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Measurement of the t dependene inexlusive photoprodution of �(1S) mesonsat HERA

ZEUS Collaboration
AbstratThe exlusive photoprodution reation  p ! �(1S) p has been studied withthe ZEUS detetor in ep ollisions at HERA using an integrated luminosity of468 pb�1. The measurement overs the kinemati range 60 < W < 220 GeV andQ2 < 1 GeV2, where W is the photon{proton entre-of-mass energy and Q2 isthe photon virtuality. The exponential slope, b, of the t dependene of the rosssetion, where t is the squared four-momentum transfer at the proton vertex, hasbeen measured, yielding b = 4:3+2:0�1:3 (stat.) +0:5�0:6 (syst.) GeV�2. This onstitutesthe �rst measurement of the t dependene of the  p! �(1S) p ross setion.
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1 Introdution
In exlusive photoprodution of heavy vetor mesons (VMs), J= and �, the masses ofthe harm and the bottom quarks provide a hard sale and the proess an be desribedby models based on perturbative QCD (pQCD) [1, 2℄. The interation may be viewed atleading order as shown in Fig. 1: the photon utuates into a q�q state of small transversesize, whih interats with partons in the proton through a two-gluon olour-singlet state,forming a heavy vetor meson. Thus the ross setion is proportional to the square ofthe gluon density in the proton. A harateristi feature of heavy VM photoprodutionis the rapid rise of the ross setion with the photon{proton entre-of-mass energy, W .This an be explained through the inreasing gluon density with dereasing frationalmomentum, x / 1=W 2 (where the x region aessible in heavy-quark prodution atHERA is 10�4 < x < 10�2). Numerous studies have shown that the dependene of theross setion on W an be parameterised as � / W Æ [3, 4℄. Measurements for the J= meson [5, 6℄ yielded Æ � 0:7. A higher value of Æ � 1:7 has been predited for exlusivephotoprodution of �(1S) mesons in leading-order pQCD [7℄, onsistent with the reentZEUS measurement: Æ = 1:2� 0:8 [8℄.Studies of the exlusive photoprodution of light and heavy vetor mesons [3℄ have shownthat the t dependene of the di�erential ross setion may be approximated in the regionof small t (jtj < 1 GeV2) with a single exponential: d�=djtj / exp (�bjtj), where t is thefour-momentum-transfer squared at the proton vertex. The slope parameter, b, measuredat ZEUS for exlusive J= prodution [5℄ at W0 = 90 GeV is b = 4:15� 0:05 (stat.) +0:30�0:18(syst.) GeV�2 and exhibits a logarithmi variation: b(W ) = b0 + 2�0 ln(W=W0)2, where�0 � 0:1 GeV�2. In an optial model approah for exlusive prodution of VMs, theslope parameter b is related to the radii of the proton, Rp, and the vetor meson, RVM ,aording to the approximate formula: b � (R2p + R2VM)=4. The value of b measuredfor J= prodution is approximately equal to that expeted from the size of the proton(b � 4 GeV�2), in agreement with alulations based on pQCD [9℄. This suggests thatthe size of the J= is small ompared to that of the proton. A similar piture is expetedin the ase of exlusive �(1S) prodution [10, 11℄.The present paper reports on the �rst measurement of b in exlusive �(1S) photoprodu-tion, observed in the �+�� deay hannel in the kinemati range 60 < W < 220 GeV,and omplements the previous results [8, 12, 13℄ on �(1S) photoprodution. The dataorrespond to an integrated luminosity of 468 pb�1, olleted in the period 1996{2007.1



