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1 IntrodutionHadron sigma terms, �(H)l , �(H)s are de�ned1 as that part of the mass of the hadron(for example the nuleon) oming from the vauum onneted expetation valueof the up (u) down (d) and strange (s) quark mass terms in the QCD Hamiltonian,�(H)l = mRl hHj(uu+ dd)RjHi ; �(H)s = mRs hHj(ss)RjHi ; (1)where we have taken the u and d quarks to be mass degenerate, mu = md �ml. (The supersript R denotes a renormalised quantity.) Other ontributionsto the hadron mass ome from the hromo-eletri and hromo-magneti gluonpiees and the kineti energies of the quarks, [2℄. Sigma terms are interestingbeause they are sensitive to hiral symmetry breaking e�ets. Experimentallythe value for �(N)l has been dedued from low energy �-N sattering. A deliateextrapolation to the hiral limit [1℄ gives a result for the isospin even amplitude of��N=f 2� (with ��N � �(N)l ), from whih the sigma term may be found. The preisevalue obtained this way has been under disussion for many years. Howeverwithin the limits of our lattie alulation, this will not onern us here and fororientation we shall just quote a range of results from earlier analyses of [3, 4℄of 45(8)MeV while a later dispersion analysis [5℄ suggested a muh higher value64(7)MeV. An estimation using heavy baryon hiral perturbation theory gave45MeV, [6℄. A more reent estimate gave 59(17)MeV, [7℄. Even less is knownabout the nuleon strange sigma term. Eq. (1) is usually written (in partiularfor the nuleon) as�(N)l = mRl hN j(uu+ dd� 2ss)RjNi1� y(N)R ; y(N)R = 2hN j(ss)RjNihN j(uu+ dd)RjNi ; (2)(i.e. we onsider �(N)l and y(N)R rather than �(N)l and �(N)s ). The simplest al-ulation, e.g. [1℄ (whih we will disuss in more detail later) uses �rst order inSU(3) avour symmetry (otet) breaking to give�(N)l = mRlmRs �mRl M� +M� � 2MN1� y(N)R � 261� y(N)R MeV ; (3)and �(N)s = mRsmRl 12y(N)R�(N)l � 325 y(N)R1� y(N)R MeV ; (4)where mRs =mRl is the ratio of the strange to light quark masses, whih using theleading order PCAC formula for this ratio givesmRs =mRl = (2M2K �M2�)=M2� � 25 : (5)1Or more aurately as the matrix element of the double ommutator of the Hamiltonianwith two axial harges. However this is equivalent to the de�nition given in eq. (1), see forexample [1℄. 2



The Zweig rule, hN j(ss)RjNi � 0 would then give�(N)l � 26MeV ; �(N)s � 0MeV ; (6)while any non-zero strangeness ontent, y(N)R > 0 would inrease this value of�(N)l , �(N)s (and indeed, due to the large oeÆient, �(N)s quite rapidly).Determination of the strange sigma term (and in partiular y(N)R) is impor-tant in onstraining the ross setion for the detetion of dark matter. WIMPswould be sattered o� nulei by the exhange of salar partiles, suh as the Stan-dard Model Higgs partile, whih will interat more strongly with heavier quarkavours. This oupling an be parameterised in terms of the frational ontribu-tion of a quark avour q to the nuleon's mass MN , fTq = mRq hN j(qq)RjNi=MN .While the ontributions of the harm and heavier avours approah a onstantthat is proportional to the gluoni ontribution fTg , there is a strong dependeneof the ross setion on the value of fTs , see e.g. [8, 9℄ and referenes therein.Computing the sigma terms from lattie QCD has a long history from initialquenhed simulations to 2 avour and more reently 2 + 1 avour simulations,e.g. [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21℄, with a status report being givenin [22℄. In general more reent results tend to give a lower �(N)s term than earlierdeterminations.In this artile, we shall investigate this simple piture as desribed in eqs. (3),(5) and in partiular test the linearity assumption of SU(3) avour symmetrybreaking.2 Flavour symmetry expansionsLattie simulations start at some point in the (mRs ; mRl ) plane and then approahthe physial point (mR �s ; mR �l ) along some path. (In future we shall denote thephysial point with a �.) As we shall be onsidering avour symmetry breakingthen we shall start here at a point on the avour symmetri line mRl = mRs andthen onsider the path keeping the average quark mass onstant, m = onst..The SU(3) avour group (and quark permutation symmetry) then restrits thequark mass polynomials that are allowed, [23℄, giving for the baryon otetMH =M0(m) + HÆml +O(Æm2l ) ; (7)with H = 8>><>>: 3A1 H = N3A2 H = ��3A2 H = ��3(A1 � A2) H = � (8)where Æml = ml �m ; m = 13(2ml +ms) ; (9)3



