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tQCD latti
e simulations determine hadron masses as fun
tions of thequark masses. From the gradients of these masses and using the Feynman{Hellmann theorem the hadron sigma terms 
an then be determined. Weuse here a novel approa
h of keeping the singlet quark mass 
onstant in oursimulations whi
h upon using an SU(3) 
avour symmetry breaking expan-sion gives highly 
onstrained (i.e. few parameter) �ts for hadron massesin a multiplet. This is a highly advantageous pro
edure for determiningthe hadron mass gradient as it avoids the use of deli
ate 
hiral perturba-tion theory. We illustrate the pro
edure here by estimating the light andstrange sigma terms for the baryon o
tet.1
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1 Introdu
tionHadron sigma terms, �(H)l , �(H)s are de�ned1 as that part of the mass of the hadron(for example the nu
leon) 
oming from the va
uum 
onne
ted expe
tation valueof the up (u) down (d) and strange (s) quark mass terms in the QCD Hamiltonian,�(H)l = mRl hHj(uu+ dd)RjHi ; �(H)s = mRs hHj(ss)RjHi ; (1)where we have taken the u and d quarks to be mass degenerate, mu = md �ml. (The supers
ript R denotes a renormalised quantity.) Other 
ontributionsto the hadron mass 
ome from the 
hromo-ele
tri
 and 
hromo-magneti
 gluonpie
es and the kineti
 energies of the quarks, [2℄. Sigma terms are interestingbe
ause they are sensitive to 
hiral symmetry breaking e�e
ts. Experimentallythe value for �(N)l has been dedu
ed from low energy �-N s
attering. A deli
ateextrapolation to the 
hiral limit [1℄ gives a result for the isospin even amplitude of��N=f 2� (with ��N � �(N)l ), from whi
h the sigma term may be found. The pre
isevalue obtained this way has been under dis
ussion for many years. Howeverwithin the limits of our latti
e 
al
ulation, this will not 
on
ern us here and fororientation we shall just quote a range of results from earlier analyses of [3, 4℄of 45(8)MeV while a later dispersion analysis [5℄ suggested a mu
h higher value64(7)MeV. An estimation using heavy baryon 
hiral perturbation theory gave45MeV, [6℄. A more re
ent estimate gave 59(17)MeV, [7℄. Even less is knownabout the nu
leon strange sigma term. Eq. (1) is usually written (in parti
ularfor the nu
leon) as�(N)l = mRl hN j(uu+ dd� 2ss)RjNi1� y(N)R ; y(N)R = 2hN j(ss)RjNihN j(uu+ dd)RjNi ; (2)(i.e. we 
onsider �(N)l and y(N)R rather than �(N)l and �(N)s ). The simplest 
al-
ulation, e.g. [1℄ (whi
h we will dis
uss in more detail later) uses �rst order inSU(3) 
avour symmetry (o
tet) breaking to give�(N)l = mRlmRs �mRl M� +M� � 2MN1� y(N)R � 261� y(N)R MeV ; (3)and �(N)s = mRsmRl 12y(N)R�(N)l � 325 y(N)R1� y(N)R MeV ; (4)where mRs =mRl is the ratio of the strange to light quark masses, whi
h using theleading order PCAC formula for this ratio givesmRs =mRl = (2M2K �M2�)=M2� � 25 : (5)1Or more a

urately as the matrix element of the double 
ommutator of the Hamiltonianwith two axial 
harges. However this is equivalent to the de�nition given in eq. (1), see forexample [1℄. 2



The Zweig rule, hN j(ss)RjNi � 0 would then give�(N)l � 26MeV ; �(N)s � 0MeV ; (6)while any non-zero strangeness 
ontent, y(N)R > 0 would in
rease this value of�(N)l , �(N)s (and indeed, due to the large 
oeÆ
ient, �(N)s quite rapidly).Determination of the strange sigma term (and in parti
ular y(N)R) is impor-tant in 
onstraining the 
ross se
tion for the dete
tion of dark matter. WIMPswould be s
attered o� nu
lei by the ex
hange of s
alar parti
les, su
h as the Stan-dard Model Higgs parti
le, whi
h will intera
t more strongly with heavier quark
avours. This 
oupling 
an be parameterised in terms of the fra
tional 
ontribu-tion of a quark 
avour q to the nu
leon's mass MN , fTq = mRq hN j(qq)RjNi=MN .While the 
ontributions of the 
harm and heavier 
avours approa
h a 
onstantthat is proportional to the gluoni
 