2 Experimental set-upIn 1998{2007 (1996{1997), HERA provided eletron1 beams of energy Ee = 27:5 GeV andproton beams of energy Ep = 920 (820) GeV, resulting in a entre-of-mass energy ofps = 318 (300) GeV.A detailed desription of the ZEUS detetor an be found elsewhere [14℄. A brief outlineof the omponents that are most relevant for this analysis is given below.In the kinemati range of the analysis, harged partiles were traked in the entraltraking detetor (CTD) [15℄ and, for the data taken after 2001, also in the mirovertexdetetor (MVD) [16℄. These omponents operated in a magneti �eld of 1:43 T providedby a thin superonduting solenoid. The CTD onsisted of 72 ylindrial drift hamberlayers, organised in nine superlayers overing the polar-angle2 region 15Æ < � < 164Æ. TheMVD provided polar angle overage from 7Æ to 150Æ. The transverse-momentum resolutionfor full-length traks was �(pT )=pT = 0:0058 pT �0:0065�0:0014=pT , with pT in GeV, fordata taken before 2001 and �(pT )=pT = 0:0029 pT � 0:0081 � 0:0012=pT , for data takenafter 2001.The high-resolution uranium{sintillator alorimeter (CAL) [17℄ onsisted of three parts:the forward (FCAL), the barrel (BCAL) and the rear (RCAL) alorimeters. Eah partwas subdivided transversely into towers and longitudinally into one eletromagneti se-tion (EMC) and either one (in RCAL) or two (in BCAL and FCAL) hadroni setions(HAC). The smallest subdivision of the alorimeter is alled a ell. The CAL energy res-olutions, as measured under test-beam onditions, are �(E)=E = 0:18=pE for eletronsand �(E)=E = 0:35=pE for hadrons, with E in GeV.The muon system onsisted of barrel, rear (B/RMUON) [18℄ and forward (FMUON) [14℄traking detetors. The B/RMUON onsisted of limited-streamer (LS) tube hambersplaed behind the BCAL (RCAL), both inside and outside the magnetised iron yokesurrounding the CAL. The barrel and rear muon hambers overed polar angles from 34Æto 135Æ and from 135Æ to 171Æ, respetively. The FMUON onsisted of six planes of LStubes and four planes of drift hambers overing the angular region from 5Æ to 32Æ. Themuon system exploited the magneti �eld of the iron yoke and, in the forward diretion,of two iron toroids magnetised to 1.6 T to provide an independent measurement of themuon momentum.1 Eletrons and positrons are both referred to as eletrons in this artile.2 The ZEUS oordinate system is a right-handed Cartesian system, with the Z axis pointing in theproton beam diretion, referred to as the \forward diretion", and the X axis pointing left towards theentre of HERA. The oordinate origin was loated at the nominal interation point for data olletedbefore 2001. After 2001 it was rede�ned as the entre of the CTD. The polar angle, �, is measuredwith respet to the proton beam diretion. 2



The iron yoke surrounding the CAL was instrumented with proportional drift hambersto form the Baking Calorimeter (BAC) [19℄. The BAC onsisted of 5142 aluminiumhambers inserted into the gaps between 7:3 m thik iron plates (10, 9 and 7 layersin forward, entral (barrel) and rear subdetetors, respetively) serving as alorimeterabsorber. The hambers were typially 5 m long and had a wire spaing of 1:5 m. Theanode wires were overed by 50 m long athode pads. The BAC was equipped with energyreadout and position-sensitive readout for muon traking. The former was based on 1692pad towers (50� 50 m2), providing an energy resolution �(E)=E = 1:0=pE, where E isexpressed in GeV. The position information from the wires allowed the reonstrutionof muon trajetories in two dimensions (XY in barrel and Y Z in endaps) with a spatialauray of a few mm.The luminosity was measured using the Bethe-Heitler reation ep ! e p with the lu-minosity detetor whih onsisted of independent lead{sintillator alorimeter [20℄ andmagneti spetrometer [21℄ systems.3 KinematisThe four-momenta of the inoming and outgoing eletron and proton are denoted byk; k0; P and P 0, respetively. The exlusive reation under studyep! e�p! e�+��p (1)is desribed by the following variables (Fig. 1, top):� s = (k + P )2, the entre-of-mass-energy squared of the eletron{proton system;� Q2 = �q2 = �(k�k0)2, the negative four-momentum squared of the exhanged photon;� y = (q �P )=(k �P ), the fration of the eletron energy transferred to the hadroni �nalstate in the rest