and A1 and A2 are unknown oeÆients. So to linear order in the quark mass,we only have two unknowns (rather than four). A similar situation also holds forthe pseudosalar and vetor otets (one unknown) and baryon deuplet (also oneunknown). These funtions highly onstrain the numerial �ts. (At O(Æm2l ) onlythe baryon deuplet has a further onstraint.)Permutation invariant funtions of the masses XS, (or `entre of mass' of themultiplet) an be de�ned whih have no linear dependene on the quark mass.For example for the baryon otet we haveXN = 13(MN +M� +M�) =M0(m) +O(Æm2l ) : (10)(The orresponding result for the pseudosalar otet is given later in eq. (29).)Furthermore expanding about a spei� �xed point, ml = ms = m0 on theavour symmetri line and allowing m to vary, we then haveM0(m) =M0(m0) +M 00(m0)(m�m0) +O((m�m0)2) : (11)We will see that A1, A2 give all the non-singlet hyperon sigma terms andM 0(m0)the singlet terms.As an example of the quark mass expansion from a point on the avoursymmetri line in Fig. 1 we plot the baryon otet MH=XN for H = N , �, �, �
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Figure 1: MH=XN (H = N , �, �, �) againstM2�=X2� for an initial point (\sym. pt.")on the avour symmetri line given by �0 = 0:12090, left panel, and �0 = 0:12092,right panel. The 323 � 64 latties are �lled irles, while the 243 � 48 latties are opentriangles. Also shown is the ombined �t of eq. (33) (the dashed lines) to the 323 � 64lattie data. The �t results are the open irles, while the experimental points are the(red) stars. l and s denote the light and strange quark ontent of the hadron.against M2�=X2� together with a linear �t, eq. (7) and impliitly eq. (29) using2 + 1 O(a) improved lover fermions at � = 5:50, [24℄ using two starting valuesfor the quark mass on the avour symmetri line, namely �0 = 0:12090, 0:12092.4



All the points have been arranged in the simulation to have onstant m. Wesee that a linear �t provides a good desription of the numerial data from thesymmetri point (whereM� � X�� = 410:9MeV) down to the physial pion mass.In a little more detail, the bare quark masses are de�ned asamq = 12 � 1�q � 1�0;� ; with q = l; s; 0 ; (12)(with the index q = 0 denoting the ommon quark along the avour symmetriline) and where vanishing of the quark mass along the SU(3) avour symmetriline determines �0;. Keeping m = onstant � m0 gives�s = 13�0 � 2�l : (13)So one we deide on a �l this then determines �s. Note that �0; drops out ofeq. (13), so we do not need its expliit value. These initial �0 values hosen here,namely �0 = 0:12090 and 0:12092 are lose to the path that leads to the physialpoint (�0 = 0:12092 being slightly loser). (This is disussed in more detail in[23℄, whih also ontains numerial tables and phenomenologial values for thehadron masses. Results not inluded there are given in Appendix C.) This pathis also illustrated later in setion 4.3, Fig. 4. Although �nite size e�ets tend toanel in ratios of quantities from the same multiplet, we nevertheless �t just tothe results from the 323� 64 latties (�lled irles) using the linear �t of eq. (7).Finally note that we also have a similar avour expansion for the pseudosalarotet as for the baryon otet, as will be disussed in setion 4.3.3 (Hyperon) salar matrix elementsSalar matrix elements an be determined from the gradient of the hadron mass(with respet to the quark mass) by using the Feynman{Hellman theorem whihis true for both bare and renormalised quantities. So if we take the derivativewith respet to the bare quark mass we get the bare qq matrix element,�MH�ml = hHj(uu+ dd)jHi ; �MH�ms = hHjssjHi ; (14)while if we take the derivative with respet to the renormalised quark mass we getthe renormalised matrix element. In the left panel of Fig. 2, we show the nuleonmasses (green diamonds) and the avour symmetri nuleon masses (maroonsquares) against 1=�l, 1=�0 respetively (from eq. (12) these are proportional tothe bare quark mass). From the Feynman{Hellmann theorem, the slope of themasses (maroon squares) gives the totalPq=u;d;shN jqqjNi, while the slope of the5
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Figure 2: The left panel shows the nuleon mass, aMN , versus 1=�l, (for them = onst. points, green diamonds with �0 = 0:12090) and versus 1=�0 (for theavour symmetri points, \sym. pts.", maroon squares). The ommon avour sym-metri points are denoted by red irles. The 243�48 volume results are open symbolstogether with a dashed line for the (linear) �t, while the 323 � 64 volume results are�lled symbols and solid lines. Similarly the right panel shows the nuleon mass aMN ,versus (aM�)2 (same notation as for the left panel).masses (green diamonds) gives the valene ontribution2. The di�erene betweenthe two ontributions gives the disonneted ontribution. Beause here all threequark masses are equal, the disonneted ontribution for all three quarks willbe the same. The two slopes thus give the estimatesPqhN jqqjNionPqhN jqqjNi � 4:09:7 � 0:41hN jssjNiPqhN jqqjNi � 13 �9:7� 4:09:7 � � 0:19 ; (15)for bare lattie quantities.To look at renormalised matrix elements, we need a plot against the renor-malised mass, (aM�)2 (as in leading order PCAC, M2� is proportional to therenormalised quark mass, eq. (31)). This is shown in the right panel of Fig. 2.The slopes are now muh loser to eah other. We now �nd the estimatesPqhN j(qq)RjNionPqhN j(qq)RjNi � 3:24:3 � 0:74hN j(ss)RjNiPqhN j(qq)RjNi � 13 �4:3� 3:24:3 � � 0:085 ; (16)2Eq. (7) an be extended to the `partially quenhed' ase, [23℄, where the sea quark massesremain onstrained by m = onst. but the valene quark masses �l, �s are unonstrained.De�ning Æ�q = �q�m then for the nuleon, the leading hange is partiularly simple, NÆml !NÆ�l. For the other members of the otet, �, �, �, both Æ�l, Æ�s our, [23℄.6



