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QCD lattice simulations yield hadron masses as functiotiseofjuark masses. From the gradients
of the hadron masses the sigma terms can then be determimedonsider here dynamical 2+1
flavour simulations, in which we start from a point of the flav@ymmetric line and then keep
the singlet or average quark mass fixed as we approach theeahysint. This leads to highly
constrained fits for hadron masses in a multiplet. The gradithis path for a hadron mass then
gives a relation between the light and strange sigma ternfartAer relation can be found from
the change in the singlet quark mass along the flavour syrioiete. This enables light and
strange sigma terms to be estimated for the baryon octet.
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1. Introduction

In this talk we shall describe a method for the determinadifotie hyperon sigma terms based
on the results of{[1] to which we refer to for more details irdthg numerical results.

Sigma termsal(H), O'S(H) are defined as that part of the mass of the hadron (for exarmele t
nucleon) coming from the vacuum connected expectatiorevafithe up () down (@) and strange
(s) quark mass terms in the QCD Hamiltonian,

o™ = nf(H|(u+dd)¥H), ot = mE(H|(s3%H), (1.1)

where we have taken theandd quarks to be mass degeneratg,= my = my. (The superscript
denotes a renormalised quantity.) Hqg.](1.1) is usuallyteniin particular for the nucleon) as
o _ MENI(@U+dd—2597IN) g 2(NI(SSTIN) 1.2)

b 1—y(NR ’ (N|(Tu+dd)RIN)’

(i.e. we consideyN)® rather thaméN)). The simplest calculation, (which we will discuss in more
detail later) uses first order BU(3) flavour symmetry (octet) breaking to give
(N) m Mz+ Mz —2My 26
o = ~
mE—nf 1 yNe 1—yNR

MeV, (1.3)

and

o™ = 6L g a5 Y MeV, (1.4)
nf 2 1— y(N)R
wherem/ny is the ratio of the strange to light quark masses, which usiageading order PCAC
formula for this ratio givesrg/mf = (2M2 — M2)/M2 ~ 25. The Zweig rule(N|(39%N) ~ O
would then giveoI(N) ~ 26MeV, aiN) ~ 0MeV while any non-zero strangeness contght? > 0
would increase this value an‘I(N), aéN) (and indeed due to the large coefficieoé',\') quite rapidly).
Computing the sigma terms from lattice QCD has a long histamn quenched to 2 flavour
and more recently 2 1 flavour simulations. In general more recent results tengite lower
values than earlier determinations.
In this talk, we shall investigate this simple picture asciiéged above and in particular test
the linearity assumption @U(3) flavour symmetry breaking.

2. Flavour symmetry expansions

Lattice simulations start at some point in tfreg, nf) plane and then approach the physical
point (m§*, m**) along some path. (In future we shall denote the physicaltpuith a *.) As we
shall be considering flavour symmetry breaking then we salt here at a point on the flavour
symmetric linenf = m§ and then consider the path keeping the average quark mastaepn
m= const.. TheSU(3) flavour group (and quark permutation symmetry) then resttiee quark
mass polynomials that are allowed, giving for the baryorbct

My = Mo (M) + ¢4 8my + O(8nY), (2.1)
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with cy = 3A1, cA = 3Ay, s = —3A,, C= = —3(A1 —Az) and
dm=m-m, m=32m+m). (2.2)

So to linear order in the quark mass, we only have two unknpdn\, (rather than four). A sim-
ilar situation also holds for the pseudoscalar and vectmt®¢one unknown) and baryon decuplet
(also one unknown). This highly constrains the numerical fit

Permutation invariant functions of the mass¥s, (or ‘centre of mass’ of the multiplet) have
no linear dependence on the quark mass. For example for therbactet we have

Xn = 3(Mn +Ms +Mz) = Mo(M) +O(3n¥). (2.3)

(The corresponding result for the pseudoscalar octet engater in eq.[(3.10).)
Furthermore expanding about a specific fixed paimt= ms = my on the flavour symmetric
line and allowingmto vary, we then have

Mo(TT) = Mo (o) + Mg(mo) (M — mg) + O((M— mp)?). (2.4)

We will see thatA;, A, determine all the non-singlet sigma terms ai{my) the singlet sigma
terms.