frame of the initial-state proton;� W 2 = (q + P )2 = �Q2 + 2y(k � P ) + m2p, the entre-of-mass-energy squared of thephoton{proton system, where mp is the proton mass;� M�+��, the invariant mass of the �+�� pair;� t = (P � P 0)2, the squared four-momentum transfer at the proton vertex, determinedfrom the approximate formula: t � �(p+x + p�x )2 � (p+y + p�y )2, where p�x;y are theomponents of the transverse momentum of the deay muons.The reation ep ! e�Y , (Fig. 1, bottom), where Y denotes a hadroni state originat-ing from proton dissoiation, onstitutes an important bakground. These events mimiexlusive � prodution when the hadrons from proton dissoiation remain undeteted.3



Events used in the analysis were restrited to Q2 values from the kinemati minimum,Q2min = m2ey2=(1�y) � 10�9 GeV2, where me is the eletron mass, to a value at whih thesattered eletron starts to be observed in the CAL, Q2max � 1 GeV2, with an estimatedmedian Q2 value of 10�3 GeV2. The photon{proton entre-of-mass energy an then beexpressed as: W 2 � 4EpEey � 2Ep(E � pZ); (2)where E is the energy and pZ is the longitudinal momentum of the �+�� pair.The approximate formula for t introdues dispersion 3 times smaller then that in theexperimental resolution of this variable after all event seletions; approximation (2) hasa negligible e�et in the ase of W .4 Event seletionExlusive �+�� events in photoprodution were seleted online by requiring at least oneCTD trak assoiated with a F/B/RMUON deposit or with a signal in the BAC onsistentwith a muon. Owing to the inlusion of muon triggers based on signals in the BAC [22,23℄,the rate of reorded dimuon events inreased by 17% for a third of the data as omparedto the previous �(1S) analysis [8℄. O�ine, events were seleted as follows:� two oppositely harged traks forming a vertex and no other traks present in theentral traking system;� position of the vertex onsistent with an ep interation;� both traks were required to have hits in at least 5 CTD superlayers, to ensure a goodmomentum resolution;� transverse momentum of eah trak pT > 1:5 GeV;� j�+ � ��j� 1.5, where �� is the pseudorapidity3 of a given trak, to suppress Bethe-Heitler bakground (Setion 5);� at least one trak identi�ed as a muon in the F/B/RMUON or BAC, whenever availablein a given event [24℄; if not expliitly identi�ed as a muon, the seond trak had to beassoiated with a minimum-ionising energy deposit in the CAL;� j� � �j > 0:1, where � is the angle between the momentum vetors of �+ and ��, torejet osmi-ray events;� invariant mass M�+�� in the range between 5 and 15 GeV;3 Pseudorapidity is de�ned as � = � ln (tan �2 ). 4



� the energy of eah CAL luster not assoiated to any of the �nal-state muons wasrequired to be less than 0:5 GeV, in order to be above the noise level of the CAL. Itimpliitly seleted exlusive events with an e�etive ut Q2 < 1 GeV2;� the sum of the energy in the FCAL modules surrounding the beam hole had to besmaller than 1 GeV [24℄ to suppress the ontamination from proton-dissoiative events,ep! e�Y . Aording to a Monte Carlo study, this orresponds to an e�etive ut onthe mass MY of the dissoiated system originating from the proton, MY . 4 GeV;� photon{proton entre-of-mass energy 60 < W < 220 GeV and four-momentum-transfer squared jtj < 5 GeV2.The total number of seleted �+�� pairs was 2769. The ontamination of this samplewith osmi ray muons is less then 1%.5 Monte Carlo simulationThe detetor and trigger aeptane and the e�ets due to detetor response were de-termined using samples of Monte Carlo (MC) events. Exlusive and proton-dissoiativevetor-meson prodution were simulated with the DIFFVM 2.0 generator [25℄. For proton-dissoiative events, the simulation was supplemented by the JETSET 7.3 MC pakage [26℄.For exlusive vetor-meson prodution, s-hannel heliity onservation (SCHC) was as-sumed. An