
Angewandte Mathematik und Optimierung Schriftenreihe
Applied Mathematics and Optimization Series

AMOS # 24(2015)

Aminanmu Maolaaisha

Free-Flight Trajectory Optimization by Mixed
Integer Programming



Herausgegeben von der
Professur für Angewandte Mathematik
Professor Dr. rer. nat. Armin Fügenschuh

Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg
Fachbereich Maschinenbau
Holstenhofweg 85
D-22043 Hamburg

Telefon: +49 (0)40 6541 3540
Fax: +49 (0)40 6541 3672

e-mail: appliedmath@hsu-hh.de
URL: http://www.hsu-hh.de/am

Angewandte Mathematik und Optimierung Schriftenreihe (AMOS), ISSN-Print 2199-1928
Angewandte Mathematik und Optimierung Schriftenreihe (AMOS), ISSN-Internet 2199-1936



University of Nice

Free-Flight Trajectory Optimization by 

Mixed Integer Programming

Author:                    Supervisor:
Aminanmu Maolaaisha       

A thesis submitted
for the degree of master in sc

University of Nice-Sophia Antipolis
University of L`Aquila
University of Hamburg

MASTER THESIS

Flight Trajectory Optimization by 

Mixed Integer Programming

Author:                    Supervisor:
Aminanmu Maolaaisha       Armin Fügenschuh

submitted to fulfillment of the requirements
for the degree of master in science

Flight Trajectory Optimization by 



Declaration of Authorship

I, Aminanmu Maolaaisha, declare that this thesis titled, Free-Flight Trajectory Opti-

mization by Mixed Integer Programming, and the work presented in it are my own. I

confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i



Abstract

The growing commercial air travel, fuel price and air pollution require to find an optimal

solution for flight routing problem. In this thesis, we develop a trajectory optimization

algorithm for Free-Flight, which will produce wind optimal trajectory in horizontal di-

rection. Flying wind optimal trajectory will bring fuel saving.

We formulate the problem as a mixed integer program which concentrates on the time

dependence and discrete aspects. We use commercial solvers, CPEX, SCIP, to solve

the model. Concerning the nonlinearities of the constraints, we approximate it by using

piecewise linear functions such as special ordered sets Type2, lambda method, and delta

method.

We also give a good mapping that can deal with the roundness of the earth so that

the algorithm is more accurate and practical. At the end, we give practical result and

simulation of the trajectory. From our model, the result shows that with weak wind we

can save from 1.5% fuel to 3.5% , in strong wind we can save around 6% to 13% fuel.

We hope in the future, we combine our horizontal optimal trajectory with vertical op-

timization profile, get an optimal trajectory in 4D (2D in horizantal, 1D in vertical and

1D in time), which will be optimal in both in horizontal and vertical direction, consumes

as less fuel as possible.



Acknowledgements

First of all, I want to express my thanks to my supervisor Prof. Dr. Armin Fügenschuh.

He give me the opportunity to work on such an interesting project involved real-world

application. His intelligence, diligence and kindness is always big motivation for me. He

supported me with helpful suggestions, creative ideas, necessary documents. We always

have long hours friendly discussion on the topic which helped me most.

I want to thank Prof. Bruno Rubino and Prof. Francois Delarue for all the support

during my master program, which enabled me to overcome all difficulties I had. I am

grateful to Prof. Cedric Bernardin and Prof. Klaus Engel for having belief on me and

the acceptance of being referee. I would like to thank our industry partners Lufthansa

System for supporting my work by providing all necessary data and all relative knowledge

about Aircraft. Many thanks to all my colleagues of the Optimization group as well

as the group of Numerical Analysis, especially my college Eric who give me his endless

support and guide with his reach experience in operations research and computer science.

My special thanks goes to my family, My mother for always supporting me with my

choice. My brothers and sister who are always keeping me feel beloved with their love.

And finally, I am very thankful to my friend Abdigeni for his patience and his great

belief on me. . .

iii



Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

Contents iv

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement and Methodology . . . . . . . . . . . . . . . . . . . . 1

1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Free Flight Routing Problem 3

2.1 Free-Flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Flight Trajectory Optimization . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Previous Approach to the Problem . . . . . . . . . . . . . . . . . . . . . . 4

3 Optimization With Mixed Integer Linear Programming 7

3.1 Discrete Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Mixed Integer Linear Programming . . . . . . . . . . . . . . . . . . . . . . 9

3.3 solution techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.1 Brunch and bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3.2 Cutting plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.3 Branch-and-Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Approximating the Non-linear Functions 14

4.1 1D Nonlinear Function Approximation by Piecewise Linear Functions . . 14

4.1.1 Linearization of Functions: SOS Polytopes (SOS Type 2) . . . . . 16

4.1.2 Binary Linearization Model: Convex combination (lambda method) 18

4.1.3 Binary Linearization Model: Incremental (Delta method) . . . . . 19

4.2 2-Dimension Nonlinear Functions Approximation . . . . . . . . . . . . . . 20

4.2.1 Linearization of 2D-Functions: SOS Polytopes (SOS Type 3) . . . 21

iv



Contents v

4.2.2 Linearization of 2D-Functions: Lambda method . . . . . . . . . . . 22

4.2.3 Linearization of 2D-Functions: Generalized Delta method . . . . . 23

5 Model Formulation with MILP 27

5.1 Problem Description and Data Analysis . . . . . . . . . . . . . . . . . . . 27

5.1.1 Weather Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.2 Fuel Consumption Data . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Aircraft Motion Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.1 MILP Formulation for Free-Flight . . . . . . . . . . . . . . . . . . 37

5.3.2 2D X-Y Plane Model . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3.3 Trip 1: Implementation in SCIP with lambda Method . . . . . . . 40

5.4 Linear Approximation of Second Order Cones . . . . . . . . . . . . . . . . 43

5.5 Speed Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Adapted Model on Earth Surface with Real World Data 49

6.1 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 3D Realistic Model with Real World Data . . . . . . . . . . . . . . . . . . 55

6.3 Trip 2 with Lambda Method . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.4 Trip 2 with Delta Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.5 Trip 3 with Delta method . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Conclusion 69

7.1 Error Estimation for Model . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.3 Future Plan for Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



List of Figures

3.1 Bround-and-Bound tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1 Approximation of non-linear function by piecewise linear functions . . . . 15

4.2 Brunching on SOS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Lambda method for approximating nonlinear functions . . . . . . . . . . . 18

4.4 Delta method for approximation non-linear functions . . . . . . . . . . . . 20

4.5 Approximation of nonlinear function by piecewise linear function . . . . . 21

4.6 Brunching on SOS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.7 Triangulation and Special Ordering . . . . . . . . . . . . . . . . . . . . . . 24

4.8 Simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 north and east wind component . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 wind data given by Luthansa Airline . . . . . . . . . . . . . . . . . . . . . 29

5.3 Wind bars in North Atlantic Ocean at flight level 390 . . . . . . . . . . . 31

5.4 wind bars in Europe at flight level 390 . . . . . . . . . . . . . . . . . . . . 31

5.5 Unit distance fuel consumption data . . . . . . . . . . . . . . . . . . . . . 32

5.6 Fuel consumption surface for 27 speed grids and 15 weight grids . . . . . . 33

5.7 Fuel consumption as a function of speed for 3 different weight . . . . . . . 34

5.8 Aircraft true speed+ wind effect . . . . . . . . . . . . . . . . . . . . . . . 34

5.9 The wind field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.10 Optimal speed for unit distance fuel consumption function for aircraft
type A320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.11 Optimal solution by using wind . . . . . . . . . . . . . . . . . . . . . . . . 47

5.12 Trajectory when we don‘t consider any influence of the wind(Assume there
is no wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1 Mapping the great circle connecting departure and arrival point to the
equator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Mapping illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 The projection of the area on equator . . . . . . . . . . . . . . . . . . . . 54

6.4 Projection of the area on x-y plane . . . . . . . . . . . . . . . . . . . . . . 54

6.5 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.6 Optimal trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.7 Triangle ordering for Delta Method . . . . . . . . . . . . . . . . . . . . . . 59

6.8 Trajectory in stronger wind . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.9 Trajectory in stronger wind . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.10 Trajectory for trip 3 with weak wind with 3 speed, 4 weight grids . . . . . 64

6.11 Trajectory for trip 2 with stronger wind . . . . . . . . . . . . . . . . . . . 65

6.12 Trajectory for trip 2 with weak wind27× 8) . . . . . . . . . . . . . . . . . 67

vi



List of Figures vii

6.13 Trajectory for trip 2 with stronger wind 27× 8 . . . . . . . . . . . . . . . 67



List of Tables

5.1 Units for variables in model 5.3 . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1 grid points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 Trip 3 experiment result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.1 Error estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

viii



Chapter 1

Introduction

1.1 Introduction

The rapid growth in commercial air travel, is putting immense pressure on the ATC

(Air Traffic Control) system. Air traffic has doubled every 15 years in the past, and is

expected to double again in the next 15 [1]. Consequently, for modernizing ATC to meet

the demands for enhanced capacity, efficiency, and safety, the concept of ”Free-Flight”

(FF) was proposed by the RTCA (1995). Generally, as aircraft fly through the sky,

they follow pre-planned routes, much like motorways on the ground that given by ATC

which called air traffic network. This trajectory are more robust and can not handle with

increasing air traffic. Since air traffic levels have doubled in the last decade, airspace

design must be continuously rethought to provide the best and the shortest routes for

the increasing number of flights.