As an example of the quark mass expansion from a point on theuflasymmetric line in
Fig.[l we plot the baryon octély /Xy for H = N, A, £, = againstVi2/X2 together with a linear fit,
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Figure 1: My /Xn (H =N, A, 2, =) againstM2/X2 for initial point on the flavour symmetric line given by
Ko = 0.12090, left panel andy = 0.12092, right panel. The 32« 64 lattices are filled circles, while the
243 x 48 lattices are open triangles. Also shown is the combineaf . ) (the dashed lines) to the
328 x 64 lattice data. The fit results are the open circles, whideetkperimental points are the (red) stars.

eg. {2-1) and implicitly eq[(3.10) usingt2L O(a) improved clover fermions g = 5.50, using two
starting values for the quark mass on the flavour symmeiré Il the points have been arranged
in the simulation to have constam We see that a linear fit provides a good description of the
numerical data from the symmetric point (whevlg, ~ X = 4109MeV) down to the physical
pion mass.
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3. (Hyperon) o equations

3.1 Renormalisation

For Wilson (clover) fermions under renormalisation thegish and non-singlet pieces of the
guark mass renormalise differently. We have

ZNS_ 7S
ZNs

In the action the terny ;mqdq =y 4MG(qQ)” i.e. is a renormalisation group invariant or RGI quan-
tity. Upon writing this in a matrix form and inverting gives

m=2%[mg+az32m+my)],  az= (3.1)

@o)f = qq-— l(u+dd+39|, (3.2)

ZNS l+or 3

so foraz # 0 then there is always mixing between bare operators. Ugefuk combinations are
the octet and singlet combinations, namely

(Ou+ )"~ 2(s8° = o ((Du+ dd) — 2(s9) (3.3)
(Qu+ dd)® + (397 = m((Uquad)nL(és)). (3.4)

3.2 o equations

Scalar matrix elements can be determined from the gradfehediadron mass (with respect
to the quark mass) by using the Feynman—Hellman theorenhvidicue for both bare and renor-
malised quantities. So if we take the derivative with respethe bare quark mass we get the bare
gg matrix element,

oMy oMy
om omg
Multiplying the renormalised quark mass, €g.(3.1), togethith egs. [(3]4) (or more generally

with eq. (3.R)) we can find RGI combinations (i.e. a form whigre renormalisation constait'
cancels). In particular we find

= (H|(Du+dd)[H), = (H[sgH). (3.5)

H) o) — 3 4
g I Og l+2r( + az)mpcy (3.6)
M) (H)_i '
+ros ' = l+errbMo(mo), (3.7)

wherer is the ratio of quark masses= nf/m. The two simultaneous equations, which can be
easily solved, give

— !
0" = T [(1+ az)Mock + 2moMp(mo)]
H 1
ot = o5 [~(1+ az)mocy +moMg(my)] (38)

1gq. (3.3) also leads to eq. (JL.3) as from secfioh 3.2 we tey@u+dd— 2s9R|N) = cy /ZNS= 3A; /Z"S. Together
with M=z + Mz — 2My = —9A10m = 3A1(mE — mfY)/ZNS this gives eq.3). An alternative mass combination thsat a
picks out theA; coefficient isM= —Mp = —3A10m.
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We see that the smallnesscqw) in comparison tms(H) is certainly guaranteed by the presence of
an additional in its numerator. These coefficients are also sufficient terdgney")?, as can be
seen from eq[(3.8),

(H)r _ o — (14 0z)MoCh + MoMg(Mo)

-2 . 3.9
y (14 az)mocy + 2meMj(mo) (3:9)

It is seen thayH)® only depends on gradients and not on the physical point.

It is convenient to normalise the coefficients Xy so we now need to find the coefficients
(1+ az)mocH /Xn(mo) andmoMg(mo) /Xn(mp) and also to extrapolate to the point where the quark
mass ratio takes its physical value, r.e= r*.

3.3 Determination of the coefficients

The coefficients can be determined by considering gradveititsespect to a physical quantity.
As in eq. [2.1) we also have a similar expansion for the psealar octet,

M2 = M3+ 2a3m +O(3m?), (3.10)

(together withMZ = M3, — adm + O(3n¥), M2 = M&, — 4adm + O(3n¥)). Analogously to
eq. (2.8) we can define a flavour singlet quankfy= 1(2Mz +M2) = M3+ O(dn?) However,
as well as eq.[(4.1), we have the additional constraint fr@A® M2 = 2BEn¥® (together with
MZ = BE(mf+ng)). If we now consider an expansion in the pion mass then eititig om
between eq[(Z.1) and ed. (3.10) gives

My
XN

from the point on the symmetric liney = M. Thus if we plotMy /Xy versusM2/X2 (holding the
singlet quark massn constant) then the gradient immediately yie{dst+ az)mocy /Xn. The only
assumption is that the ‘fan’ plot splittings remain lineadim down to the physical point. In Fi} 1
we show this plot leading to a results fdr+ az)mocy /Xy for ko = 0.12090, 012092.