ontribution fTg , there is a strong dependen
eof the 
ross se
tion on the value of fTs , see e.g. [8, 9℄ and referen
es therein.Computing the sigma terms from latti
e QCD has a long history from initialquen
hed simulations to 2 
avour and more re
ently 2 + 1 
avour simulations,e.g. [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21℄, with a status report being givenin [22℄. In general more re
ent results tend to give a lower �(N)s term than earlierdeterminations.In this arti
le, we shall investigate this simple pi
ture as des
ribed in eqs. (3),(5) and in parti
ular test the linearity assumption of SU(3) 
avour symmetrybreaking.2 Flavour symmetry expansionsLatti
e simulations start at some point in the (mRs ; mRl ) plane and then approa
hthe physi
al point (mR �s ; mR �l ) along some path. (In future we shall denote thephysi
al point with a �.) As we shall be 
onsidering 
avour symmetry breakingthen we shall start here at a point on the 
avour symmetri
 line mRl = mRs andthen 
onsider the path keeping the average quark mass 
onstant, m = 
onst..The SU(3) 
avour group (and quark permutation symmetry) then restri
ts thequark mass polynomials that are allowed, [23℄, giving for the baryon o
tetMH =M0(m) + 
HÆml +O(Æm2l ) ; (7)with 
H = 8>><>>: 3A1 H = N3A2 H = ��3A2 H = ��3(A1 � A2) H = � (8)where Æml = ml �m ; m = 13(2ml +ms) ; (9)3



and A1 and A2 are unknown 
oeÆ
ients. So to linear order in the quark mass,we only have two unknowns (rather than four). A similar situation also holds forthe pseudos
alar and ve
tor o
tets (one unknown) and baryon de
uplet (also oneunknown). These fun
tions highly 
onstrain the numeri
al �ts. (At O(Æm2l ) onlythe baryon de
uplet has a further 
onstraint.)Permutation invariant fun
tions of the masses XS, (or `
entre of mass' of themultiplet) 
an be de�ned whi
h have no linear dependen
e on the quark mass.For example for the baryon o
tet we haveXN = 13(MN +M� +M�) =M0(m) +O(Æm2l ) : (10)(The 
orresponding result for the pseudos
alar o
tet is given later in eq. (29).)Furthermore expanding about a spe
i�
 �xed point, ml = ms = m0 on the
avour symmetri
 line and allowing m to vary, we then haveM0(m) =M0(m0) +M 00(m0)(m�m0) +O((m�m0)2) : (11)We will see that A1, A2 give all the non-singlet hyperon sigma terms andM 0(m0)the singlet terms.As an example of the quark mass expansion from a point on the 
avoursymmetri
 line in Fig. 1 we plot the baryon o
tet MH=XN for H = N , �, �, �
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Figure 1: MH=XN (H = N , �, �, �) againstM2�=X2� for an initial point (\sym. pt.")on the 
avour symmetri
 line given by �0 = 0:12090, left panel, and �0 = 0:12092,right panel. The 323 � 64 latti
es are �lled 
ir
les, while the 243 � 48 latti
es are opentriangles. Also shown is the 
ombined �t of eq. (33) (the dashed lines) to the 323 � 64latti
e data. The �t results are the open 
ir
les, while the experimental points are the(red) stars. l and s denote the light and strange quark 
ontent of the hadron.against M2�=X2� together with a linear �t, eq. (7) and impli
itly eq. (29) using2 + 1 O(a) improved 
lover fermions at � = 5:50, [24℄ using two starting valuesfor the quark mass on the 
avour symmetri
 line, namely �0 = 0:12090, 0:12092.4