1.2 Problem Statement and Methodology

Theoretically, a real Free-Flight can follow any route in the continuous three dimensional

space instead of following a discretized network. In this thesis, for given departure and

arrival airport, type of the aircraft, aircraft performance data and weather data, we want

to develop an algorithm which can generate the optimal trajectory with minimum fuel

cost for the trip. By following this trajectory, we are flying wind optimal route which

leads to fuel and time saving. Our aim here is to find optimal trajectory considering

horizontal direction assuming the altitude is fixed. For future work we are looking for-

ward to add vertical optimization, and combine both horizontal and vertical profile.

For model formulation, we choose to use Mixed Integer Programming. The advantage

1



Chapter 1. Introduction 2

of using mixed integer programming is that, if it can find, it will give us global optimal

solution and if not it will tell us how far we are from optimal solution. Another reason

using MIP is considering the practical issue, when we use our algorithm in practical ap-

plication, we also need to consider restricted airspace. However, continuous approaches

(differential equations) can not handle with restricted airspace. MIP method is the tbe-

coming the most natural choice to handle with most of the restriction in Free-Flight

routing problem. Therefore, in this thesis, we worked on to develop an algorithm for

Free-Flight routing problem, which can give the optimal trajectory with minimum fuel

cost. And we achieved a good result.

1.3 Structure of the Thesis

In the first and second chapter, We introduce the problem we want to solve, the methods

we use, and the background information. We also analyse the previous works done in

this field up to now and drawbacks. Third chapter is about optimization problem with

MILP technique and the MILP solving techniques such as branch and bound, branch

and cut. Chapter four is about linear approximation methods we used in our algorithm.

Chapter five and Chapter six, is the model formulation in simple 2D x-y plane and 3D

real world trip (considering on Earth surface) with real wind data given by Lufthansa

system. We also give the optimal trajectory, solving time for the model, presented how

much fuel we save by using our method and how to choose the parameters for speed,

wind and weight grids. Chapter 7 is a conclusion for our work, we presented the error

estimation, the conclusion from our experiment as well as the future development of the

project in order to improve the model and get it used in Lufthansa System.



Chapter 2

Free Flight Routing Problem

2.1 Free-Flight

Free flight is a new concept being developed to take the place of the current air traffic

management methods through the use of more advanced technology. True free flight

eliminates the need for Air Traffic Control (ATC) operators by giving the responsibility

to the pilot in command. With the aid of computer systems and/or ATC, pilots will

be able to make more flight path decisions independently. As in most complex sys-

tems, distributed yet cooperative decision making is believed to be more efficient than

the centralized control characterized by the current mode of air traffic management.

In Free-Flight case, trajectory can be changed arbitrarily without following ATN (Air

Traffic Network), by this change we can efficiently make use of weather condition and

save more fuel. Overcrowded air network, increasing fuel cost and competition in airline

market require use of the Free-Flight while more accurate navigation equipment and

future availability of automatic distributed air traffic control system make it possible.

Therefore, Free-Flight is the future of aircraft routing and it will bring more cost saving,

energy efficiency, and less crowded on existing airways.

2.2 Flight Trajectory Optimization

Flight trajectory optimization is to find a path that can connect departure airport to the

destination airport with minimum cost. This cost include fuel consumption, time cost

(delay or arrive earlier than planned time), over flight cost and restricted airspace cost.

Developing optimal aircraft trajectory not only enhances air traffic flow but also helps

the industry to cope with the increasing fuel costs. Among those costs, fuel consumption

3



Chapter 2. Introduction 4

is most costly. Aircraft never fill up their tanks like we do in our cars, superfluous fuel

is weight and weight is burning fuel, this is what we call fuel burns fuel. So predicting

the required fuel as accurate as possible is crucial for minimizing the cost.

Therefore, finding a path with optimal fuel consumption is the main task, and this is a

4D optimization problem that contains 1D profile in vertical, 2D in horizontal, and 1D

in time. We try to work separately in horizontal and vertical direction then find a way to

combine this two profile. In this thesis, we focused on horizontal trajectory optimization

to make fully use of weather condition, to burn as less fuel as possible. Depending on how

the possible solution space is defined, a flight routing problem can be categorized into

discrete flight routing and continuous flight routing problem. Theoretically, a free flight

can follow any routes in the continuous three dimensional space instead of following a

discretised grid network. Practically, the current Free-Flight setting widely used in the

real world follows the discrete flight space. The horizontal two dimensional flight space

can be discretised by a certain precision, which is usually to be 1 degree and not finer

than 0.5 degree. This precision setting is due to two factors. Firstly, the weather data is

available in a grid of 1.25◦; Secondly, the current flight navigation system has a limited

precision of minimum half degree [35]. As the modern navigation system and weather

data become more and more accurate, and the automatic air control systems become

more and more intelligent, it makes free flight in a continuous space easier and easier to

realise. So there is two way to consider this problem, continuous way and discrete way

with very fine grids (1 to 1.25 degree). In our thesis, we consider to find an algorithm

for optima fuel consumption trajectory in continuous case making fully use of the real

wind data given by Lufthansa System, using Mixed Integer Programming. Moreover,

we are looking forward in future to combine the vertical profile so that the trajectory

is optimal in both vertical and horizontal direction with less fuel consumption and time

consumption.

2.3 Previous Approach to the Problem

The earliest free flight trajectory optimization by MILP approach [2] simulated the fuel

cost function as a second order function of speed. We know that fuel consumption de-

pends on speed, but speed is not the only factor that determines the fuel consumption.

Even the result is quite good but taking the fuel consumption as a second order function

of speed is not enough, We know that, the heavier the aircraft weight, the higher aircraft

fly, the more fuel it burns even for the same speed. So the fuel consumption depends

on more factors than just speed. We got the fuel consumption data (the amount of

fuel consumed to travel one unit distance) from Lufthansa System on specific grids, we



Chapter 2. Introduction 5

can simulate the fuel consumption function in a more accurate way. This will be more

practical and more accurate. Another drawback is that the model only made on x-y

plane which neglected the roundness of the earth.

The recent study on same topic is given by NASA research center and University of

California [3]. The study develops a practical trajectory optimization algorithm for air-

craft that approximately minimizes cost of time and fuel burn by combining the method

for computing minimum-time routes in winds on multiple horizontal planes and aircraft

fuel burn model for generating fuel-optimal vertical profiles. The result of the study is

that flying wind optimal trajectories with at a single altitude reduces average fuel burn

by 1%− 3%. Wind optimal trajectories reduce fuel burn and travel time relative to the

flight plan route by up to 3% for domestic cargo flight. The horizontal trajectory is

optimized by determining the heading angle that minimize the travel time in the pres-

ence of winds. There are two drawbacks in this research work: first, they assume the

speed is constant, by which we already lost some probability to save the fuel since the

fuel consumption depends on speed. Second is that in horizontal case, just consider the

trajectory which consume less time is not enough to minimize the cost. As we know

the fuel consumption depends on the aircraft speed and weight, faster the fly does not

mean less fuel to burn, some time there will be a trajectory that consume more time

than other but it is the most fuel saving.

There are also some other approaches used on Flight Routing Optimization problem by

using direct application of Dijkstra’ algorithm for the calculation of the cost-optimal

paths on graphs with time dependent arc traversal costs. But there are drawbacks using

this method on free flight. First we are still using network and it is not continuous any

more, in this sense, it is still not a real Free-Flight unless we take the grid very fine until

to the limit of the navigation system. The other drawback is that the airway networks

as well as the Free-Flight graph become very problematic because of the time depen-

dent wind which has huge impact on the arc cost. Dealing with those time dependence

problem make the computation very time consuming. Another most common approach

is dynamic programming, however, it does not provide a particular algorithm, the algo-

rithm may vary for each case according to their own aim. Differential equation models

also used for trajectory optimization by using aircraft motion equation. The problem is

that when this method used, usually it is hard to deal with restricted airspace, and also

in this case, some analytical functions are used to approximate the fuel consumption,

and those functions always have big gap between real fuel consumption.



Chapter 2. Introduction 6

Most importantly, most of the study on flight trajectory optimization neglecting the

roundness of earth and simply working on Cartesian coordinate, this is not very practical

and accurate. Comparing to all this, in this thesis, we took into account the roundness of

the earth and found a good projection that can project the earth to plane by preserving

the distance. Another advantages is the data we use in our model, it is real world

data on earth given in 3D (latitude, longitude and altitude) coordinates, in every 1.25

degree in latitude and longitude on whole earth and 13 flight level ranging from 85 (8500

feet) to 530. This makes the model more accurate and practical. Most importantly we

do not use any analytic function to simulate the fuel consumption (the amount of fuel

consumption to travel one unit distance) function, which depends on aircraft weight,

aircraft true speed and altitude. We have the exact discrete fuel consumption data

value on grids for specific weight and speed, then we use linear interpolation in two

dimensions to approximate the fuel consumption for other speeds and weights. This is

the main improvement in Free-Flight routing problem formulation, which can lead to

more practical and accurate result.



Chapter 3

Optimization With Mixed Integer

Linear Programming

In this chapter we give a brief introduction to the mathematical modelling method we use

in the thesis to solve the Free-Flight routing problem. First we give simply introduction

to Discrete Optimization, MILP programming and general solution technique used in

MILP problem.

3.1 Discrete Optimization Problem

Definition 1. A minimization problem Π is given by a set of instances τ . Each instance

I ∈ τ specifies

• a set z of feasible solutions for I.

• a cost function c : z→ R. Given an instance I = (z, c) ∈ τ , the goal is to find a

feasible solution s ∈ z such that c(S) is minimum. We call such a solution optimal

solution of I.