for renormalised lattie quantities, giving y(N)R � 2 � 0:085=(1� 0:085) � 0:19.So although for bare matrix elements, there is a signi�ant strange quark ontentthis is redued in the renormalised matrix element.We shall now try to make these onsiderations a little more quantitive.4 (Hyperon) � equations4.1 RenormalisationFor Wilson (lover) fermions under renormalisation the singlet and non-singletpiees of the quark mass renormalise di�erently [25, 26℄. We havemRq = ZNS �mq + �Z 13(2ml +ms)� ; �Z = ZS � ZNSZNS : (17)In the ation the term Pqmqqq = PqmRq (qq)R i.e. a renormalisation group in-variant or RGI quantity. Upon writing this in a matrix form and inverting gives(qq)R = 1ZNS �qq � �Z1 + �Z 13(uu+ dd+ ss)� ; (18)so for �Z 6= 0 then there is always mixing between bare operators.As an example of where this manifests itself, the relation between the bare,y(H), and renormalised y(H)R, f. eq. (2), is then given byy(H)R = y(H) � 23�Z(1� y(H))1 + 13�Z(1� y(H)) ; (19)so we see that y(H)R 6= y(H) for lover fermions. Additionally, sine �Z > 0 andy(H) �> 0 we �nd that y(H)R < y(H), i.e. is redued.Useful quark ombinations are the otet and singlet ombinations, namely(uu+ dd)R � 2(ss)R = 1ZNS �(uu+ dd)� 2(ss)� ;(uu+ dd)R + (ss)R = 1ZNS(1 + �Z) �(uu+ dd) + (ss)� : (20)Furthermore, using the Feynman-Hellman theorem, eq. (14) and with the hadronavour expansion, eq. (7) together with eq. (11) giveshHj(uu+ dd)R � 2(ss)RjHi = 1ZNS H (21)hHj(uu+ dd)R + (ss)RjHi = 1ZNS M 001 + �Z : (22)Eq. (21), the equation for the matrix element of an otet operator, only involvesH (the hadron mass expansion keeping the singlet quark mass onstant), while7



eq. (22), the matrix element of a singlet operator, only involvesM 00 (ouring whenhanging the singlet quark mass). Eq. (21) also leads to eq. (3) as disussed inthe introdution3.Finally note that the quantities(ms �ml)hHj(uu+ dd)� 2ssjHi ; (2ml +ms)hHj(uu+ dd) + ssjHi ; (23)are RGI, all Z fators anel when they are renormalised. Linear ombinations ofthese two quantities are also RGI in partiular the ombination used previouslyof �(H)l + �(H)s =PqmqhHjqqjHi. However, �(H)l and �(H)s onsidered separatelyare not RGI, see eqs. (17), (18). The renormalised quantities are mixtures ofthe two lattie quantities, and �Z is needed to relate lattie values to ontinuumvalues. Refering bak to Fig. 2 we see that the bare lattie strange sigma termis muh larger that the renormalised strange sigma term, due to a anellationbetween the two terms in eq. (18).4.2 � equationsMultiplying the renormalised quark mass, eq. (17), together with eqs. (21), (22)(or more generally with eq. (18)) we an �nd RGI ombinations (i.e. a form wherethe renormalisation onstant ZNS anels). In partiular we �nd�(H)l � 2r�(H)s = 3r1 + 2r (1 + �Z)m0H (24)�(H)l + r�(H)s = 3r1 + 2rm0M 00(m0) ; (25)where r is the ratio of quark massesr � mRlmRs : (26)Thus we have to �nd the (�xed) oeÆients (1+�Z)m0H , m0M 00(m0). We thendetermine the physial values of the sigma terms by extrapolating to the pointwhere the quark mass ratio takes its physial value, i.e. r = r�.We observe that we have two simultaneous equations, whih an be easilysolved to give4 �(H)l = r1 + 2r [(1 + �Z)m0H + 2m0M 00(m0)℄�(H)s = 11 + 2r [�(1 + �Z)m0H +m0M 00(m0)℄ : (27)3The RHS of eq. (21) an be re-written as N=ZNS = 3A1=ZNS. Together with M� +M� �2MN = �9A1Æml = 3A1(mRs �mRl )=ZNS this gives eq. (3). An alternative mass ombinationthat also piks out the A1 oeÆient is M� �M� = �3A1Æml.4This leads to relations between the various sigma terms, whih we list in Appendix A andwhere we also argue that they are always approximately true.8