All the points have been arranged in the simulation to have 
onstant m. Wesee that a linear �t provides a good des
ription of the numeri
al data from thesymmetri
 point (whereM� � X�� = 410:9MeV) down to the physi
al pion mass.In a little more detail, the bare quark masses are de�ned asamq = 12 � 1�q � 1�0;
� ; with q = l; s; 0 ; (12)(with the index q = 0 denoting the 
ommon quark along the 
avour symmetri
line) and where vanishing of the quark mass along the SU(3) 
avour symmetri
line determines �0;
. Keeping m = 
onstant � m0 gives�s = 13�0 � 2�l : (13)So on
e we de
ide on a �l this then determines �s. Note that �0;
 drops out ofeq. (13), so we do not need its expli
it value. These initial �0 values 
hosen here,namely �0 = 0:12090 and 0:12092 are 
lose to the path that leads to the physi
alpoint (�0 = 0:12092 being slightly 
loser). (This is dis
ussed in more detail in[23℄, whi
h also 
ontains numeri
al tables and phenomenologi
al values for thehadron masses. Results not in
luded there are given in Appendix C.) This pathis also illustrated later in se
tion 4.3, Fig. 4. Although �nite size e�e
ts tend to
an
el in ratios of quantities from the same multiplet, we nevertheless �t just tothe results from the 323� 64 latti
es (�lled 
ir
les) using the linear �t of eq. (7).Finally note that we also have a similar 
avour expansion for the pseudos
alaro
tet as for the baryon o
tet, as will be dis
ussed in se
tion 4.3.3 (Hyperon) s
alar matrix elementsS
alar matrix elements 
an be determined from the gradient of the hadron mass(with respe
t to the quark mass) by using the Feynman{Hellman theorem whi
his true for both bare and renormalised quantities. So if we take the derivativewith respe
t to the bare quark mass we get the bare qq matrix element,�MH�ml = hHj(uu+ dd)jHi ; �MH�ms = hHjssjHi ; (14)while if we take the derivative with respe
t to the renormalised quark mass we getthe renormalised matrix element. In the left panel of Fig. 2, we show the nu
leonmasses (green diamonds) and the 
avour symmetri
 nu
leon masses (maroonsquares) against 1=�l, 1=�0 respe
tively (from eq. (12) these are proportional tothe bare quark mass). From the Feynman{Hellmann theorem, the slope of themasses (maroon squares) gives the totalPq=u;d;shN jqqjNi, while the slope of the5
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Figure 2: The left panel shows the nu
leon mass, aMN , versus 1=�l, (for them = 
onst. points, green diamonds with �0 = 0:12090) and versus 1=�0 (for the
avour symmetri
 points, \sym. pts.", maroon squares). The 
ommon 
avour sym-metri
 points are denoted by red 
ir
les. The 243�48 volume results are open symbolstogether with a dashed line for the (linear) �t, while the 323 � 64 volume results are�lled symbols and solid lines. Similarly the right panel shows the nu
leon mass aMN ,versus (aM�)2 (same notation as for the left panel).masses (green diamonds) gives the valen
e 
ontribution2. The di�eren
e betweenthe two 
ontributions gives the dis
onne
ted 
ontribution. Be
ause here all threequark masses are equal, the dis
onne
ted 
ontribution for all three quarks willbe the same. The two slopes thus give the estimatesPqhN jqqjNi
onPqhN jqqjNi � 4:09:7 � 0:41hN jssjNiPqhN jqqjNi � 13 �9:7� 4:09:7 � � 0:19 ; (15)for bare latti
e quantities.To look at renormalised matrix elements, we need a plot against the renor-malised mass, (aM�)2 (as in leading order PCAC, M2� is proportional to therenormalised quark mass, eq. (31)). This is shown in the right panel of Fig. 2.The slopes are now mu
h 
loser to ea
h other. We now �nd the estimatesPqhN j(qq)RjNi
onPqhN j(qq)RjNi � 3:24:3 � 0:74hN j(ss)RjNiPqhN j(qq)RjNi � 13 �4:3� 3:24:3 � � 0:085 ; (16)2Eq. (7) 
an be extended to the `partially quen
hed' 
ase, [23℄, where the sea quark massesremain 
onstrained by m = 
onst. but the valen
e quark masses �l, �s are un
onstrained.De�ning Æ�q = �q�m then for the nu
leon, the leading 
hange is parti
ularly simple, 
NÆml !
NÆ�l. For the other members of the o
tet, �, �, �, both Æ�l, Æ�s o

ur, [23℄.6



for renormalised latti
e quantities, giving y(N)R � 2 � 0:085=(1� 0:085) � 0:19.So although for bare matrix elements, there is a signi�
ant strange quark 
ontentthis is redu
ed in the renormalised matrix element.We shall now try to make these 
onsiderations a little more quantitive.4 (Hyperon) � equations4.1 RenormalisationFor Wilson (
lover) fermions under renormalisation the singlet and non-singletpie
es of the quark mass renormalise di�erently [25, 26℄. We havemRq = ZNS �mq + �Z 13(2ml +ms)� ; �Z = ZS � ZNSZNS : (17)In the a
tion the term Pqmqqq = PqmRq (qq)R i.e. a renormalisation group in-variant or RGI quantity. Upon writing this in a matrix form and inverting gives(qq)R = 1ZNS �qq � �Z1 + �Z 13(uu+ dd+ ss)� ; (18)so for �Z 6= 0 then there is always mixing between bare operators.As an example of where this manifests itself, the relation between the bare,y(H), and renormalised y(H)R, 
f. eq. (2), is then given byy(H)R = y(H) � 23�Z(1� y(H))1 + 13�Z(1� y(H)) ; (19)so we see that y(H)R 6= y(H) for 
lover fermions. Additionally, sin
e �Z > 0 andy(H) �> 0 we �nd that y(H)R < y(H), i.e. is redu
ed.Useful quark 
ombinations are the o
tet and singlet 
ombinations, namely(uu+ dd)R � 2(ss)R = 1ZNS �(uu+ dd)� 2(ss)� ;(uu+ dd)R + (ss)R = 1ZNS(1 + �Z) �(uu+ dd) + (ss)� : (20)Furthermore, using the Feynman-Hellman theorem, eq. (14) and with the hadron
avour expansion, eq. (7) together with eq. (11) giveshHj(uu+ dd)R � 2(ss)RjHi = 1ZNS 
H (21)hHj(uu+ dd)R + (ss)RjHi = 1ZNS M 001 + �Z : (22)Eq. (21), the equation for the matrix element of an o
tet operator, only involves
H (the hadron mass expansion keeping the singlet quark mass 
onstant), while7