Discrete optimization concentrate on optimization problems Π , where for every instance

I = (z, c) , the set z of feasible solutions is discrete, i.e, z is a countable set.

More generally we can wrote in a form as following :

P : minimizex∈X f(x) (3.1)

subject to x ∈ Ω (3.2)

7



Chapter 3. Optimization With Mixed Integer Linear Programming 8

Where X is the variable space (decision space), f : X → R
⋃{±∞} is called the objective

function, and the set Ω ⊂ X is called the constraint region. We have different type of

categorise as follows:

(1) Variable Type:

• Continuous variables: X = Rn

• Discrete variables: X = Zn

• Binary variables: X = {0, 1}

• Mixed variables: X = Rr × Zs × {0, 1}t

(2)Constraint Type:

• Unconstrained: Ω = X

• Constrained: Ω 6= X

(3)Problem Type:

• Convex Programming: f is a convex function and Ω is a convex set.

Definition 2. The set Ω ∈ Rn is said to be convex if for every x, y ∈ Ω one has

[x, y] ∈ Ω where [x, y] denotes the line segment connecting x and y:

[x, y] = {λx+ (1− λ)y), 0 ≤ λ ≤ 1} (3.3)

Definition 3. The function f : X → R
⋃{±∞} is said to be convex if the set

{(x, µ) : f(x) ≤ µ} is a convex set in Rn+1. In particular:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (3.4)

for all 0 ≤ λ ≤ 1 and f(x), f(y) not both of them are infinite.

• Linear Programming

The minimization (or maximization) of a linear functional subject to a finite num-

ber of linear inequality :

f(x) = cTx c ∈ Rn (3.5)

Ω = {x|Ax ≤ b} (3.6)



Chapter 3. Optimization With Mixed Integer Linear Programming 9

Linear Programming is a special case of convex programming. In this case the

constraint region Ω is called a polyhedral convex set. Polyhedral have a very

special geometric structure.

• Quadratic programming: The objective function is a quaderatic functions over a

convex polyhedron:

f =
1

2
xTQx+ bTx+ α (3.7)

• Nonlinear Programming: There objective function or the constraints are not linear.

3.2 Mixed Integer Linear Programming

We want to formulate the Free-Flight routing optimization with methods of discrete

optimization. Especially in form of a Mixed Integer Linear Program. Mixed integer

linear programming is a subset of the broader field of mathematical programming, it

is an optimization method that combines continuous and discrete variables. A mixed

integer linear programming problem (MILP, MIP) is of the form:

Let A ∈ Rm×n, B ∈ Rm×p, b ∈ Rm, c ∈ Rn, d ∈ Rp p ∈ 0, ...n

min cTx+ dT y (3.8)

Ax+By ≤ b (3.9)

x ∈ Zn (3.10)

y ∈ Rp (3.11)

This is a linear programming, since all the constrain and objective functions are linear. It

is called mixed integer programming because we have integer variable x and continuous

variables y. If we find (x, y) ∈ Zn ×Rp such that it satisfies all constraints, we say it is

a feasible solution. Between all feasible solution, if (x̂, ŷ) can have the minimum value

when put back to the objective function, it called global optimal solution.

3.3 solution techniques

There are alternative ways to model optimization problems as MIPs. Usually we end

up with some models that even with small instances it takes too long time to reach

the feasible solution, this is not practical. We always look for a model formulation that



Chapter 3. Optimization With Mixed Integer Linear Programming 10

can produce an efficient algorithm which is fast enough to be practically useful. Some

models maybe smaller in terms of number of constraints and variables required, but

may be more difficult to solve than larger models. In order to improve the efficiency of

our model, we need to understand how MIP solvers work. There are mostly used MIP

solvers such as CPLEX, SCIP, GUROBI. The solvers use a combination of branch-and-

bound and cutting-plane techniques. These are the exact methods, this means that,

if an optimal solution for MILP exists, they find it, otherwise, they prove that such a

solution does not exist.

3.3.1 Brunch and bound

Branch-and -Bound algorithms are well known in discrete mathematics. The main idea

is to divide the main problem to finite subproblems, and solve the subproblems, this is

called branching. Branching usually done by relaxation procedure. There are many types

of relaxation and this is the most common used relaxation called linear programming

relaxation. The first step is solving continuous relaxation of MILP. As above we see the

form of MILP, x ∈ Zn , so the relaxation MILP is obtained by relaxing the integrality

constrains on the x variables, then the problem becomes a LP problem

min cTx+ dT y (3.12)

Ax+B ≤ b (3.13)

x ∈ Rn (3.14)

y ∈ Rp (3.15)

Then give a fractional value x̂i from the solution of LP. Afterwords the problem is divided

into two subproblems, where the constraint xi ≤ x̂i is added to the first subproblem and

the the constraint xi ≥ bx̂ic + 1 is added to the second subproblem. Each of those

new constraints represents a branching decision, because the partition of the problem

in subproblems is represented with a tree structure, the BB tree. Each subproblem is

represented as a node of the BB tree and has the following form:

min cTx+ dT y (3.16)

Ax+By ≤ b (3.17)

x ∈ Rn (3.18)

y ∈ Rp (3.19)

x ≤ lk (3.20)

x ≥ uk (3.21)



Chapter 3. Optimization With Mixed Integer Linear Programming 11

where lk and uk are vectors defined so as to mathematically represent the braching

decisions taken so far in the previous levels of the Branch-and-Bound tree (BB tree),

the process is iterated for each node until the solution of the continuous relaxation of

the subproblem is integer feasible or the continuous relaxation is infeasible or the lower

bound of the value of subproblem is not smaller than the current beast solution encoun-

tered so far. The following graph (3.1) illustrates the tree representation of this search

process [34]:

Example 3.3.1. For example, if we want to solve the following MILP problem:

Mininize 4x1 + 6x2 (3.22)

subject to 2x1 + 2x2 ≤ 5 (3.23)

x1 − x2 ≥ 1 (3.24)

x1, x2 ≤ 0, {x1, x2} ∈ Z (3.25)

Figure 3.1: Bround-and-Bound tree

As we see from figure (3.1), the region 3 is empty, because for this branch, there is no

solution can satisfy the constraint (3.24). Therefore, there is no integer solution for this

branching and we can exclude this possibility out from solution space. Region 4 we still

have to search for the integer solution by branching, but we can see that the objective

function’s value for relaxed problem is 14. We know that there is no integer solution

which can give value to objective function less than 14 in this direction. However, we

know there is integer solution which can give value to objective function 14 in region

2, so we also exclude region 4 from our solution space because, there is solution exists

but it is not the optimal solution. We interested the most optimal solution but not on



Chapter 3. Optimization With Mixed Integer Linear Programming 12

every solution. Thus, region 4 is excluded because of the bounding, it called fathomed

by bounding.

This produce can be done iteratively and so we get the well known brunch-and-bound

tree. Summing up the idea described above we reach the following algorithm [4]:

Algorithm 1 Brunch-and-Bound

1. Let L be the list of the unsolved problems. Initialize L with the MILP which has to
be solved. Set U := +∞ as upper bound.
2. Choose an unsolved problem Xj from the list L and delete it from L.
3.Compute the lower bound bxi by solving the linear relaxation. Let x̂Xj be the optimal
solution, so bXj := cT x̂Xj .
4. If ˆxXj ∈ Z , the problem XJ solved and we found solution of Xj ; if U > bXj , set
U := bXI

and delete all subproblems Xi with bXi ≤ U from the list.
5. If ˆxXj /∈ Z, split problem Xj into subproblems and add them to the list L.
6. Go to the step 2, until the list is empty.

3.3.2 Cutting plane

Cutting plane is a way for relaxation. As in the Branch-and Bound method, the LP

relaxation is solved. Given the fractional LP solution (x̂, ŷ), a problem whose aim is

finding a valid linear inequality that cuts off the (x̂, ŷ) (not satisfied by (x̂, ŷ)). An

inequality is valid for MILP problem if it is satisfied by any integer feasible solution of

the problem. Once a valid inequality is founded it is added to the problem, which makes

the LP relaxation tighter and the iterative addition of cuts might lead to an integer

solution. In other words: if the solution x̂ satisfies x ∈ Zp × Rn then the solution is

found, if not then , there exists a valid inequality αTx ≤ β for the polyhedron Pmip that

cuts of the x̂. Therefore the valid inequality αTx ≤ β called a cutting plane. There are

many different types of cuts have been studied, such as, geometry cuts, rounding cuts,

lift-and-project cuts, split cuts, clique cuts. Usually different types of cuts are combined

[4]. The complete algorithm for cutting plane is as follows [5]:

Algorithm 2 Cutting plane

1.let k := 0 and LP 0 the linear programming relaxation of the mixed integer programm
2. Solve LP k. Let x̂k is the optimal solution.
3. if x̂k is in Zp × Rn−p then stop, x̂k is the optimal solution of the mixed integer
programm.
4. Otherwise, find a linear inequality, that is satisfied by all the feasible mixed integer
points, but not by x̂k .
5. Add this inequality to the LP k to obtain LPK+1.
6.Increase k by one and go to step 2.