We see that the smallness of �(H)l in omparison to �(H)s is ertainly guaranteed bythe presene of an additional r in its numerator. As �(H)s > 0 we must also haveM 00(m0) > (1 + �Z)max H . These oeÆients are also suÆient to determiney(H)R, as an be seen either diretly from eq. (27) or from eq. (22),y(H)R = 2 �(1 + �Z)m0H +m0M 00(m0)(1 + �Z)m0H + 2m0M 00(m0) : (28)Again, as seen in setion 3, y(H)R only depends on gradients and not on thephysial point.It is now onvenient to normalise the oeÆients by XN so we now need to�nd the oeÆients (1 + �Z)m0H=XN(m0) and m0M 00(m0)=XN(m0).4.3 Determination of the oeÆientsThe hint for determining the oeÆients from our lattie data is given in setion 3,where we onsider gradients with respet to a renormalised or physial quantity{ here taken as the pion mass. As in eq. (7) we also have a similar expansion forthe pseudosalar otet,M2� =M20 � + 2�Æml +O(Æm2l ) ; (29)(together with M2K = M20� � �Æml + O(Æm2l ), M2�s = M20� � 4�Æml + O(Æm2l )).This gives a good representation of the data as an be seen from Fig. 12 of [23℄.Analogously to eq. (10) we an de�ne a avour singlet quantityX2� = 13(2M2K +M2�) =M20 � +O(Æm2l ) : (30)However, as well as eq. (7), we have the additional onstraint from PCACM2� = 2BR0mRl ; (31)(together with M2K = BR0 (mRl +mRs ), M2�s = 2BR0mRs ) whih implies thatM20 � = 2�(1 + �Z)m ; � = BR0 ZNS : (32)If we now onsider an expansion in the (physial) pion mass then eliminating Æmlbetween eq. (7) and eq. (29) givesMHXN = �1� �(1 + �Z)m0 HXN ��+ �(1 + �Z)m0 HXN � M2�X2� ; (33)from the point on the symmetri line m0 = m. Thus if we plot MH=XN versusM2�=X2� (holding the singlet quark mass, m onstant) then the gradient imme-diately yields (1 + �Z)m0H=XN . The only assumption is that the `fan' plot9



splittings remain linear in Æml down to the physial point. In Fig. 1 we show thisplot giving the results(1 + �Z)m0 3A1XN = 0:1899(55) ; 0:2066(68) ;(1 + �Z)m0 3A2XN = 0:03942(314) ; 0:04164(431) ; (34)for �0 = 0:12090, 0:12092 respetively.Alternatively on the avour symmetri line, ml = m (i.e. Æml = 0), so varyingm from a point m0 givesM2�(m) =M20 �(m) = M20�(m0) +M2 00 �(m0)(m�m0)= 2�(1 + �Z)[m0 + (m�m0)℄ ; (35)whih gives M2 00�(m0) = 2�(1 + �Z). So now eliminating (m � m0) betweeneqs. (11), (35) givesXN(m)XN(m0) = �1� �m0M 00(m0)XN(m0) �� + �m0M 00(m0)XN(m0) � X2�(m)X2�(m0) : (36)Again in a plot of XN(m)=XN(m0) versus X2�(m)=X2�(m0) the gradient immedi-ately gives the required ratio m0M 00(m0)=XN(m0). We have also replaed MN byXN and M2� by X2� (whih allows us to use all the 323 � 64 data available for apartiular m). In Fig. 3 we plot XN(m)=XN(m0) versus X2�(m)=X2�(m0). From
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Figure 3: XN (m)=XN (m0) versus X2�(m)=X2�(m0) along the avour symmetri line,together with the linear �t from eq. (36).eq. (36) this gives m0M 00(m0)XN(m0) = 0:273(32) : (37)10