eq. (22), the matrix element of a singlet operator, only involvesM 00 (o

uring when
hanging the singlet quark mass). Eq. (21) also leads to eq. (3) as dis
ussed inthe introdu
tion3.Finally note that the quantities(ms �ml)hHj(uu+ dd)� 2ssjHi ; (2ml +ms)hHj(uu+ dd) + ssjHi ; (23)are RGI, all Z fa
tors 
an
el when they are renormalised. Linear 
ombinations ofthese two quantities are also RGI in parti
ular the 
ombination used previouslyof �(H)l + �(H)s =PqmqhHjqqjHi. However, �(H)l and �(H)s 
onsidered separatelyare not RGI, see eqs. (17), (18). The renormalised quantities are mixtures ofthe two latti
e quantities, and �Z is needed to relate latti
e values to 
ontinuumvalues. Refering ba
k to Fig. 2 we see that the bare latti
e strange sigma termis mu
h larger that the renormalised strange sigma term, due to a 
an
ellationbetween the two terms in eq. (18).4.2 � equationsMultiplying the renormalised quark mass, eq. (17), together with eqs. (21), (22)(or more generally with eq. (18)) we 
an �nd RGI 
ombinations (i.e. a form wherethe renormalisation 
onstant ZNS 
an
els). In parti
ular we �nd�(H)l � 2r�(H)s = 3r1 + 2r (1 + �Z)m0
H (24)�(H)l + r�(H)s = 3r1 + 2rm0M 00(m0) ; (25)where r is the ratio of quark massesr � mRlmRs : (26)Thus we have to �nd the (�xed) 
oeÆ
ients (1+�Z)m0
H , m0M 00(m0). We thendetermine the physi
al values of the sigma terms by extrapolating to the pointwhere the quark mass ratio takes its physi
al value, i.e. r = r�.We observe that we have two simultaneous equations, whi
h 
an be easilysolved to give4 �(H)l = r1 + 2r [(1 + �Z)m0
H + 2m0M 00(m0)℄�(H)s = 11 + 2r [�(1 + �Z)m0
H +m0M 00(m0)℄ : (27)3The RHS of eq. (21) 
an be re-written as 
N=ZNS = 3A1=ZNS. Together with M� +M� �2MN = �9A1Æml = 3A1(mRs �mRl )=ZNS this gives eq. (3). An alternative mass 
ombinationthat also pi
ks out the A1 
oeÆ
ient is M� �M� = �3A1Æml.4This leads to relations between the various sigma terms, whi
h we list in Appendix A andwhere we also argue that they are always approximately true.8



We see that the smallness of �(H)l in 
omparison to �(H)s is 
ertainly guaranteed bythe presen
e of an additional r in its numerator. As �(H)s > 0 we must also haveM 00(m0) > (1 + �Z)max 
H . These 
oeÆ
ients are also suÆ
ient to determiney(H)R, as 
an be seen either dire
tly from eq. (27) or from eq. (22),y(H)R = 2 �(1 + �Z)m0
H +m0M 00(m0)(1 + �Z)m0
H + 2m0M 00(m0) : (28)Again, as seen in se
tion 3, y(H)R only depends on gradients and not on thephysi
al point.It is now 
onvenient to normalise the 
oeÆ
ients by XN so we now need to�nd the 
oeÆ
ients (1 + �Z)m0
H=XN(m0) and m0M 00(m0)=XN(m0).4.3 Determination of the 
oeÆ
ientsThe hint for determining the 
oeÆ
ients from our latti
e data is given in se
tion 3,where we 
onsider gradients with respe
t to a renormalised or physi
al quantity{ here taken as the pion mass. As in eq. (7) we also have a similar expansion forthe pseudos
alar o
tet,M2� =M20 � + 2�Æml +O(Æm2l ) ; (29)(together with M2K = M20� � �Æml + O(Æm2l ), M2�s = M20� � 4�Æml + O(Æm2l )).This gives a good representation of the data as 
an be seen from Fig. 12 of [23℄.Analogously to eq. (10) we 
an de�ne a 
avour singlet quantityX2� = 13(2M2K +M2�) =M20 � +O(Æm2l ) : (30)However, as well as eq. (7), we have the additional 
onstraint from PCACM2� = 2BR0mRl ; (31)(together with M2K = BR0 (mRl +mRs ), M2�s = 2BR0mRs ) whi
h implies thatM20 � = 2�(1 + �Z)m ; � = BR0 ZNS : (32)If we now 
onsider an expansion in the (physi
al) pion mass then eliminating Æmlbetween eq. (7) and eq. (29) givesMHXN = �1� �(1 + �Z)m0 
HXN ��+ �(1 + �Z)m0 
HXN � M2�X2� ; (33)from the point on the symmetri
 line m0 = m. Thus if we plot MH=XN versusM2�=X2� (holding the singlet quark mass, m 
onstant) then the gradient imme-diately yields (1 + �Z)m0
H=XN . The only assumption is that the `fan' plot9