Chapter 3. Optimization With Mixed Integer Linear Programming 13

3.3.3 Branch-and-Cut

Cutting plane algorithm and branch-and-bound algorithm are usually combined in order

to fasten the solution time of the mixed integer programs which called branch-and-cut

algorithm. The idea is integrating the two methods, merging the advantages of both

techniques. like in BB, at the root of node the LP relaxation is solved. If the solution

is not integer feasible, a separation problem is solved and, in the case are found, they

are added to the problem, otherwise a branching decision is performed. The algorithm

is given as following [5]:

Algorithm 3 Branch-and-Cut

1.Let L be the list of the unsolved problems. Initialise L with the mixed integer pro-
gramming which has to be solved. Set U := +∞as upper bound.
2. Choose an unsolved problem Xj from the list L and delete it from L.
3.Compute the lower bound bXj by solving the linear relaxation. Let ˆxXj be the optimal
solution, so bXj := cT ˆxXj .
4. If x̂xj ∈ Z , the problem Xj solved and we found solution of Xj ; if U > bXj , set
U := bXj and delete all subproblems Xi with bXi ≥ U from the list.
5. If ˆxXi /∈ Z, look for the cutting plans and add them to the linear relaxation.
6.Go to the step 3. until no more violated inequalities can be found or violated inequal-
ities have too little impact in improving the lower bound.
7. Split problem Xi into subproblems and add them to the list L.
8. Go to the step 2, until the list is empty.



Chapter 4

Approximating the Non-linear

Functions

Since we want to formulate the problem as MIP, we know that most of the MIP solvers

only work for linear constraint or work faster for the linear constraint than nonlinear

ones such as CPLEX, SCIP (CPLEX can not handle with either nonlinear objective

functions or constraints). In this chapter we will introduce how we approximate the

nonlinear functions by piecewise linear functions or how to interpolate a function which

is just given on discrete grid points as a black box, which is the case in our model for fuel

consumption and wind data. There are three different approaches now used in different

fields for linearising non-linear functions. The first one is called Special Ordered Sets of

Types 2 also known as SOS Type 2. The second one is so called Convex Combination

or Lambda Method. The last one is known as Incremental or Delta method.

4.1 1D Nonlinear Function Approximation by Piecewise

Linear Functions

First, we present the piecewise linear approximation of a one dimensional non-linear

functions.

14



Chapter 4. Approximating the Non-linear Functions 15

Figure 4.1: Approximation of non-linear function by piecewise linear functions

Approximating non-linear functions by piecewise linear functions:

Let‘s consider a non-linear function f : D → R where D = [a, b]. First we decompose

the interval D to small subintervals [xi, xi+1] where xi ∈ {a = x1 ≤ x2 ≤ ....xk = b},
and we get the corresponding value of function f at grid points as f(x1), f(x2).....f(xk).

We want to approximate the non linear function f by the piecewise linear functions as

shown in figure (4.1). In order to do that, we introduce a variable σi for each grid point

xi and take the convex combination as follows:

x =
k∑

i=1

xiσi (4.1)

k∑

i=1

σi = 1 (4.2)

σi ≥ 0 for all i = 1, 2...K (4.3)

f(x) ≈
k∑

i=1

f(xi)σi (4.4)

The above constrains are not enough to guarantee that function f is linearised by means

of line segment that shown in the figure (4.1). We need to add some other constraints,

such as, at most two σi are positive( since we only chose those nearest points to ap-

proximate the value of f(x), in 1D case, we have intervals, so we chose at most two

neighbouring grids to approximate the function value) and if two are positive they must

adjacent. This condition is called Special Ordered Set of Type2 condition, briefly SOS

Type2 condition. We have different ways to handle the SOS conditions, that is why we



Chapter 4. Approximating the Non-linear Functions 16

have SOS Type Polytopes, lambda method, and Delta method.

Now we define some basic concepts we used for linearization in order to understand the

techniques to tighten the formulation of Mixed Integer Linear Programming. When we

linearize our functions, we first decompose our domain into disjoint subdomains as we

see above, in one dimension functions, it is interval, in two dimensional functions it can

be triangle, rectangle or even some other shape. We can chose a appropriate way which

will accelerate our algorithm, but every subdomain should be a polytop.

Definition 4. A subset P ∈ Rn is called polyhedron if there exist a matrix A ∈ Rm×n

and a vector b ∈ Rm such that:

p = {x ∈ Rn|Ax ≤ b} (4.5)

Definition 5. A polyhedron is called Polytop if it is bounded, i.e, there exists a number

B ∈ R,B > 0,with

p ⊆ {x ∈ Rn| ‖ x ‖≤ B} (4.6)

4.1.1 Linearization of Functions: SOS Polytopes (SOS Type 2)

Special ordered sets were introduced by Beale and Tomlin[6]. There are two types,

sets of Type 1, are the set of variables of which not more than one member may be

nonzero in the final solution. Sets of type 2 (SOS2) is a set of consecutive variables

in which no more than two adjacent members may be non-zero in a feasible solution.

All such sets are mutually exclusive of each other, the members are not subject to any

other discrete conditions and each set is grouped together consecutively in the data.

SOS Type2 were introduced to make it easier to find the global optimum solutions to

problems containing piecewise linear approximations to a non-linear function of a single

argument (as in classical Separable Programming). SOS Type 2 sets satisfy the SOS

Type 2 condition implicitly during the branch-and-bound phase ([6],[7]).



Chapter 4. Approximating the Non-linear Functions 17

The MILP formulations such that :

x =
k∑

i=1

xiσi (4.7)

k∑

i=1

σi = 1 (4.8)

σi ≤ 0 for all i = 1, 2...K (4.9)

f(x) ≈
k∑

i=1

f(xi)σi (4.10)

σ1, σ2...σk are SOS2 (4.11)

Remember that a set of consecutive variables λ1, λ2....λn is SOS2, if at most two variables

can be non zero and if so they must be adjacent. This condition is implicitly done

by means of branching scheme, without introducing any additional (binary variables).

Branching strategies for classical SOS 2 were developed in 1979 and can be found in[7].

Here we give a brief introduction about how it was done.

Branching for SOS conditions:

In the case of SOS, branching on sets of variables are is more efficient than to branch

on individual variables. Let us denote the set s = λ1, λ2...λn is SOS2. If there are two

positive variables λi, : λj with |i− j| > 1, we chose one of them and divide the set into

two parts, if we chose λj then we cut the problem into two subproblem, then we add the

constrain
∑j

i=1 λi = 1 to the first subproblem and
∑n

i=j λi = 1 to the second subproblem.

For example, if we use the SOS2 in one dimensional function approximation, taking

segment as a simplex, we have branching as following figure (4.2):



Chapter 4. Approximating the Non-linear Functions 18

Figure 4.2: Brunching on SOS2

4.1.2 Binary Linearization Model: Convex combination (lambda method)

In lambda method, the SOS Type 2 condition is modelled explicitly by introducing

binary variables. Here we use the same notation as before, first again decompose the

domain into small intervals by introducing grid points x1, x2, x3.... and we have corre-

sponding variables σ1, σ2....σi...σk, we introduce a binary variable λi for each segment

[xi, xi+1] i = 1, 2, 3...k− 1 such that λi = 1 if the segment i is chosen, otherwise λi = 0.

See the figure (4.3):

Figure 4.3: Lambda method for approximating nonlinear functions



Chapter 4. Approximating the Non-linear Functions 19

Here we can formulate the approximation as a MIP problem:

k−1∑

i=1

λi = 1 (4.12)

σ1 ≤ λ1 (4.13)

λi ≤ σi−1 + σi for all i = 2, 3..K − 2 (4.14)

σk ≤ λk−1 (4.15)

k∑

i=1

σi = 1 (4.16)

σi ≥ 0 for all i = 1, 2...K (4.17)

σi ∈ [0, 1] (4.18)

x =
k∑

i=1

xiσi (4.19)

f(x) ≈
k∑

i=1

f(xi)σi (4.20)

The first constrain guarantee that only one segment is chosen, second, third and froth

constrain is actually the explicit form of SOS Type2 condition making sure that only

those σi who is adjacent to the segment that chosen can be positive, all other σi are zero.

4.1.3 Binary Linearization Model: Incremental (Delta method)

With the same notation: see figure (4.4)



Chapter 4. Approximating the Non-linear Functions 20

Figure 4.4: Delta method for approximation non-linear functions

we have decomposition on domain D = [a, b], by grid points x1, x2, x3...xi...xk, and a

continuous variable αi i = 1, 2...k − 1 for each segment [xi, xi+1]which is having values

on [0, 1] and binary variables λi for i = 1, 2...k − 2 corresponding to the segment

1,2..k-2. Therefore we have the MIP formulation for this approximation:

αi+1 ≤ λi for i = 1, 2...k − 2 (4.21)

λi ≤ αi for i = 1, 2...k − 2 (4.22)

0 ≤ αi ≤ 1 for all i = 1, 2...K − 2 (4.23)

x = a+
k−1∑

i=1

(xi+1 − xi)αi (4.24)

f(x) ≈ f(a) +

k−1∑

i=1

(f(xi+1)− f(xi))αi (4.25)

The first ans second constrains are called filling condition that assures that if an interval

is chosen, then all intervals to its left must also be used completely.

4.2 2-Dimension Nonlinear Functions Approximation

Let us assume we have function f D → R where D ∈ R2. Here same as we did before

for one dimension functions, we use decomposition of the domain D to finite set of



Chapter 4. Approximating the Non-linear Functions 21

simplices and function is interpolated within each siplex. In our model we use uniform

triangulation of domain. As shown in figure(4.5):

Figure 4.5: Approximation of nonlinear function by piecewise linear function

Now we linearise the function within a rectangle domain as follows. We have D =

[a, b] × [c, d] we trivialize this domain by subdividing [a, b]to n small intervals and

[c, d] to m small intervals, then we divide the each sub rectangle to two triangle as

shown in the graph, therefore we have set of grid points (vertices of triangle) A =

{v1, v2, v3, ...., v(m+ 1)(n+ 1)} and set of simplices B = {N1, N2.N3, ..., N2mn} with

2mn triangles. Same as in one dimensional case, here it need to fulfil the SOS condition

stating that those variables σi on each vertexes, at most three of them can be positive

and these three positive variables must belong to one triangle. This called SOS Type3

condition.