exponential dependene, e�bjtj, was assumed for the di�erential ross setionin t with a slope parameter b = 4:5 GeV�2, onsistent with the value obtained for exlu-sive J= eletroprodution [5, 6℄. The W dependene of the p ! �p ross setion wasparameterised as / W Æ, with Æ = 1.2 [8℄. Eletromagneti radiative orretions assoiatedwith the deay muons are of the order of 1 % [27℄ and were not inluded in the simulation.The non-resonant bakground, onsisting of the exlusive and proton-dissoiative Bethe-Heitler (BH) dimuon events, was simulated using the GRAPE v1.1k MC program [28℄.After event seletion, the ontribution of the proton-dissoiative events was 25% of theBethe-Heitler MC sample.All MC events were generated in the full kinemati range and proessed through thesimulation of the ZEUS detetor based on the GEANT program4 [29℄ and were analysedwith the same reonstrution and o�ine proedures as the data. In addition, orre-tions [24℄ of the muon-detetor eÆienies determined from a data set onsisting of J= and Bethe-Heitler exlusive prodution events were applied.4 Version 3.13 for the 1996{2000 and 3.21 for the 2003{2007 periods, respetively.5



6 Determination of the b slopeThe invariant-mass distribution of �+�� pairs after applying the seletion riteria is shownin Fig. 2. The simulated ontributions from the Bethe-Heitler (exlusive and proton disso-iative) proess and from the �(1S), �(2S) and �(3S) resonanes are also presented5. Asin the previous paper [8℄, the BH distributions were normalised to the data in the range[5.0{15.0℄ GeV exluding the [9.0{11.0℄ GeV mass window where ontributions from the� resonanes are expeted. For the determination of the slope parameter for exlusive�(1S) prodution, only events in the mass window [9.33{9.66℄ GeV were onsidered. Thewidth of the mass window was hosen in order to avoid exessive smearing of the t vari-able and to retain a good signal-to-bakground ratio. Aording to MC studies, 71% ofall reonstruted �(1S) events are expeted in this window; the relative ontaminationsof �(2S) and �(3S) states with respet to �(1S) are 1.3% and 0.1%, respetively. Theontribution from the �(2S) and �(3S) states was negleted for the extration of theslope parameter b. After sanning no osmi ray muon andidates were found in thesignal mass window.The value of the slope parameter for exlusive �(1S) prodution was determined as fol-lows: the sum of simulated distributions of all ontributing proesses was �tted to theobserved event yields in the signal mass window [9.33{9.66℄ GeV in the four t bins shownin Fig. 3. A binned Poissonian log-likelihood funtion, ln (L), was used. The expetednumber of Bethe-Heitler bakground events was �xed to the value obtained from the �+��spetrum outside the signal region as desribed earlier. Due to insuÆient statistis it wasnot possible to evaluate the ontribution of proton-dissoiative �(1S) events in the �nalsample with the present data. However, the fration of suh events, fpdiss, is expeted tobe similar in all di�rative vetor-meson prodution proesses [31℄. Therefore, the valuefpdiss = 0:25�0:05, determined for di�rative J= prodution [5℄, was used. The values ofthe slope parameter for the exlusive and proton dissoiative �(1S) prodution proessesdi�er [32℄; in the MC the value for the latter was taken to be bpdiss = 0:65�0:1 GeV�2 [5℄.The �t was performed with two free parameters: the slope b and the number of expeted�(1S) events in the signal mass window. During the parameter san, the ontributionof the exlusive �(1S) prodution to the t distribution was reweighted at generator levelto the funtion b � exp (�bjtj). The small statistial unertainties of the MC sample werenegleted in the �t. The �t yielded: b = 4:3+2:0�1:3 (stat.) GeV�2 and 41� 10 �(1S) events(44% of the events in this mass window). The �t provides a good desription of the data;the equivalent �2 is 0:61 for 2 degrees of freedom.5 The ratio of the number of events N�(1S) : N�(2S) : N�(3S) was �xed in the MC to 0:73 : 0:19 : 0:08aording to a CDF measurement [30℄ of the prodution of � resonanes.6