splittings remain linear in Æml down to the physi
al point. In Fig. 1 we show thisplot giving the results(1 + �Z)m0 3A1XN = 0:1899(55) ; 0:2066(68) ;(1 + �Z)m0 3A2XN = 0:03942(314) ; 0:04164(431) ; (34)for �0 = 0:12090, 0:12092 respe
tively.Alternatively on the 
avour symmetri
 line, ml = m (i.e. Æml = 0), so varyingm from a point m0 givesM2�(m) =M20 �(m) = M20�(m0) +M2 00 �(m0)(m�m0)= 2�(1 + �Z)[m0 + (m�m0)℄ ; (35)whi
h gives M2 00�(m0) = 2�(1 + �Z). So now eliminating (m � m0) betweeneqs. (11), (35) givesXN(m)XN(m0) = �1� �m0M 00(m0)XN(m0) �� + �m0M 00(m0)XN(m0) � X2�(m)X2�(m0) : (36)Again in a plot of XN(m)=XN(m0) versus X2�(m)=X2�(m0) the gradient immedi-ately gives the required ratio m0M 00(m0)=XN(m0). We have also repla
ed MN byXN and M2� by X2� (whi
h allows us to use all the 323 � 64 data available for aparti
ular m). In Fig. 3 we plot XN(m)=XN(m0) versus X2�(m)=X2�(m0). From
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Figure 3: XN (m)=XN (m0) versus X2�(m)=X2�(m0) along the 
avour symmetri
 line,together with the linear �t from eq. (36).eq. (36) this gives m0M 00(m0)XN(m0) = 0:273(32) : (37)10



Finally the quark mass ratio, r, must be estimated. In Fig. 4 we plot (2M2K�
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Figure 4: (2M2K �M2�)=X2N versus M2�=X2N for �0 = 0:12090 (left panel) and �0 =0:12092 (right panel). The 323 � 64 volume results are given by the �lled symbols,while the 243 � 48 volume results are shown using empty triangles. The �t is given ineq. (38). Experimental points are denoted by (red) stars.M2�)=X2N versus M2�=X2N . From eq. (29) we have2M2K �M2�X2N = 3M20�X2N � 2M2�X2N : (38)As in se
tion 2, we see that for 
onstant m the data points lie on a straight line(i.e. there is an absen
e of signi�
ant non-linearity). Furthermore the gradient is�xed at �2. (Indeed leaving the gradient as a �t parameter for the �0 = 0:12090
on�rms that this gradient is very 
lose to �2.) Together with PCAC, eq. (31)this gives the x-axis is proportional to mRl while the y-axis is proportional to mRsand thus the ratio gives r. Taking our physi
al s
ale to be de�ned fromM2�=X2N j�(i.e. from the x-axes of Fig. 4) gives1r� = mRsmRl ����� = � 27:28(16) �0 = 0:1209026:23(24) �0 = 0:12092 : (39)4.4 Curvature e�e
tsWhat 
an we say about 
orre
tions to the linear terms? The simple linear �tdes
ribes the data well, from the symmetri
 point to our lightest pion mass, both11



along the m = 
onst. line and the 
avour symmetri
 line. To see qualitativelythe possible in
uen
e of 
urvature we now 
ompare linear �ts with quadrati
 �ts.These will be used to estimate possible systemati
 e�e
ts. We brie
y dis
ussthese e�e
ts here.In Fig. 5 we 
ompare the results of a quadrati
 �t and a linear �t, both for the

−0.010 −0.005 0.000 0.005
aδml

0.8

0.9

1.0

1.1

1.2

M
H
/X

N
 [O

ct
et

]

experiment
N(lll)
Λ(lls)
Σ(lls)
Ξ(lss)
sym. pt.

0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10
Xπ

2
( m)/Xπ

2
(m0)

0.80

0.85

0.90

0.95

1.00

1.05

1.10

X
N
(

m
)/

X
N
(m

0)

Figure 5: Left panel: MH=XN for H = N , �, �, � against aÆml for initial point onthe 
avour symmetri
 line given by �0 = 0:12090 together with the previous linear �t(dashed lines) and quadrati
 �t (solid lines). Other notation as in Fig. 1. Right panel:XN (m)=XN (m0) versus X2�(m)=X2�(m0) along the 
avour symmetri
 line, togetherwith a linear �t from eq. (36) (dashed line) and a quadrati
 �t (solid line).baryon mass fan plot and for XN(m)=XN(m0). In the left panel of the �gure, we
onsider the baryon mass fan plot. The quadrati
 �t here uses all the data, [23℄,on both latti
e sizes (in 
ases where results for two latti
e sizes are available,we used the larger latti
e size only). The 
urvature terms here are small andstatisti
ally 
ompatible with zero.The right panel of the �gure shows a quadrati
 �t to the results along thesymmetri
 line. The 
urvature here is dominated by the large error of the lightestpoint (whi
h has a low statisti
). Thus we shall regard this �t as only giving anestimation of the possible systemati
 error.The results in the next se
tion in
lude systemati
 error estimates from boththese 
urvature sour
es 
ombined in quadrature. In Appendix B we give somemore details.5 ResultsWe 
an now numeri
ally determine y(H)R and �(H)l , �(H)s .We start with y(H)R. From eq. (28), together with eqs. (34), (37) and eq. (8)gives the results in Table 1. The �rst error is the linear �t error (in this 
asedominated by the error in eq. (37)), while the se
ond error indi
ates possible12