Finally the quark mass ratio, r, must be estimated. In Fig. 4 we plot (2M2K�
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along the m = onst. line and the avour symmetri line. To see qualitativelythe possible inuene of urvature we now ompare linear �ts with quadrati �ts.These will be used to estimate possible systemati e�ets. We briey disussthese e�ets here.In Fig. 5 we ompare the results of a quadrati �t and a linear �t, both for the
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Figure 5: Left panel: MH=XN for H = N , �, �, � against aÆml for initial point onthe avour symmetri line given by �0 = 0:12090 together with the previous linear �t(dashed lines) and quadrati �t (solid lines). Other notation as in Fig. 1. Right panel:XN (m)=XN (m0) versus X2�(m)=X2�(m0) along the avour symmetri line, togetherwith a linear �t from eq. (36) (dashed line) and a quadrati �t (solid line).baryon mass fan plot and for XN(m)=XN(m0). In the left panel of the �gure, weonsider the baryon mass fan plot. The quadrati �t here uses all the data, [23℄,on both lattie sizes (in ases where results for two lattie sizes are available,we used the larger lattie size only). The urvature terms here are small andstatistially ompatible with zero.The right panel of the �gure shows a quadrati �t to the results along thesymmetri line. The urvature here is dominated by the large error of the lightestpoint (whih has a low statisti). Thus we shall regard this �t as only giving anestimation of the possible systemati error.The results in the next setion inlude systemati error estimates from boththese urvature soures ombined in quadrature. In Appendix B we give somemore details.5 ResultsWe an now numerially determine y(H)R and �(H)l , �(H)s .We start with y(H)R. From eq. (28), together with eqs. (34), (37) and eq. (8)gives the results in Table 1. The �rst error is the linear �t error (in this asedominated by the error in eq. (37)), while the seond error indiates possible12



N � � ��0 = 0:12090y(H)R� 0.22(9)(15) 0.80(14)(28) 1.23(20)(41) 2.14(38)(64)�(H)�l [MeV℄ 29(3)(4) 23(3)(4) 20(3)(4) 16(3)(5)�(H)�s [MeV℄ 89(34)(59) 250(34)(68) 334(34)(68) 453(34)(58)�0 = 0:12092y(H)R� 0.18(9)(15) 0.79(14)(28) 1.25(20)(42) 2.30(42)(68)�(H)�l [MeV℄ 31(3)(4) 24(3)(4) 21(3)(4) 16(3)(4)�(H)�s [MeV℄ 71(34)(59) 247(34)(69) 336(34)(69) 468(35)(59)Table 1: Results for the baryon otet for y(H)R�, �(H)�l , �(H)�s with H = N , �, �, �for �0 = 0:12090, 0:12092.e�ets from higher order terms, as disussed in setion 4.4. We see that thereis an order of magnitude inrease in the fration of hHj(ss)RjHi ompared tohHj(uu+ dd)RjHi as we inrease the strangeness ontent of the baryon from thenuleon (no valene strange quarks) to the � (two valene strange quarks).Turning to the sigma terms themselves, from eq. (24) we an �nd an indiationof the magnitude of �(N)l as approximately (with XN = 1:1501GeV),�(N) �l � [22 � 25℄ + �(N) �s13 MeV > [22 � 25℄MeV ; (40)(for �0 = 0:12090, 0:12092 respetively). The last inequality follows as obviously�(N)�s > 0. Indeed this shows that a non-zero �(N)�s > 0 an only add a few MeVto this result.The results for �(H)�l and �(H)�s are also given in Table 1. (Again the �rsterror is the statistial error, while the seond systemati error is due to possiblequadrati e�ets.) While the data for �0 = 0:12090 is more omplete than for�0 = 0:12092 (f. the plots in Fig. 1) and demonstrates linear behaviour, as thepath starting at �0 = 0:12092 is loser to the physial point (f. Fig. 4) we shalluse these values as our �nal values. These results are illustrated in Fig. 6 fory(H)R� where H = N , �, �, �.By varying r in eq. (27)5 , we plot in Fig. 7 �(H)l and �(H)s for the baryonotet, H = N , �, � and � from the symmetri point (vertial dashed line atx = 1) to the physial point (left vertial dashed line). �(H)l is rapidly dereasing5Using, for example, the results from the left panel of Fig. 4, r may be re-written asr = M2�=X2�3� 2(M2�=X2�) :13
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while �(H)s is inreasing as we derease the quark mass. Also, as expeted �(H)l islargest for the nuleon, N , while �(N)s is the smallest. Finally in Fig. 8 we plot�(H)�l , �(H)�s against H = N , �, � and �, again using Table 1.
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Figure 8: �(H)�l and �(H)�s for H = N , �, �, � at the physial point for �0 = 0:12092.6 ConlusionsKeeping the average quark mass onstant gives very linear `fan' plots from theavour symmetri point down to the physial point. This implies that an expan-sion in the quark mass from the avour symmetri point will give informationabout the physial point. In this artile we have applied this to estimating thesigma terms (both light and strange) of the nuleon otet. There has been nouse of a hiral perturbation expansion (indeed this is an opposite expansion tothe one used here, expanding about zero quark mass).Our results are given in setion 5 and we quote from there a value for thenuleon sigma terms of�(N)�l = 31(3)(4)MeV ; �(N)�s = 71(34)(59)MeV : (41)(The �rst error is the �t error while the seond error indiates possible e�etsfrom higher order terms in the avour expansion.) Note that expansions aboutthe SU(3) avour line require onsisteny between many QCD observables, herefor example not only for the baryon otet under onsideration here, but also forthe pseudosalar otet, and PCAC and the ratio of the light to strange quarkmass. 15