Furthermore on the flavour symmetric line eliminatifig — mg) between eqs[(3.4) and the
corresponding one fdvi2(m) gives

Xu(m) _ (1— [mol\/lé(mo)]> 1 (MoMo(mo) Xz(m)
Xn(mo) X (o) Xn(mo) * X&(mo) -
Again in a plot of Xy (m)/Xn(mo) versusXz(m)/X2(mp) the gradient immediately gives the re-
quired ratiompM{(mg) /Xn(mo). In Fig. 2 we plotXy (M) /Xn(mg) versusX2(m)/X2(mp). From
eq. (3:IP) the gradient gives the required number.
Finally the quark mass ratio, must be estimated. In the right panel of fig. 2 we PR} —
M2) /X3 versusM2/X3. From eq.[(3-10) we have

CH C_H] &ZT
Xn' X2

= <1— [(1+ az)mo—]> +[(1+az)mo

% (3.11)

] (3.12)

Mg — Mz —3M5"— %. (3.13)

XX X

As in section[]2, we see that for constantthe data points lie on a straight line (i.e. there is an
absence of significant non-linearity). Together with PCHGS gives thex-axis is proportional to
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Figure 2: Left plot:Xy (M) /Xn(mp) versusX2(m)/X2(mp) along the flavour symmetric line, together with
the linear fit from eq.[(3.12); Right plot2M2 — M2)/Xg versusM2 /X4 for ko = 0.12090 (left panel) and
Ko = 0.12092 (right panel). The 3 64 volume results are given by the filled symbols, while th&:248
volume results are shown using empty triangles. The fit isrgiv eq. ). Experimental points are
denoted by (red) stars.

my while they-axis is proportional tarf and thus the ratio gives Taking our physical scale to be
defined fromM2/X3|* (i.e. from thex-axes of Fig[]2) gives fr*.

What can we say about corrections to the linear terms? Thpleilimear fit describes the
data well, from the symmetric point to our lightest pion mdssth along then = const. line and
the flavour symmetric line. To see the possible influence ofature we compare linear fits with
quadratic fits as discussed in the Appendix[§f [1]. Theselvélused in sectiof] 4 for the estimate
of possible systematic effects.

4. Results and Conclusions

We can now determing"® and oI(H), o™ The scale is taken &g = 1.1501 GeV. We shall
only discuss here the general details of the results; theerioai values are given irf][1].
From eq. [(3J6) we can find an indication of the magnitudq%'f) as approximately

(N) =
oM L2244 ‘fg = MeV 2 224MeV. (4.1)

The last inequality follows as obvioustys(N)* > 0. Indeed this shows that a non-zebe)* >0
can only add a few MeV to this result.

These results are illustrated in the left plot of Hig. 3 §8¥P** and in the right pIotsaI(H)*,
os(H)* both againsH = N, A, Z and=. While the data foky = 0.12090 is more complete than
for ko = 0.12092 (cf. the plots in Fig]1) and demonstrates linear kiehavas the path starting at
Ko = 0.12092 is closer to the physical point (cf. Fily. 2) we shall these values as our final values.

In conclusion we have found that keeping the average quass manstant gives very linear
‘fan’ plots from the flavour symmetric point down to the ploai point. This implies that an
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Figure 3: y(H)R (left plot) andal(H)* andad™”" (right plots) both at the physical point fét = N, A, =, =

expansion in the quark mass from the flavour symmetric poifitgive information about the
physical point. In this talk we have applied this to estimgtthe sigma terms (both light and
strange) of the nucleon octet. There has been no use of & phitarbation expansion (indeed this
is an opposite expansion to the one used here, expanding zd&vougquark mass).

Note that expansions about t&&J(3) flavour line require consistency between many QCD
observables, here for example not only for the baryon octdeuconsideration here, but also for
the pseudoscalar octet, and PCAC and the ratio of the ligbttémge quark mass.

Of course there are several more avenues to investigateagpuoach here has been to em-
phasise linearity at the expense (presently) of reachimgtxthe physical point. This can be
addressed by interpolating between a small set of considimies about the physical point. Ad-
ditionally the use of partial quenching will also help to ghiser to the physical pion mass. With
more data, a systematic investigation of quadratic quadsrteams in the flavour expansion should
be considered, to reduce the systematic errors.
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