N � � ��0 = 0:12090y(H)R� 0.22(9)(15) 0.80(14)(28) 1.23(20)(41) 2.14(38)(64)�(H)�l [MeV℄ 29(3)(4) 23(3)(4) 20(3)(4) 16(3)(5)�(H)�s [MeV℄ 89(34)(59) 250(34)(68) 334(34)(68) 453(34)(58)�0 = 0:12092y(H)R� 0.18(9)(15) 0.79(14)(28) 1.25(20)(42) 2.30(42)(68)�(H)�l [MeV℄ 31(3)(4) 24(3)(4) 21(3)(4) 16(3)(4)�(H)�s [MeV℄ 71(34)(59) 247(34)(69) 336(34)(69) 468(35)(59)Table 1: Results for the baryon o
tet for y(H)R�, �(H)�l , �(H)�s with H = N , �, �, �for �0 = 0:12090, 0:12092.e�e
ts from higher order terms, as dis
ussed in se
tion 4.4. We see that thereis an order of magnitude in
rease in the fra
tion of hHj(ss)RjHi 
ompared tohHj(uu+ dd)RjHi as we in
rease the strangeness 
ontent of the baryon from thenu
leon (no valen
e strange quarks) to the � (two valen
e strange quarks).Turning to the sigma terms themselves, from eq. (24) we 
an �nd an indi
ationof the magnitude of �(N)l as approximately (with XN = 1:1501GeV),�(N) �l � [22 � 25℄ + �(N) �s13 MeV > [22 � 25℄MeV ; (40)(for �0 = 0:12090, 0:12092 respe
tively). The last inequality follows as obviously�(N)�s > 0. Indeed this shows that a non-zero �(N)�s > 0 
an only add a few MeVto this result.The results for �(H)�l and �(H)�s are also given in Table 1. (Again the �rsterror is the statisti
al error, while the se
ond systemati
 error is due to possiblequadrati
 e�e
ts.) While the data for �0 = 0:12090 is more 
omplete than for�0 = 0:12092 (
f. the plots in Fig. 1) and demonstrates linear behaviour, as thepath starting at �0 = 0:12092 is 
loser to the physi
al point (
f. Fig. 4) we shalluse these values as our �nal values. These results are illustrated in Fig. 6 fory(H)R� where H = N , �, �, �.By varying r in eq. (27)5 , we plot in Fig. 7 �(H)l and �(H)s for the baryono
tet, H = N , �, � and � from the symmetri
 point (verti
al dashed line atx = 1) to the physi
al point (left verti
al dashed line). �(H)l is rapidly de
reasing5Using, for example, the results from the left panel of Fig. 4, r may be re-written asr = M2�=X2�3� 2(M2�=X2�) :13
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while �(H)s is in
reasing as we de
rease the quark mass. Also, as expe
ted �(H)l islargest for the nu
leon, N , while �(N)s is the smallest. Finally in Fig. 8 we plot�(H)�l , �(H)�s against H = N , �, � and �, again using Table 1.
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Figure 8: �(H)�l and �(H)�s for H = N , �, �, � at the physi
al point for �0 = 0:12092.6 Con
lusionsKeeping the average quark mass 
onstant gives very linear `fan' plots from the
avour symmetri
 point down to the physi
al point. This implies that an expan-sion in the quark mass from the 
avour symmetri
 point will give informationabout the physi
al point. In this arti
le we have applied this to estimating thesigma terms (both light and strange) of the nu
leon o
tet. There has been nouse of a 
hiral perturbation expansion (indeed this is an opposite expansion tothe one used here, expanding about zero quark mass).Our results are given in se
tion 5 and we quote from there a value for thenu
leon sigma terms of�(N)�l = 31(3)(4)MeV ; �(N)�s = 71(34)(59)MeV : (41)(The �rst error is the �t error while the se
ond error indi
ates possible e�e
tsfrom higher order terms in the 
avour expansion.) Note that expansions aboutthe SU(3) 
avour line require 
onsisten
y between many QCD observables, herefor example not only for the baryon o
tet under 
onsideration here, but also forthe pseudos
alar o
tet, and PCAC and the ratio of the light to strange quarkmass. 15



Of 
ourse there are several more avenues to investigate. Numeri
ally an in-
rease in statisti
s for the masses along the 
avour symmetri
 line would redu
ethe dominant error (both statisti
al and systemati
) and so dire
tly help in de-
reasing the present errors. Our approa
h here has been to emphasise linearityat the expense (presently) of rea
hing exa
tly the physi
al point. This 
an beaddressed by interpolating between a small set of 
onstantm lines about the phys-i
al point. Additionally the use of partial quen
hing will also help to get 
loser tothe physi
al pion mass. With more data, a systemati
 investigation of quadrati
quark mass terms in the 
avour expansion should be 
onsidered, to redu
e thesystemati
 errors. Finally while the use of linear or quadrati
 terms along the lineof 
onstant m is unproblemati
, so that it is unlikely that eq. (40) will 
hange bymu
h, more subtle is the relation involving X(m) (i.e. the gradient when 
hang-ing m.) For the example of 
lover fermions we have ~g2(m) = (1+ bgam)g2 whi
h
learly does not 
hange if m = 
onstant, but will slightly 
hange when m does.However this is probably not a large e�e
t (as bg seems small). For a dis
ussionof some aspe
ts of this issue see [29, 30℄.A
knowledgementsThe numeri
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e QCD). JMZis supported by STFC grant ST/F009658/1.AppendixA Some relations between the � termsWe dis
uss here some relations between the sigma terms within a multiplet (heretaken to be the baryon o
tet) whi
h are exa
t within the linear 
ase dis
ussedhere, but whi
h we might expe
t to always be approximately true.The singlet relation eq. (22) or eq. (25) is the same for every hadron. So interms of sigma terms this be
omes�(H)l + r�(H)s � �(H0)l + r�(H0)s : (42)16