Of ourse there are several more avenues to investigate. Numerially an in-rease in statistis for the masses along the avour symmetri line would reduethe dominant error (both statistial and systemati) and so diretly help in de-reasing the present errors. Our approah here has been to emphasise linearityat the expense (presently) of reahing exatly the physial point. This an beaddressed by interpolating between a small set of onstantm lines about the phys-ial point. Additionally the use of partial quenhing will also help to get loser tothe physial pion mass. With more data, a systemati investigation of quadratiquark mass terms in the avour expansion should be onsidered, to redue thesystemati errors. Finally while the use of linear or quadrati terms along the lineof onstant m is unproblemati, so that it is unlikely that eq. (40) will hange bymuh, more subtle is the relation involving X(m) (i.e. the gradient when hang-ing m.) For the example of lover fermions we have ~g2(m) = (1+ bgam)g2 whihlearly does not hange if m = onstant, but will slightly hange when m does.However this is probably not a large e�et (as bg seems small). For a disussionof some aspets of this issue see [29, 30℄.AknowledgementsThe numerial on�guration generation was performed using the BQCD lattieQCD program, [31℄, on the IBM BlueGeneL at EPCC (Edinburgh, UK), theBlueGeneL and P at NIC (J�ulih, Germany), the SGI ICE 8200 at HLRN (Berlin-Hannover, Germany) and the JSCC (Mosow, Russia). We thank all institutions.The BlueGene odes were optimised using Bagel, [32℄. The Chroma softwarelibrary, [33℄, was used in the data analysis. This work has been supported in partby the EU grants 227431 (Hadron Physis2), 238353 (ITN STRONGnet) and bythe DFG under ontrat SFB/TR 55 (Hadron Physis from Lattie QCD). JMZis supported by STFC grant ST/F009658/1.AppendixA Some relations between the � termsWe disuss here some relations between the sigma terms within a multiplet (heretaken to be the baryon otet) whih are exat within the linear ase disussedhere, but whih we might expet to always be approximately true.The singlet relation eq. (22) or eq. (25) is the same for every hadron. So interms of sigma terms this beomes�(H)l + r�(H)s � �(H0)l + r�(H0)s : (42)16



At the avour symmetri point it follows from group theory that a singlet operatorhas the same value for every member of a multiplet, so eq. (42) must hold. Butthis an hange if we move away from the symmetri point. (We shall brieydisuss this at the end of this setion.)We an �nd another olletion of near identities by summing over a singletombination of hadrons | this an be either a singlet of S3 or a singlet of SU(3).If we do this, the expetation values of uu, dd and ss will be exatly equal at theavour symmetry point, and stay again nearly equal away from the symmetrypoint. By this argument we expet�(�)l + �(�)l � 2r ��(�)s + �(�)s ��(N)l + �(�)l + �(�)l � 2r ��(N)s + �(�)s + �(�)s � : (43)(Again this relation, as with the other relations disussed here, is exatly true forthe linear ase.)Other relations ome from the Gell-Mann{Okubo relation, [27, 28℄ in whihthe 27-plet mass ombination is very small,2MN � 3M� �M� + 2M� � 0 ; (44)for all values of ml; ms. In our approah, its derivatives are also near zero. Wetherefore expet 2�(N)l � 3�(�)l � �(�)l + 2�(�)l � 02�(N)s � 3�(�)s � �(�)s + 2�(�)s � 0 : (45)We obtain an even stronger version of these relations by taking the singlet om-bination, proportional to (uu+ dd)R + (ss)R,2�(N)l � 3�(�)l � �(�)l + 2�(�)l + r �2�(N)s � 3�(�)s � �(�)s + 2�(�)s � � 0 : (46)There is also a relation between the sigma terms and the hadron masses,[2℄ as the onstants A1 and A2 whih our in the mass splittings also our inthe leading order expressions for the sigma terms. So there will be onnetionsbetween masses and sigma terms. One partiularly simple relation isMH � �(H)l � �(H)s �MH0 � �(H0)l � �(H0)s : (47)(i.e. the baryon mass di�erene is losely aounted for by the sigma terms.) Forthe linear ase this is again exat, with this equation being equal to M0(m0) �m0M 00(m0) for all the otet baryons (upon using eqs. (7), (27)). From eq. (11) wesee that this is just the ommon hadron mass in the hiral limit along the avoursymmetri line, when ml = 0 = ms or m = 0. �(H)l and �(H)s an be thought ofas that part of the hadron mass whih is due to ml and ms respetively. The17