4.2.1 Linearization of 2D-Functions: SOS Polytopes (SOS Type 3)

For higher dimension functions (2D), the brunching concepts for SOS3 is a little compli-

cated. We take uniform triangulation of the domain D = [a, b] × [c, d]. ( see the graph

for 2D delta and Lambda method triangulation), Let a = a1 < a2, < a3.... < an = b, c =

c1 < c2, c3....cm = d is uniform subdivision for the domain D. We obtain mn grid points

(ai, bj), for s ∈ {2, 3...m− 1} we separate the grids on the domain into to subsets such

as L = {(i, j) ∈ {1, 2...n} × {1, 2...s}} and R = {(i, j) ∈ {1, 2...n} × {s, s+ 1....m}}.



Chapter 4. Approximating the Non-linear Functions 22

Figure 4.6: Brunching on SOS3

This branching called vertical branching, see figure (4.6). Now our original problem

convert to two subproblems with one more constrain. For the first subproblem, we add

the equation,

∑

i∈L
λi = 1 (4.26)

For the second subproblem, we add,

∑

i∈R
λi = 1 (4.27)

We also can take horizontal branching, it is done in the same way with vertical branching,

by doing it iteratively, at the end, we can observe that, if there is no further vertical or

horizontal branchings, the positive λi,j variables a re restricted to exactly one rectangle,

then we just need to branch on the two triangles which constitutes this last rectangle. For

higher dimension functions, we need to brunch in N direction, this is done by hyperplane

branching[8]. In our case, we may use it for wind interpolation (2D now, but in future

we would like to introduce the time dependence of wind, then will be 3D), fuel range

function (2D in our model, if we consider horizontal direction and assume the optimal

altitude is known) and also for approximation quadratic function of speed by piecewise

linear functions.

4.2.2 Linearization of 2D-Functions: Lambda method

Lambda method as we seen before uses additional binary variables to explicitly model

the SOS conditions. We introduce the binary variables λj for each simplex Nj ∈ B , σi



Chapter 4. Approximating the Non-linear Functions 23

for each vertex i ∈ A, lets denote S = {1, 2, ....mn} is the set of indices of the binary

variables (indices of triangles), Then the MILP formulation for the approximation is

following:

∑

j∈S
λj = 1 (4.28)

∑

i∈A
σi = 1 (4.29)

σi ≤
∑

j:i∈Nj

λj for all i ∈ A (4.30)

0 ≤ σi ≤ 1 for all i ∈ A (4.31)

λj ∈ {0, 1} for all j ∈ S (4.32)

x =

k∑

i=1

xiσi (4.33)

f(x) ≈
k∑

i=1

f(xi)σi (4.34)

The first constrain guarantee that only one simplex is chosen and second constrain modes

SOS Type3 condition.

4.2.3 Linearization of 2D-Functions: Generalized Delta method

In one dimensional case, we have filling condition that easily fulfilled and ordering is

automatically done since the simplices consist of sequence of segment. But in higher

dimension case it is quite complicated since it require the ordering of simplices. There

are some kind ordering methods are talked in literatures [9]. The ordering is done by

making assumption for simplices which is called ordering assumption:

Assume that the simplices B = {N1, N2.N3...N2mn} are ordered in a way such that:

Nj ∩Nj+1 6= ∅, and for each simplex Nj we can label it’s vertices (v0
j , v

1
j , v

2
j ) such that

v2
j−1 = v0

j (type 3, triangulation) holds for all j = 1, 2....mn. See figure (4.7),(4.8).



Chapter 4. Approximating the Non-linear Functions 24

Figure 4.7: Triangulation and Special Ordering

Figure 4.8: Simplex



Chapter 4. Approximating the Non-linear Functions 25

As shown in the figure(4.8), if we chose one simplexNj ∈ B and assume it fulfils ordering

assumption, it is obvious that every point x ∈ Nj can be written as:

x = v0
j +

3∑

i=1

(vij − v0
j )σij (4.35)

where
∑2

i=1 σ
i
j ≤ 1 and σij ≥ 0

The point vij can be written as follows:

v0
j = v0

j−1 + (v2
j−1 − v0

j−1) (4.36)

This is because we assume that the simplices satisfies the ordering assumption which

is states thatv2
j−1 = v0

j . By iterating this procedure we came up with the following

equation:

v0
j = v0

1 +

j−1∑

i=1

(v2
i − v0

i ) = v0
1 +

j−1∑

i=1

(v0
i+1 − v0

i ) (4.37)

This showing that any point in simplex Nj can be presented by v0
1 plus vectors from

v0
j to v0

j+1, j = 1, 2, ..., j − 1 and plus a conical combination of the vij − v0
j . By all this

analysis we reach the MILP formulation for of the approximation as follows:

x = v0
1 +

2mn∑

i=1

2∑

j=1

(vji − v0
i )σji (4.38)

2∑

i=1

σji ≤ 1 for all i = 1, 2...mn (4.39)

σji ≥ 0 for all j = 1, 2 : i = 1, 2...mn (4.40)

f(x) ≈ f(v0
1) +

2mn∑

i=1

2∑

j=1

(f(vji )− f(v0
i ))σji (4.41)

Remember that we had filling condition for Delta method in one dimension stating that

if an segment is chosen then all segments to its left should be completely used. In two

dimension case we have triangles instead of segments, and those triangles should also

satisfy filling condition such that if any triangle are chosen then all those triangles or-

dered before it should be completely used. In other word, if any variables σji is positive

then all variables σ2
i−1 = 1 for all i = 1, 2...mn In order to model this condition we

again introduce extra binary variables λj associate with simplex N i for i = 1, 2....mn−1.

Then we have the following constrains:



Chapter 4. Approximating the Non-linear Functions 26

2∑

i=1

σj+i1 ≤ λi for all i = 1, 2...mn− 1 (4.42)

λi ≤ σ2
i for all i = 1, 2....d− 1. (4.43)

Above two constrain if σii+1 positive this force λiis one and then σialso one, using iter-

atively then it make sure that if Ni simplex is chosen, then all simplices ordered before

is used completely.



Chapter 5

Model Formulation with MILP

5.1 Problem Description and Data Analysis

As we defined in chapter 1, we want to find an optimal route for Free-Flight, which is not

based on a network. Under the allowance of the navigation technique and passenger‘s

comfort, the direction can be changed at any time during the trip to make fully use of

the wind. Therefore, given the coordinate ( latitude, longitude) of two points on the

earth as departure and arrival airport, we use the weather data to find an algorithm

which can produce the optimal route on horizontal direction with minimum cost. For

cost function, we mainly consider fuel cost.

A typical aircraft trajectory consists of an initial climb, a steady-state cruise, and a

final descent. Here the aircraft performance is optimized for the cruise phase only. The

fuel and time saving for initial climb and descent are small compared to the cruise. We

need additional traffic constraints to model these stages, which make the model more

complicated but bring almost no contribution for fuel saving. Therefore, we escape the

climb and descent stage, just consider the cruise stage.

5.1.1 Weather Data

The weather data from Lufthansa System is given with (latitude,longitude, altitude)

coordinate at each 1.25 degrees in horizontal direction and on 13 flight levels from flight

level 50 (5000 feet) to flight level 830 in vertical direction. Wind is given in north and

east component, the figure (5.1) shows the direction of two component. The U stands

for the east wind component , V stands for north wind component.

27



Chapter 5. Model Formulation with MILP 28

Figure 5.1: north and east wind component

Here is a part of original data form by Lufthansa System shown in figure (5.2). The

weather data is measured at flight level 10 (1000 feet), on 8th of October, 2013 at time

00:00. The U stands for the east wind component , V stands for north wind component,

and T stands for temperature. N9000 represent altitude 90 degree (north pole), E0000

and E00115 represent longitude 0 degree(east hemisphere), longitude 1 degree 15 minutes

(east hemisphere) respectively. The figure (5.2) shows the part of original weather data

given by Lufthansa System at north pole from longitude 0 to longitude 31.25 degree.



Chapter 5. Model Formulation with MILP 29

Figure 5.2: wind data given by Luthansa Airline

We see from figure (5.2), at north pole, we have different magnitude of wind at both

east and north component even north pole is only one point. This is because of the

direction. The wind is the same but, the direction is different at different longitude on

the north pole. Here we give the formula to calculate the wind at north pole for each

different direction.

(1) if the wind at altitude 90 degree (north)longitude 0 degree (E0,N90) is given as

following:

north wind component(V) at (N900,E00): V1 = −3.1

east wind component(U) at (N900,E00): U1 = 2.3

at any other point A on north pole with longitude θ(degree) , the wind north and east

wind component (V2, U2) is given by:



Chapter 5. Model Formulation with MILP 30

V2 = sin(arctan(
V1

U1
)− θ)

√
(V 2

1 + U2
1 ) (5.1)

U2 = cos(arctan(
V1

U1
)− θ)

√
(V 2

1 + U2
1 ) (5.2)

For example at E03115:

θ = 31.25 (5.3)

v2 = sin(−36.57 + 31.25) · 3.86010 = −3.84 (5.4)

u2 = cos(−36.57 + 31.25) · 3.86010 = 0.35 (5.5)

The direction of the north and east component wind is given by the following rule

For north component:

− if θ > 90 + arctan(
V1

U1
) (5.6)

+ if θ < 90 + arctan(
V1

U1
) (5.7)

For east component:

− if 36.57 < θ < 180 + arctan(
V1

U1
) (5.8)

+ if 0 < θ < arctan(
V1

U1
) or θ > 180 + arctan(

V1

U1
) (5.9)

So for the point (N000,E0315) the north wind component is -3.84, and east component

is 0.35.