At the 
avour symmetri
 point it follows from group theory that a singlet operatorhas the same value for every member of a multiplet, so eq. (42) must hold. Butthis 
an 
hange if we move away from the symmetri
 point. (We shall brie
ydis
uss this at the end of this se
tion.)We 
an �nd another 
olle
tion of near identities by summing over a singlet
ombination of hadrons | this 
an be either a singlet of S3 or a singlet of SU(3).If we do this, the expe
tation values of uu, dd and ss will be exa
tly equal at the
avour symmetry point, and stay again nearly equal away from the symmetrypoint. By this argument we expe
t�(�)l + �(�)l � 2r ��(�)s + �(�)s ��(N)l + �(�)l + �(�)l � 2r ��(N)s + �(�)s + �(�)s � : (43)(Again this relation, as with the other relations dis
ussed here, is exa
tly true forthe linear 
ase.)Other relations 
ome from the Gell-Mann{Okubo relation, [27, 28℄ in whi
hthe 27-plet mass 
ombination is very small,2MN � 3M� �M� + 2M� � 0 ; (44)for all values of ml; ms. In our approa
h, its derivatives are also near zero. Wetherefore expe
t 2�(N)l � 3�(�)l � �(�)l + 2�(�)l � 02�(N)s � 3�(�)s � �(�)s + 2�(�)s � 0 : (45)We obtain an even stronger version of these relations by taking the singlet 
om-bination, proportional to (uu+ dd)R + (ss)R,2�(N)l � 3�(�)l � �(�)l + 2�(�)l + r �2�(N)s � 3�(�)s � �(�)s + 2�(�)s � � 0 : (46)There is also a relation between the sigma terms and the hadron masses,[2℄ as the 
onstants A1 and A2 whi
h o

ur in the mass splittings also o

ur inthe leading order expressions for the sigma terms. So there will be 
onne
tionsbetween masses and sigma terms. One parti
ularly simple relation isMH � �(H)l � �(H)s �MH0 � �(H0)l � �(H0)s : (47)(i.e. the baryon mass di�eren
e is 
losely a

ounted for by the sigma terms.) Forthe linear 
ase this is again exa
t, with this equation being equal to M0(m0) �m0M 00(m0) for all the o
tet baryons (upon using eqs. (7), (27)). From eq. (11) wesee that this is just the 
ommon hadron mass in the 
hiral limit along the 
avoursymmetri
 line, when ml = 0 = ms or m = 0. �(H)l and �(H)s 
an be thought ofas that part of the hadron mass whi
h is due to ml and ms respe
tively. The17



remnant, M0(m0)�m0M 00(m0), is the part of the hadron mass due to the quarkand gluon kineti
 energy, intera
tion energy, et
., [2℄, i.e. the part of the hadronmass whi
h is not due to the 
oupling with the Higgs va
uum expe
tation value.We 
an use the higher order mass equations in [23℄ to estimate how well therelations in this se
tion hold. Most of the relations have violations proportionalto the �rst power of the SU(3) breaking parameter, Æml. The 
orre
tions toeqs. (42) and (43) and the �rst relation in eq. (45) are O(mlÆml). The �s relationin eq. (45) has 
orre
tions O(msÆml). When we 
ombine these two relationsto form eq. (46), the leading violation terms 
an
el, and we have a relation with
orre
tions O(mlÆm2l ). The 
orre
tions to the mass relation eq. (47) are O(mÆml)and O(Æm2l ).B Higher order e�e
tsIn this Appendix, we dis
uss a little more quantitatively the systemati
 errors in-du
ed by the in
lusion of the quadrati
 terms in the �t formulae. We 
on
entrateparti
ularly on the nu
leon sigma terms, �(N)l and �(N)s .B.1 Curvature in the `fan' plotIn Fig. 5 we 
ompare the results of a quadrati
 �t and a linear �t, both for thebaryon mass fan plot and on �(N)l and �(N)s . The quadrati
 �t uses all the data,[23℄, on both latti
e sizes (in 
ases where results for two latti
e sizes are available,we used the larger latti
e size only). In
luding 
urvature terms in eq. (7), [23℄,we have MH =M0+ 
HÆml+ bHÆm2l + : : :. Tra
ing through the analysis, we �ndthe e�e
t on eq. (27) is to repla
e
H ! 
H + 2bHÆml : (48)By 
omparing 
H from the linear �t with 
H +2bHÆm�l from the quadrati
 �t, we
an estimate the maximum possible 
hange.We use the data at �0 = 0:12090, be
ause this is the 
ase where we have themost data, 
overing the largest range in quark mass splitting, Æml. In this 
asewe have data 
overing about 3=4 of the gap from the symmetri
 point to thephysi
al point, so we have the most 
han
e of seeing 
urvature e�e
ts if they arepresent.For the fan plot (left panel of Fig. 5), the 
urvature terms are found to besmall, and statisti
ally 
ompatible with zero 
urvature. In Fig. 9 we 
ompare thenu
leon sigma terms from the slopes of the two �ts by using eq. (27) togetherwith eq. (48). Again we see that the 
urvature e�e
t is very small in the 
aseof �(N)l , parti
ularly at small ml, and mu
h larger for �(N)s . Can we explain thisdi�eren
e? 18