remnant, M0(m0)�m0M 00(m0), is the part of the hadron mass due to the quarkand gluon kineti energy, interation energy, et., [2℄, i.e. the part of the hadronmass whih is not due to the oupling with the Higgs vauum expetation value.We an use the higher order mass equations in [23℄ to estimate how well therelations in this setion hold. Most of the relations have violations proportionalto the �rst power of the SU(3) breaking parameter, Æml. The orretions toeqs. (42) and (43) and the �rst relation in eq. (45) are O(mlÆml). The �s relationin eq. (45) has orretions O(msÆml). When we ombine these two relationsto form eq. (46), the leading violation terms anel, and we have a relation withorretions O(mlÆm2l ). The orretions to the mass relation eq. (47) are O(mÆml)and O(Æm2l ).B Higher order e�etsIn this Appendix, we disuss a little more quantitatively the systemati errors in-dued by the inlusion of the quadrati terms in the �t formulae. We onentratepartiularly on the nuleon sigma terms, �(N)l and �(N)s .B.1 Curvature in the `fan' plotIn Fig. 5 we ompare the results of a quadrati �t and a linear �t, both for thebaryon mass fan plot and on �(N)l and �(N)s . The quadrati �t uses all the data,[23℄, on both lattie sizes (in ases where results for two lattie sizes are available,we used the larger lattie size only). Inluding urvature terms in eq. (7), [23℄,we have MH =M0+ HÆml+ bHÆm2l + : : :. Traing through the analysis, we �ndthe e�et on eq. (27) is to replaeH ! H + 2bHÆml : (48)By omparing H from the linear �t with H +2bHÆm�l from the quadrati �t, wean estimate the maximum possible hange.We use the data at �0 = 0:12090, beause this is the ase where we have themost data, overing the largest range in quark mass splitting, Æml. In this asewe have data overing about 3=4 of the gap from the symmetri point to thephysial point, so we have the most hane of seeing urvature e�ets if they arepresent.For the fan plot (left panel of Fig. 5), the urvature terms are found to besmall, and statistially ompatible with zero urvature. In Fig. 9 we ompare thenuleon sigma terms from the slopes of the two �ts by using eq. (27) togetherwith eq. (48). Again we see that the urvature e�et is very small in the aseof �(N)l , partiularly at small ml, and muh larger for �(N)s . Can we explain thisdi�erene? 18



Figure 9: �(N)l (dereasing red lines from right to left) and �(N)s (inreasing blue linesfrom right to left) against M2�=X2� using linear �ts (dashed lines) and quadrati �ts(solid lines) for �0 = 0:12090.The slopes in the fan plot only e�et the non-singlet matrix element, the Hterm in eq. (27). The urvature hanges the slope of the nuleon line by about10% at the physial point. The non-singlet term in �(N)l is responsible for about25% of the quantity, so a 10% hange in slope translates to a 2:5% hange in �(N)l .Putting in the atual slope hange, the �nal number we arrive at is a systematiunertainty of about 1MeV in �(N)l oming from urvature in the fan plot.The situation for �(N)s is di�erent, the singlet and non-singlet terms appearwith opposite signs, so �(N)s is given by the di�erene between two large quantities.Thus a 10% hange in the non-singlet matrix element is leveraged into a 25%hange in �(N)s . Repeating this proedure for the other hadrons gives similarnon-singlet unertainties.B.2 Curvature along the symmetri lineWe also use a linear �t to desribe the baryon masses along the symmetri line (theline with all three quark masses equal). What is the e�et of using a quadrati�t to determine the slope along this line?In the right panel of Fig. 5 we ompare a quadrati and linear �t to thesymmetri baryon masses. As before, the quadrati term is ompatible with zerourvature. Indeed the quadrati term is probably too large and is likely due tohaving a short lever arm and low statistis at the lightest point rather than tobe a real e�et. (Also we would expet that hiral perturbation theory wouldpredit a downward urve.)Feeding these values into eq. (27) gives an estimate of the possible e�et ofquadrati terms, due to urvature along the symmetri line, whih we will inlude19