The impact of wind is strong on aircraft over north Atlantic ocean if we fly from Europe

to the United states, the following figures (5.3), (5.4) shows the wind data visualization

at north Atlantic ocean and Europe:



Chapter 5. Model Formulation with MILP 31

Figure 5.3: Wind bars in North Atlantic Ocean at flight level 390

Figure 5.4: wind bars in Europe at flight level 390

5.1.2 Fuel Consumption Data

The fuel consumption (the total amount of fuel consumed to travel one unit distance

(here is one nautical mile)) data is given as a function of aircraft true speed, weight,



Chapter 5. Model Formulation with MILP 32

and altitude. Here is the original fuel consumption data on flight level 360, on 27 speed

grids and 15 weight:

Figure 5.5: Unit distance fuel consumption data

Fuel consumption changes as altitude, aircraft true speed and weight changes (figure

(5.5)). We want to see how the aircraft true speed and weight influence the fuel con-

sumption function (in our work, we assume the altitude is fixed, later we try to combine

vertical and horizontal optimization). Here is the fuel consumption surface for A320

type aircraft in figure (5.6), at altitude level 360, as a function of weight and speed:



Chapter 5. Model Formulation with MILP 33

0.4
0.5

0.6
0.7

0.8
0.9

5.5

6

6.5

7

7.5

8

x 10
4

4

5

6

7

8

9

10

11

speedweight

U
ni

t d
is

ta
nc

e 
fu

el
 c

on
su

m
pt

io
n

Figure 5.6: Fuel consumption surface for 27 speed grids and 15 weight grids

As we can see, it is not a regular function, the function value is given on grids, and

we are not able to simulate it by some analytical functions. This fuel consumption

function is like a black box, only have values for some specific discrete points. Given

aircraft true speed, weight, altitude on grids, returns a corresponding value which stands

for the amount of the fuel consumed for travelling one unit of distance. But we don’t

know the what is the value of the function for other weight, speed and altitude. From

figure (5.6),(5.7), it can be seen that there is an optimal speed for this fuel consumption

function, whatever the weight of the aircraft, the fuel consumption always minimum at

this speed (when there is no wind).



Chapter 5. Model Formulation with MILP 34

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
4.5

5

5.5

6

6.5

7

7.5

8

speed

U
ni

t d
is

ta
nc

e 
fu

el
 c

on
su

m
pt

io
n

 

 
59500
58000
56500

Figure 5.7: Fuel consumption as a function of speed for 3 different weight

We simulate the fuel consumption function on flight level 360 for 3 different weights and

it was shown in figure (5.7) such that flying at speed 0.76 Mach number, always consume

less fuel for one unit length no matter how the aircraft weight change (when there is no

wind influence).

5.2 Aircraft Motion Equation

We can formulate aircraft motion in different coordinate system in different way. As

figure (5.8) shows, the true distance aircraft travelled is the combination effect of aircraft

true velocity vector (represented by V in figure) and wind velocity vector (w) effect.

Figure 5.8: Aircraft true speed+ wind effect



Chapter 5. Model Formulation with MILP 35

If we simply consider the aircraft motion equation on 2D X-Y plane:

˙x(t) = wx(t, x(t), y(t)) + V cos γ(t) (5.10)

˙y(t) = wy(t, x(t), y(t)) + V sin γ(t) (5.11)

Where γ(t) is the flight angle, the angle from positive x axis to the aircraft true velocity

direction. (from x direction)

On Earth’s surface:

φ̇ =
u(φ, θ, α) + V cos γ

(R+ a) cos θ
(5.12)

θ̇ =
v(φ, θ, α) + V sin γ

R+ a
(5.13)

Where φ is longitude, θ is latitude,γ is heading angle, and R is Earth‘s radius. The

east component of the wind velocity is u(φ, θ, α) and the north-component of the wind

is v(φ, θ, α).

Before formulating the problem into mathematical model, we need to think about which

coordinate system would be more convenient, accurate and near to the practical usage.

Working on 2D (Cartesian coordinate) would make the computation more efficient and

fast, but the problem is that by working on 2D, we are neglecting the roundness of

the earth. This kind of model only work for short trip near the equator, for long

trip it is quite inaccurate. 3D coordinate (spherical coordinate) would be ideal for

accuracy, however, in this case, we have wind data at each 1.25 degree longitude and

1.25 degree latitude grids, with east and north component. When mapped to 3D, the

model becomes quite complicated (will see later) that involve trigonometric functions

which is hard for MIP solvers to solve, at least there is no efficient MIP solvers for

this kind of problem right now. At the end, after analysing all formulation possibility,

accuracy, and solvers efficiency, we came up with the idea that, through pre-processing,

we escape all complicated calculation for MIP, make the model more efficient and fast.

This means we first map the solution space from earth surface to on X-Y plane in such

a way that it is more accurate and practical. Change the coordinate from latitude,

longitude to Cartesian coordinate, then use MIP solver to solve the model.

Therefore, first we make a model that works efficiently on 2D x-y plane. Then we adapt

our model to the earth surface.



Chapter 5. Model Formulation with MILP 36

5.3 Mathematical Model

In this section we introduce the mathematical formulation of the problem with mixed

integer programming. Formulating a real-world problem as a MIP sometimes is quite

challenging, since we need to find a way to present the correctly and as close to practical

issue as possible. At the same time we need to guarantee the solvability of the problem

using various techniques. Thus, we keep updating the model during formulation, espe-

cially for those non-linear equations in the model, we need to find a way that can be

presented in a linear way, which can speed up the algorithm.

Flight routing optimization with MIP is done in two steps. First, the problem has to

be presented completely as a mixed integer programming. Second, is to solve the model

using a linear programming based branch and cut approach.

First let us give a mathematical model formulation for Free-Flight routing problem. For

model formulation, we need the following variables and parameters:

Variables:

• In order to describe the position of the aircraft over time, we introduce the contin-

uous variable (x(t), y(t)) describing the location of aircraft as a function of time.

• Velocity of aircraft (Vx, Vy) (aircraft true speed) is presented in x,y component as

a continuous function of t. Once the velocity become zero, the flight is considered

terminated.

• Weight of the aircraft W (t) can be written as a function of time t.

• fuel consumption function represented as f(V,W, a) a function of aircraft true

speed, weight, and altitude.

• Binary variables λ which having value on 0, 1 introduced for descritization.

Parameters:

• The wind field (wx(xt, yt), w
y(xt, yt) is given at x(t), y(t)) as a function of t.

• Fuel consumption f(at, Vt,Wt) is a function of altitude, aircraft true speed, and

weight.



Chapter 5. Model Formulation with MILP 37

5.3.1 MILP Formulation for Free-Flight

In order to formulate the aircraft motion as MIP mode, we discretize the time T which

is the scheduled time for trip as 0 = t0 < t1 < t2 < t3 < .... < tN = T .

Variables:

• xi: x coordinate of the aircraft position at time ti

• yi: y coordinate of the aircraft position at time ti

• wx
i : wind velocity x-component at (xi, yi)

• wy
i : wind velocity y-component at (xi, yi)

• V x
i : aircraft speed x-component at time ti

• V y
i : aircraft speed y-component at time ti

• Wi: aircraft weight at time ti

• fi: the amount of fuel consumed on segment i

• li: the distance travelled by aircraft within time ∆ti

• ∆ti: the time spend on segment i which is ∆t = ti+1 − ti
(denote segment i by: [(xi, yi), (xi+1, yi+1)])

• Fr(Vi,Wi): fuel consumption for one unit length when aircraft speed is Vi and

weight is Wi.

parameters:

• (x0, y0): starting point

• (xN , yN ): destination point

• EW : dry weight of aircraft(empty weight of aircraft+load weight+extra fuel for

safety concern)

• T : duration of the trip.



Chapter 5. Model Formulation with MILP 38

We want to minimize the cost. In our model the cost function is mainly considered the

fuel consumption for the whole trip. Few hours before starting the trip, some amount of

fuel is loaded on the plane which is estimated would be enough for finishing the whole

trip. Here we want to minimize this fuel amount loaded to the aircraft at the starting of

trip, so that we can finish the trip with as less fuel as possible and also guarantee that

we will not have the risk of out of fuel in mid flight.

Model 5.1:

Objective function :

min (W0 −WN ) (5.14)

Constraints:

V 2
i = (V x

i )2 + (V y
i )2 for all i = 1, 2, ..., N (5.15)

xi+1 = xi + ∆ti · (V x
i + wx

i ) (5.16)

yi+1 = yi + ∆ti · (V y
i + wy

i ) (5.17)

wx
i = wx(xi, yi) (5.18)

wy
i = wy(xi, yi) (5.19)

li = Vi∆ti (5.20)

fi = li · Fri(Vi,Wi) (5.21)

WN = EW (5.22)

∆ti = ti+1 − ti (5.23)

(x0, y0) = departure location (5.24)

(xN , yN ) = arrival location (5.25)

Before directly going to the model considering the roundness of earth, and work on real

world data, we tried to test our model on usual X-Y plane ( 2D Cartesian coordinate),

with artificial wind. Later we adapt the model to real world case by considering the

roundness of the earth, and work on real world case using the weather data and fuel

consumption data from Lufthansa System.



Chapter 5. Model Formulation with MILP 39

5.3.2 2D X-Y Plane Model

As we can see in model 5.1, there are non-linearities in the model such as constraints

(5.26), and (5.21). In order to linearise (5.26), we can think of using fixed time step or

fixed segment length.