Figure 9: �(N)l (de
reasing red lines from right to left) and �(N)s (in
reasing blue linesfrom right to left) against M2�=X2� using linear �ts (dashed lines) and quadrati
 �ts(solid lines) for �0 = 0:12090.The slopes in the fan plot only e�e
t the non-singlet matrix element, the 
Hterm in eq. (27). The 
urvature 
hanges the slope of the nu
leon line by about10% at the physi
al point. The non-singlet term in �(N)l is responsible for about25% of the quantity, so a 10% 
hange in slope translates to a 2:5% 
hange in �(N)l .Putting in the a
tual slope 
hange, the �nal number we arrive at is a systemati
un
ertainty of about 1MeV in �(N)l 
oming from 
urvature in the fan plot.The situation for �(N)s is di�erent, the singlet and non-singlet terms appearwith opposite signs, so �(N)s is given by the di�eren
e between two large quantities.Thus a 10% 
hange in the non-singlet matrix element is leveraged into a 25%
hange in �(N)s . Repeating this pro
edure for the other hadrons gives similarnon-singlet un
ertainties.B.2 Curvature along the symmetri
 lineWe also use a linear �t to des
ribe the baryon masses along the symmetri
 line (theline with all three quark masses equal). What is the e�e
t of using a quadrati
�t to determine the slope along this line?In the right panel of Fig. 5 we 
ompare a quadrati
 and linear �t to thesymmetri
 baryon masses. As before, the quadrati
 term is 
ompatible with zero
urvature. Indeed the quadrati
 term is probably too large and is likely due tohaving a short lever arm and low statisti
s at the lightest point rather than tobe a real e�e
t. (Also we would expe
t that 
hiral perturbation theory wouldpredi
t a downward 
urve.)Feeding these values into eq. (27) gives an estimate of the possible e�e
t ofquadrati
 terms, due to 
urvature along the symmetri
 line, whi
h we will in
lude19



in our �nal error estimate. This 
urvature e�e
t is the same for every hadron,giving an un
ertainty � 4MeV for �l and � 55MeV for �s. However be
ausethe shift is universal, this does not e�e
t splittings, so the systemati
 error in�(H)l � �(H0)l is still given by the � 1MeV value of the previous subse
tion. Fory(H)R, using the �rst equation in eq. (4) gives per
entage 
hanges in y(N)R of 60%and 30% for y(�)R, y(�)R and y(�)R.C Hadron MassesWe 
olle
t here in Tables (2) { (5) numeri
al values for the meson pseudos
alaro
tet and baryon o
tet, not given in [23℄. (All the data sets used here are over� 2000 
on�gurations for the 243� 48 volumes and � 1500� 2000 
on�gurationsfor the 323�64 volumes ex
ept for �0 = 0:12099 whi
h has � 500 
on�gurations.)Errors are from a bootstrap analysis.�0 aM� aMN323 � 640.120920 0.1647(4) 0.4443(59)Table 2: Additional result for the pseudos
alar o
tet mesons and o
tet baryons alongthe 
avour symmetri
 line: aM�, aMN , for (�; 
sw; �) = (5:50; 2:65; 0:1).(�l; �s) aM� aMK aM�s243 � 48(0.120870, 0.121020) 0.1804(8) 0.1621(10) 0.1407(12)(0.120980, 0.120800) 0.1545(9) 0.1775(8) 0.1976(7)Table 3: Additional results for the pseudos
alar o
tet mesons: aM�, aMK and aM�sfor (�; 
sw; �) = (5:50; 2:65; 0:1) where �0 = 0:12092.(�l; �s) aMN aM� aM� aM�243 � 48(0.120870, 0.121020) 0.4812(40) 0.4721(62) 0.4672(48) 0.4618(58)(0.120980, 0.120800) 0.4668(61) 0.4773(62) 0.4838(47) 0.4909(41)Table 4: Additional results for the o
tet baryons: aMN , aM�, aM� and aM� for(�; 
sw; �) = (5:50; 2:65; 0:1) where �0 = 0:12092.20



(�l; �s) MN=XN M�=XN M�=XN M�=XN243 � 48(0.120870, 0.121020) 1.024(3) 1.004(9) 0.9939(17) 0.9824(34)(0.120980, 0.120800) 0.9715(33) 0.9934(95) 1.007(2) 1.022(3)323 � 64(0.121050, 0.120661) 0.9167(40) 0.9872(46) 1.017(2) 1.066(3)Table 5: Additional ratio results for the o
tet baryons: MN=XN , M�=XN , M�=XNand M�=XN for (�; 
sw; �) = (5:50; 2:65; 0:1) where �0 = 0:12092.Referen
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