in our �nal error estimate. This urvature e�et is the same for every hadron,giving an unertainty � 4MeV for �l and � 55MeV for �s. However beausethe shift is universal, this does not e�et splittings, so the systemati error in�(H)l � �(H0)l is still given by the � 1MeV value of the previous subsetion. Fory(H)R, using the �rst equation in eq. (4) gives perentage hanges in y(N)R of 60%and 30% for y(�)R, y(�)R and y(�)R.C Hadron MassesWe ollet here in Tables (2) { (5) numerial values for the meson pseudosalarotet and baryon otet, not given in [23℄. (All the data sets used here are over� 2000 on�gurations for the 243� 48 volumes and � 1500� 2000 on�gurationsfor the 323�64 volumes exept for �0 = 0:12099 whih has � 500 on�gurations.)Errors are from a bootstrap analysis.�0 aM� aMN323 � 640.120920 0.1647(4) 0.4443(59)Table 2: Additional result for the pseudosalar otet mesons and otet baryons alongthe avour symmetri line: aM�, aMN , for (�; sw; �) = (5:50; 2:65; 0:1).(�l; �s) aM� aMK aM�s243 � 48(0.120870, 0.121020) 0.1804(8) 0.1621(10) 0.1407(12)(0.120980, 0.120800) 0.1545(9) 0.1775(8) 0.1976(7)Table 3: Additional results for the pseudosalar otet mesons: aM�, aMK and aM�sfor (�; sw; �) = (5:50; 2:65; 0:1) where �0 = 0:12092.(�l; �s) aMN aM� aM� aM�243 � 48(0.120870, 0.121020) 0.4812(40) 0.4721(62) 0.4672(48) 0.4618(58)(0.120980, 0.120800) 0.4668(61) 0.4773(62) 0.4838(47) 0.4909(41)Table 4: Additional results for the otet baryons: aMN , aM�, aM� and aM� for(�; sw; �) = (5:50; 2:65; 0:1) where �0 = 0:12092.20



(�l; �s) MN=XN M�=XN M�=XN M�=XN243 � 48(0.120870, 0.121020) 1.024(3) 1.004(9) 0.9939(17) 0.9824(34)(0.120980, 0.120800) 0.9715(33) 0.9934(95) 1.007(2) 1.022(3)323 � 64(0.121050, 0.120661) 0.9167(40) 0.9872(46) 1.017(2) 1.066(3)Table 5: Additional ratio results for the otet baryons: MN=XN , M�=XN , M�=XNand M�=XN for (�; sw; �) = (5:50; 2:65; 0:1) where �0 = 0:12092.Referenes[1℄ T.-P. Cheng and L.-F. Li, Gauge Theory of Elementary Partiles OxfordUniversity Press (1988, reprinted); Shladming Winter Shool (Marh 1997),Computing Partile Properties (eds. C. B. Lang and H. Gausterer), Springer-Verlag, [arXiv:hep-ph/9709293℄.[2℄ X. Ji, Phys. Rev. Lett. 74 (1995) 1071, [arXiv:hep-ph/9410274℄.[3℄ R. Koh, Z. Phys. C15 (1982) 161.[4℄ J. Gasser, H. Leutwyler and M. E. Sainio, Phys. Lett. B253 (1991) 252;ibid 260.[5℄ M. M. Pavan, I. I. Strakovsky, R. L. Workman and R. A. Arndt, PiNNewslett. 16 (2002) 110, [arXiv:hep-ph/0111066℄.[6℄ B. Borasoy and U.-G. Meissner, Annals Phys. 254 (1997) 192,[arXiv:hep-ph/9607432℄.[7℄ J. Martin-Camalih, L. S. Geng and M. J. Viente Vaas, Phys. Rev. D82(2010) 074504, [arXiv:1003.1929[hep-lat℄℄.[8℄ J. Ellis, K. A. Olive and P. Sandik, New J. Phys. 11 (2009) 105015,[arXiv:0905.0107[hep-ph℄℄.[9℄ J. Giedt, A. W. Thomas and R. D. Young, Phys. Rev. Lett. 103 (2009)201802, [arXiv:0907.4177[hep-ph℄℄.[10℄ S. G�usken, K. Shilling, R. Sommer, K. H. M�utter and A. Patel, Phys. Lett.B212 (1988) 216.[11℄ R. Altmeyer, M. G�okeler, R. Horsley, E. Laermann and G. Shier-holz, [MT Collaboration℄, Nul. Phys. Pro. Suppl. 34 (1994)376, arXiv:hep-lat/9311020; Ky�haeuser Workshop (Leipzig, Germany,September 1993), arXiv:hep-lat/9311012.21
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