In our model we choose to use fixed time step ∆t = T/N = ti+1 − ti, i = 1, 2, 3...N

for each segment. We introduce relaxation factors on the arriving point allowing that

we can arrive in a small region include the arrival point with a small deviation. This

relaxation is introduced in order make sure the feasible solution exists. As we only

consider cruise stage, if we have small deviation at the end of the cruise stage, we still

have chance to arrive the exact point. So if the deviation is small, we still can make

sure to arrive the exact airport within scheduled time. And by adding this relaxation to

the objective function we can keep it as small as possible. We also introduced a small

weight in the objective function for relaxation term. By doing this, we emphasise that

we want to minimize the fuel, minimizing deviation is less important than minimize the

fuel consumption because we usually give a small range of magnitude for relaxation term

when we introduce it to model.

Model 5.2

• The objective function:

min (W0 −WN + 0.01 · (σx + σy)) (5.26)

This is the magnitude of fuel consumed during whole trip.

• Constraints:

V 2
i = (V x

i )2 + (V y
i )2 (5.27)

xi+1 = xi + ∆t · (V x
i + wx

i ) (5.28)

yi+1 = yi + ∆t · (V y
i + wy

i ) (5.29)

wx
i = wx(xi, yi) (5.30)

wy
i = wy(xi, yi) (5.31)

li = Vi ·∆t for all i = 1, 2...N − 1 (5.32)

fi = li · Fri(Vi,Wi) for all i = 1, 2...N − 1 (5.33)

WN = EW (5.34)



Chapter 5. Model Formulation with MILP 40

x0 = Dx (5.35)

xN = Ax + σx (5.36)

y0 = Dy; (5.37)

yN = Ay + σy (5.38)

Bx ≥ σx ≥ 0 (5.39)

By ≥ σy ≥ 0 (5.40)

Where (Dx, Dy) is the coordinate of departure airport, (Ax, Ay) is arrival airport loca-

tion. Bx, and BY is the bound for relaxation factor.

5.3.3 Trip 1: Implementation in SCIP with lambda Method

We give a trip starting from (0,0) to (0.9× 2000, 0.9× 2000) (nautical miles) and allow

small deviation. Whole trip takes 5 hours and we fix each time step as 0.5 hour. We

introduce the wind artificially (the wind generating method is used same method in [2]),

which is given by x and y component and magnitude ranging from 0.03016 to 0.087

(Mach number) in x direction and -0.07221 (Mach number) to 0.043 (Mach number) in

y direction. We chose the aircraft type A320. This is a small type of aircraft which can

fly continuously at most 7 hours, and allowed speed range is from 0.4 Mach number to

0.82 Mach number.

Since it is free flight, the trajectory is continuous, means it is not based on grid, each

time can reach any point in the solution space under its capability. Therefore, we

need continuous wind and fuel data on the solution space. However, the fuel data is

given on altitude × aircraft truespeed × weight grid while wind given on a grid

altitude × latitude × longitude, so we need to do the wind and fuel interpolation by

triangulation such that we can get a wind fuel consumption value at any point on the

solution space.

Wind data interpolation by By lambda method:

the wind is introduced at grid points {0, 200, 400, 600....2000} in both x and y direc-

tion. Here we use 2D lambda method to approximate the wind data. Let us denote

A = {v1, v2...vn} the set of the grid points (vertices of triangles) and A1 the index set

of the points. B = {N1, N2, ...Nm} set of triangles, T1 = {t1, t2...tN} the time grids, in

our case, it is a uniform grid. We define a variable α(i, j) where (i, j) ∈ A1 taking value

on [0, 1] for each grid points(vertices of the triangle) and a binary variable λi where



Chapter 5. Model Formulation with MILP 41

i ∈ B1 = {1, 2, 3....m} for each triangle. Then we have the following approximation:

∑

i∈B1

λni = 1, for all n ∈ T (5.41)

∑

(i,j)∈A1

αn
(i,j) = 1 for all n ∈ T (5.42)

x(n) =
∑

(i,j)∈A1

xi × αn
(i,j) for all n ∈ T (5.43)

y(n) =
∑

(i,j)∈A1

yi × αn
(i,j)for all n ∈ T (5.44)

wx(n) =
∑

(i,j)∈A1

wx(i, j)× αn
(i,j) for all n ∈ T (5.45)

wy(n) =
∑

(i,j)∈A1

wy(i, j)× αn
(i,j) for all n ∈ T (5.46)

λni ≤
∑

{l∈B1|(i,j)∈A1}
an(i,j) for all (i, j) ∈ A1 n ∈ T (5.47)

0 ≤ an(i,j) ≤ 1 for all (i, j) ∈ A1 n ∈ T (5.48)

The wind field:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 5.9: The wind field

Fuel data interpolation by Lambda method:



Chapter 5. Model Formulation with MILP 42

Since in or work, we don‘t work on vertical optimization, but we work on fixed altitude

and consider only horizontal direction. Therefore, the altitude is fixed and fuel consump-

tion considered as a function of aircraft true speed and weight. We do triangulation on

the speed and weight domain, the grid points on this domain is the speed and weight

grid points, A = {v1, v2...vn} set of the points on the grid, A1 is the set of indexes for

points (vertices). B = {N1, N2, ...Nm} set of triangles,B1 is the index set for triangles

(B1 = {1, 2, ...,m}), T1 = {t1, t2...tN} is time grids, we define a variable α(i, j) where

(i, j) ∈ A1 taking value on [0, 1] for each grids (vertices of the triangle) and a binary

variable λi where i ∈ B1 = 1, 2, 3....m for each triangle.

∑

i∈B1

λni = 1, for all n ∈ T (5.49)

∑

(i,j)∈A1

αn
(i,j) = 1for all n ∈ T (5.50)

V (n) =
∑

(i,j)∈A1

Vi × αn
(i,j) for all n ∈ T (5.51)

W (n) =
∑

(i,j)∈A1

Wi × αn
(i,j) for alln ∈ T (5.52)

Fr(n) =
∑

(i,j)∈A1

Fr(i, j)× αn
(i,j) for all n ∈ T (5.53)

λni ≤
∑

s∈{l∈B1|(i,j)∈N l}
αn

(i,j) for all (i, j) ∈ B1, n ∈ T (5.54)

0 ≤ αn
(i,j) ≤ 1 for all (i, j) ∈ B1 n ∈ T (5.55)

Model 5.3:

• Objective function:

min (W0 −WN + 0.01 · (σx + σy)) (5.56)



Chapter 5. Model Formulation with MILP 43

• Subject to constraints:

WN = 56613.75 (5.57)

x0 = 0 (5.58)

xN = 0.9 + σx (5.59)

y0 = 0 (5.60)

yN = 0.9 + σy (5.61)

0.01 ≤ σx ≤ 0 (5.62)

0.01 ≤ σy ≤ 0 (5.63)

constraint (5.32) to constraint (5.38)

constraint (5.46) to constraint (5.53)

constraint (5.54) to constraint (5.60)

The units we used in our model for this trip is given by the following table (5.1):

Units for variables in model 5.3

wind speed Mach number

aircraft true speed Mach number

segment length nautical mile

x,y coordinate nautical mile

aircraft weigh kg

fuel consumption function(speed, weight, altitude) kg (Mach number, kg, flight level)

Table 5.1: Units for variables in model 5.3

We run the model 5.3 in SCIP but it is too slow to solve, after running 2 days still 80%

gap to finish, so we stopped. The reason slowing down the solving procedure is that, we

have a quadratic constraint (5.32) for aircraft speed.

5.4 Linear Approximation of Second Order Cones

As we seen in model 5.3, the equation (5.32):

v(t)2 = vx(t)2 + vy(t)2 (5.64)



Chapter 5. Model Formulation with MILP 44

bring non-linearities to the model which slows down the solving procedure. Therefore,

we would like to find a linear approximation for this constraint, which can speed up the

solving procedure. Moreover, with linear constraints, we are able to use more efficient

solvers like CPLEX to speed up the solving procedure. Here is the Conic quadratic

programming introduced in [23]

We tried to relax the constraint by following step:

2

√
v2
x + v2

y ≤ v (5.65)

This is a quadratic cone.

Definition 6. A quadratic cone (second order cone, icecream cone) is the set described

by :

√
x2

1 + x2
2 +K + x2

n−1 ≤ xn (5.66)

Pure SOCPs (second order conic programming) can be solved by linear methods, There

is one method given in [26]

2

√
x2

1 + x2
2 ≤ x3 ⇔ (5.67)

α0 = x1 (5.68)

β0 = x2 (5.69)

αi+1 = cos(
π

2i
)αi + sin(

π

2i
)βi (5.70)

βi+1 ≥ |sin(
π

2i
)αi + cos(

π

2i
)βi| (5.71)

The error is :

ε = cos(
π

2n
)−1 − 1. (5.72)

n controls the approximation error, i = 1, 2....n

However, there is one point we need to notice is that, by relaxing the equation (5.31) to

(5.72), we are having the risk that model may not give the most optimal solution. As we

introduced in figure (5.7), for fuel consumption function, there is an optimal speed 0.76

(this is just for aircraft type A320, aircraft performance data is different for different

type of aircraft) Mach number. We can see from the graph (5.10), when aircraft true

speed is bigger than 0.76, if the speed is more small, the problem is more optimal so

the relaxation equation (5.58) will push the value of v as small as possible, push it more



Chapter 5. Model Formulation with MILP 45

close to v2
x + v2

y , the error will be small. But if the true aircraft speed (value of v2
x + v2

y)

is smaller than 0.76, we always get 0.76 because of the relaxation.

