. We further define the signal region as the range within mmax

l̃
=

[130 : 230] GeV and mmax
χ̃ = [80 : 180] GeV to increase the S/B ratio. In our particular pseudo–

experiment sample, 24 and 36 events are observed in the signal region for the SM and SUSY
model respectively.

We construct the posterior probability density of (ml̃, mχ̃) and identify the 68% and 95%
credibility region as follows. Given a hypothesis m = (ml̃, mχ̃), the probability density function
(p.d.f.) for the SUSY sample in obtaining mmax = (mmax

l̃
, mmax

χ̃ ), denoted by ρSUSY(m
max;m),

is estimated by generating 1 million events, and binning the events passing the cuts into a grid
with bin size 2GeV × 2GeV on the (mmax

l̃
, mmax

χ̃ ) plane. We generate 1189 SUSY mass points
in the range of ml̃ = [145 : 152] GeV and mχ̃ = [93 : 103] GeV with a 0.25GeV step size. The
p.d.f. for the SM background sample, ρSM(m

max), is estimated by generating 1 million events in
the same way. The combined probability density, ρ(mmax;m), is then given by

ρ(mmax;m) = fSMρSM(m
max) + fSUSYρSUSY(m

max;m) , (22)

where fSM and fSUSY are the fraction of SM and SUSY cross section after the cuts, with fSM +
fSUSY = 1.

The likelihood function, i.e. joint p.d.f., may be written as

L(m) =
∏

i

ρ(mmax;m) , (23)

where i runs over the number of events observed in the signal region. We define the posterior
probability density as5

p(m) =
L(m)

∫

dm′ L(m′)
. (24)

A hypothesis m is inside the 68% (95%) credibility region if
∫

dm′ p(m′) < 0.68 (0.95), (25)

where the integration is carried out over m′ satisfying p(m′) ≥ p(m).

4We choose this level of smearing to reproduce the quoted ‘missing mass’ resolution of roughly 2− 3 GeV for
a 120 GeV SM Higgs boson [28]

5 In other words, we take a constant prior p.d.f., π(m) = c, in the Bayesian posterior p.d.f.

p(m) =
L(m)π(m)

∫

dm′L(m′)π(m′)
.

.
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Figure 6: Credibility distribution for the (ml̃, mχ̃) hypothesis in a pseudo–experiment. The mass
parameters of the SUSY model are given by (mtrue

l̃
, mtrue

χ̃ ) = (150, 100) GeV. The solid black
and dashed red contours contain the 68% and 95% credibility regions respectively.

We show the p(m)∆ml̃∆mχ̃ distribution (∆ml̃ = ∆mχ̃ = 0.25GeV) from an event sample
from one pseudo–experiment in Fig. 6. In this particular sample, with 60 events (24 SM back-
ground, 36 SUSY signal) passing the selection criteria, (mtrue

l̃
, mtrue

χ̃ ) can be estimated to about
3–4 GeV accuracy at 95% credibility. Results from other event samples, which assume the same
integrated luminosity, show similar level of accuracies. By applying the likelihood calculation on
event samples which do not include finite detector resolution effects, we find that the uncertainty
is primarily due to statistical fluctuations.

As can be seen in Fig. 6, there is a preference towards the lower mass hypothesis. This is a
consequence of the peaking structure of the (mmax

l̃
, mmax

χ̃ ) distributions just above (mtrue

l̃
, mtrue

χ̃ ).
This implies that a hypothesis (ml̃, mχ̃) where ml̃ > mtrue

l̃
and mχ̃ > mtrue

χ̃ is likely to have
many signal events in the region where ρSUSY(m

max;m) is zero, and therefore they only ‘see’ the
likelihood contribution from fSMρSM(m

max

l̃
, mmax

χ̃ ), which is rather low. On the other hand the
likelihood reduces less quickly in the case where ml̃ < mtrue

l̃
and mχ̃ < mtrue

χ̃ due to the tail of
the mmax

l̃
and mmax

χ̃ distributions.

4 Summary and discussion

In this paper, we have discussed how the additional kinematic information obtained in CEP
with tagged forward protons can be used to simultaneously measure the masses of the particles
involved in the short decay chain displayed in Eq. (5). We presented a full solution to the system,
and found that the distributions of the quantities mmax

l̃
and mmax

χ̃ , which are the maximum mass
values consistent with a given event, are particularly useful in estimating their corresponding
true mass values mtrue

l̃
and mtrue

χ̃ . We then performed a likelihood analysis to show that for our

13



reference SUSY model, (mtrue

l̃
, mtrue

χ̃ ) = (150, 100) GeV, the true masses can be estimated to a
few GeV at 95% credibility with just O(30) signal events.