7 Systemati unertaintiesThe following soures of systemati unertainty were onsidered, where the numbers inparenthesis orrespond to the unertainties on b in GeV�2:� fpdiss was varied between 0.2 and 0.3, as determined from J= prodution [5℄ (+0:30�0:25);� bpdiss was varied by +0:7�0:1 GeV�2. In addition to the unertainty from J= produtionquoted earlier, the upper variation was extended to the value bpdiss = 1:35 GeV�2obtained for this parameter when it was also �tted (�0:4+0:1);� the ontribution of BH events in the mass window [9.33{9.66℄ GeV was varied between55:3% and 56:7%, aording to the statistial unertainty of its normalisation (+0:15�0:10);� the fration of proton-dissoiative to all BH events was varied in the range 0.22 to0.28 (�0:30).Variation of the parameter Æ between 0:7 and 1:7 and variations of the o�ine seletion utslead to a negligible ontribution to the b unertainty. The total systemati unertaintywas determined by adding the individual ontributions in quadrature.8 Result and disussionThe slope parameter b for the exlusive prodution of �(1S) mesons was measured to beb = 4:3+2:0�1:3 (stat.) +0:5�0:6 (syst.) GeV�2. A omparison of all HERA measurements of theslope parameter b for exlusive light and heavy vetor meson prodution and for deeplyvirtual Compton sattering (DVCS) is shown in Fig. 4. This analysis doubles the rangeovered by previous measurements in terms of Q2 +M2VM , where MVM denotes the massof a vetor meson. The measured value is in agreement with an asymptoti behaviourof this dependene, reeting the proton radius. This was already suggested by earliermeasurements and is onsistent with preditions based on pQCD models (b = 3:68 GeV�2)[11℄.9 ConlusionsThe exlusive photoprodution reation  p ! �(1S) p was studied with the ZEUS de-tetor in ep ollisions at HERA using an integrated luminosity of 468 pb�1 olleted inthe period 1996{2007. The analysis overed the kinemati range 60 < W < 220 GeV andQ2 < 1 GeV2. The measurement of the exponential slope of the t dependene yieldedb = 4:3+2:0�1:3 (stat.) +0:5�0:6 (syst.) GeV�2. This is the �rst determination of the b parameter7



for �(1S) prodution. The result is in agreement with expetations of an asymptoti be-haviour of the slope parameter as a funtion of the e�etive sale present in the proess,Q2 +M2VM . This measurement extends the value of the sale to � 90 GeV2, the highestahieved to date in the measurement of the t-slope parameter for a vetor meson.AknowledgmentsWe appreiate the ontributions to the onstrution and maintenane of the ZEUS de-tetor of many people who are not listed as authors. The HERA mahine group and theDESY omputing sta� are espeially aknowledged for their suess in providing exel-lent operation of the ollider and the data-analysis environment. We thank the DESYdiretorate for their strong support and enouragement.
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Figure 1: Diagrams for (top) exlusive and (bottom) proton-dissoiative vetor-meson photoprodution in ep interations. The variables desribing the kinematisof both proesses are introdued in Setion 3.
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Figure 2: Invariant mass distribution of �+�� pairs. The dashed line showsthe simulated Bethe-Heitler (BH) (exlusive and proton dissoiative) distribution,normalised to the data points in the range [5.0{15.0℄ GeV exluding the [9.0{11.0℄ GeV mass window. Simulated ontributions of the �(1S), �(2S) and �(3S)resonanes are shown as a histogram on the mass axis (dashed-dotted line). Thesolid line shows the sum of all ontributions.
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