As emphasised in Ref. [35], the possibility to measure central exclusive production in the high
luminosity phase of the LHC is crucial to a wide range of processes studied in the literature.
However, one potentially important issue which our simulation has not included is the effect
of pile–up: at high luminosity there are expected to be multiple overlap events in each bunch
crossing which will fill the rapidity gaps between the central system and the outgoing protons.
Even so, by making use of the forward proton taggers and the high precision time–of–flight
detectors discussed in Ref. [28] to demand that the tagged protons and the opposite–sign lepton
pair all point to the same origin, we may hope to suppress the effect of pile–up, given good
vertexing resolution. However a more detailed investigation is beyond the scope of the present
study.

Nevertheless, we find the level of accuracies obtainable with the small (O(30)) event sample
encouraging. The prospects for measuring the masses in the corresponding decay chain in KK
scenarios are even better, due to the much higher signal cross section given the same mass
parameters, see Fig. 1.

As discussed in the Introduction, the production of a slepton pair, followed by the decay
into neutralinos and leptons in an inelastic scattering is clearly possible. As is well–known, the
energy and the longitudinal momentum of the hard process cannot be measured in a hadron–
hadron collision. Compared to the CEP process that we consider, the inelastic process has a
much larger cross section. In principle, the MT2 method [4] can be used to determine the true
masses by observing a kink structure at the true mass value. This kink structure is formed by
events where the two slepton system recoils against initial state radiation and has a non–zero
transverse momentum. However the probability that the system has a significant transverse
momentum is very low and the kink resides at the smooth tail of the distribution. Once detector
smearing effects are included, it is likely that observing such a kink structure will be difficult. In
this context, measuring the particle masses in this particular decay chain in CEP with forward
proton tagging might be the best, if not the only, way.

Finally, we note that the mass measurement technique presented here could also be used in
future linear colliders. A relevant process could be

e+e− → l̃+1 l̃
−
2 ,

l̃+1 l̃
−
2 → l+1 l

−
2 χ̃1χ̃2 , (26)

where the pγγ is simply the vector sum of the incoming electron 4–momenta. At parton level,
the leptons have a flat energy distribution with endpoints Emax,min at

Emax,min =

√
s

4



1−
(

mtrue
χ̃

mtrue

l̃

)2









1±

√

√

√

√1−
(

2mtrue

l̃√
s

)2






, (27)

cf. Ref. [50]. Since the masses are determined by the endpoints, the events away from the
endpoints are not directly used. Our mmax

l̃
and mmax

χ̃ distributions on the other hand peak

14



strongly near mtrue

l̃
and mtrue

χ̃ , so they are likely to provide better statistics given the same
number of events. However we postpone a comparative study of these two measurement methods
to the future.
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A Differential QED cross sections with γγ initial states

For ease of reference, the differential cross sections for pair production of final state particles for
W+W−[47], S+S−[48] and F+F−[49] are listed below:

dσ

dcos θ∗
(γγ → W+W−) =

πα2β

ŝ

19− 6β2(1− β2) + 2(8− 3β2)β2cos2 θ∗ + 3β4cos4 θ∗

(1− β2cos2 θ∗)2
,

dσ

dcos θ∗
(γγ → S+S−) =

πα2β

ŝ

[

1− 2(1− β2)

(1− β2cos2 θ∗)
+

2(1− β2)2

(1− β2cos2 θ∗)2

]

,

dσ

dcos θ∗
(γγ → F+F−) =

2πα2β

ŝ

1 + 2β2(1− β2)(1− cos2 θ∗)− β4cos4 θ∗

(1− β2cos2 θ∗)2
, (28)

where β = (1−4m2/ŝ)1/2, (m = mW , mF , mS), θ
∗ is the angle of out–going particles with respect

to the γ’s in the C.M. frame. The charges and colour factors are all assumed to be 1. The total
cross sections are given by

σ(γγ → W+W−) =
πα2β

ŝ

[

2
22− 9β2 + 3β4

1− β2
− 3

1− β4

β
ln

(

1 + β

1− β

)]

,

σ(γγ → S+S−) =
2πα2β

ŝ

[

2− β2 − 1− β4

2β
ln

(

1 + β

1− β

)]

,

σ(γγ → F+F−) =
4πα2β

ŝ

[

−2 + β2 +
3− β4

2β
ln

(

1 + β

1− β

)]

. (29)
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