Figure 5.10: Optimal speed for unit distance fuel consumption function for aircraft
type A320

However, even using conic linearization, we run the model in SCIP and result is still very

slow. We waited for 3 days but the program still didn’t finished. Apparently, we still

need to speed up. In this case CPLEX still can‘t be used because of the nonlinearities

of constraint (5.35). There is a way to linearise the equation(5.35) and also reduce the

dimension of the interpolation of fuel consumption function. We chose discrete speed

instead of continuous speed, which means we restrict the aircraft true speed to a set of

discrete speed {v1, v2, v3, ....vp}, so each segment, the aircraft speed is one of the value

from this set, and also in order to leave more flexibility to the model, we don‘t use conic

linearization, from now on we test our model on SCIP.

5.5 Speed Discretization

As we analyse above, we discretize the possible speed for aircraft, this means, instead of

giving an option for speed on continuous set [0.4, 0.82] (this is the possible speed range

for aircraft type A320), we give a discrete speed set: {vi|0.4 = v0 ≤ v1 ≤ v2....vq = 0.82}.
By doing this procedure, we can linearise the equation (5.38)( here we use the starting

speed of each segment to calculate the length of segment), in order to do this , we

introduce binary variables βi for each speed step vi having value on {0, 1}, βi =1 if vi is



Chapter 5. Model Formulation with MILP 46

chosen, and βi = 0 otherwise. By doing this step we linearize the equation (5.38) and

obtain the following constraints:

fi = (

q∑

j=1

Vjβ(i,j))∆t ·
q∑

j=1

(Fr(Vj ,Wi) · β(i,j)) for i = 0, 1....N (5.73)

li = Vi∆t for i = 0, 1....N (5.74)

Vi =

q∑

j=1

vjβ(i,j) for i = 0, 1....N (5.75)

Where β(i,j) is binary variable , Vi ∈ {vj , j = 1, 2...q|minV = v0 < v1 < .. < vq = maxV }

By discretizing the speed, we are not only able to linearize the equation (5.38) but we

also changed the fuel interpolation from two dimension to one dimension.

Fuel interpolation:

Through discretizing the speed, we change the fuel interpolation into one dimensional

non-linear approximation, let us denote the weight grids by Wi where i ∈ Λ, Y is the

indexes set of k − 1 segments that define the set of intervals, we have binary variables

λj j ∈ Y for each segment, corresponding variables αi, i ∈ Λ

Wi+1 = Wi − fi (5.76)
∑

j∈Λ

λnj = 1, for all n ∈ T (5.77)

∑

j∈Y
αn
j = 1 for all n ∈ T (5.78)

W (n) =
∑

j∈A
Wj × αn

j for all n ∈ T (5.79)

Fr(i, n) =
∑

j∈A
Fr(i, j)αn

j β
n
i for all i = 1, 2...p, n ∈ T (5.80)

λn1 ≤ αn
1 for all n ∈ T (5.81)

λnj ≤ αj−1 + αn
j for all j ∈ Λ− 1, k for all n ∈ T (5.82)

λnk ≤ αn
k−1 for all n ∈ T (5.83)

After speed discretization, our model 5.3 changed from continuous speed model to dis-

crete speed model 5.4.

Model 5.4:



Chapter 5. Model Formulation with MILP 47

• Objective function:

min (W0 −WN + 0.01 · (σx + σy)) (5.84)

• Subject to constraints: constraint (5.62) to constraint (5.67)

constraint (5.32) to constraint (5.39)

constraint (5.46) to constraint (5.53)

constraint (5.79) to constraint (5.87)

We run the model 5.4 with SCIP, for 7 speed possible steps(0.76, 0.77....0.82), 15 weight

grids (56500.0 ,58000.0, 59500.0, 61000.0, 62500.0, 64000.0, 65500.0, 67000.0, 68500.0,

70000.0, 71500.0, 73000.0, 74500.0, 76000.0, 77500.0). Let ∆t = 0.5, T=5 (hour)

The result is shown in the following table and the trajectory in given in figure (5.11).

The result for Trip1 with lambda method, with discrete speed

Optimal fuel consumption is: 12508.2414606226 kg Solving time is 586.01 seconds

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 5.11: Optimal solution by using wind

To test how much fuel we saved by flying on wind optimal path, we tried to fly in shortest

distance direction whatever the wind direction, solving time 43.29 seconds, optimal fuel

consumption: 12691.30414− 0.001× (0.0003801 + 0.00003801) , σx = 0.00003801, σy =

0.00003801. In this case we save 183.10414 kg fuel (1.45%). The fuel saving is not very



Chapter 5. Model Formulation with MILP 48

obvious for this trip because we can see that, most of the track wind is still on shortest

path direction. So wind influence almost same in optimal trajectory and shortest path.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 5.12: Trajectory when we don‘t consider any influence of the wind(Assume
there is no wind



Chapter 6

Adapted Model on Earth Surface

with Real World Data

6.1 Mapping

Choosing a good coordinate system is quite important for our algorithm, As we analysed

in chapter 5, both simple Cartesian coordinate or spherical coordinate is not proper for

our model when consider the practical issue, data structure as well as solvers restriction.

Therefore, we decide to map the solution space from earth surface to x-y plane in a

way that can preserve distance, convert all the coordinate of points from (longitude,

latitude) to the x-y Cartesian coordinate by preserving the distance, then work on x-y

plane. This require a big amount of preprocessing work. But by this procedure, we can

make our model more accurate, practical and fast, most importantly, we can make use

current MIP solvers to solve the model. Therefore the mapping is quite important, and

directly influence the model accuracy. We give the mapping procedure in three steps:

• First step, we want to find a mapping that can map any great circle line on the

earth to the line that lies on equator, this is a rotation map. By this mapping we

changed the great circle that connecting the departure point and arrival point to

the line that lies on the equator. The procedure is shown in figure (6.1)

49



Chapter 6. Adapted Model on Earth Surface with Real World Data 50

Figure 6.1: Mapping the great circle connecting departure and arrival point to the
equator

This mapping is done by combining three basic rotating matrix. A basic rota-

tion(called elemental rotation) is a rotation about one of the axes of a Coordinate

system. The following three basic rotation matrices Rx(θ), Ry(θ), Rz(θ) rotate vec-

tors by an angle θ about the x,y or z axis, in three dimensions, using the right

hand rule,

Rx(θ) =




1 0 0

0 cos θ − sin θ

0 sin θ cos θ




Ry(θ) =




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ




Rz(θ) =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1




The coordinate system is right-handed, and the angle θ is positive. Ry, for instance,

would fix the Y-axis, rotate toward the X-axis a vector aligned with Z-axis.

Now we want to rotate the the earth so that the great circle line DA coincide with

equator, we assume that this rotation done by Rx(θ1), Ry(θ2), Rz(θ3), let rotating

matrix M = Rx(θ1)Ry(θ2)Rz(θ3), this is still a rotating matrix by Euler’s rotation

theorem (In three dimensional space, the composition of two rotations is also a



Chapter 6. Adapted Model on Earth Surface with Real World Data 51

rotation.). The procedure how to find the matrix M is given as following:

The coordinate of starting point and arrival point given by (λD, φD), (λA, φA)

where λ is latitude and φ is longitude of the point, First we find the spherical

coordinate of D and A:

x = R cos(λ) cos(φ) (6.1)

y = R cos(λ) sin(φ) (6.2)

z = R sin(λ) (6.3)

we got the spherical coordinates D(x1, y1, z1), A(x2, y2, z2) by above computation.

After applying rotation matrix M, we got longitude of Â (the point A after applying

rotation) is zero (E00), and longitude of D̂ can be calculated by φÂ =
dgcd(D,A)

R ,

where dgcd means the great circle distance between two points. Therefore, we have

the spherical coordinates (which lies on equator) for this two points on the line

after mapping as following:

D̂ =




R

0

0




Â =




R cos(φÂ)

R sin(φÂ)

0




We assume that we rotate θ1 degree along x-axis, θ2 degree along y-axis, θ3 degree

along z-axis. We have :

M =




cos θ2 cos θ3 − sin θ3 cos θ2 sin θ2

sin θ1 sin θ2 cos θ3 + sin θ3 cos θ1 − sin θ1 sin θ2 sin θ3 + cos θ1 cos θ3 − sin θ1 cos θ2

− cos θ3 cos θ1 sin θ2 + sin θ3 sin θ1 cos θ1 sin θ2 sin θ3 + sin θ1 cos θ3 cos θ1 cos θ2




Now, we can apply this rotation matrix to this two points, and find three rotation

angle by solving the following nonlinear system.

MD = D̂ (6.4)

MA = Â (6.5)

Solving this non-linear system with coordinate of D and A seems quite complicated,

here is more direct way to find the rotation matrix.

Alternative way:

We do three rotation, first rotate along z-axis, then rotate along y-axis, then rotate



Chapter 6. Adapted Model on Earth Surface with Real World Data 52

along z axis. This procedure is shown in figure (6.2).

Figure 6.2: Mapping illustration

1.First rotate along z axis such that longitude of D map to zero:




cos θ − sin θ 0

sin θ cos θ 0

0 0 1







R cosλD cosφD

R cosλD sinφD

R sinλD


 =




R cosλD

0

R sinλD




So we have that θ = φD

2. Second step is rotate along y-axis such that point D will come to equator:




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ







R cosλD

0

R sinλD


 =




R

0

0




From this easily we got that θ = λD

3. Third step is rotating along x axis( means that x is fixed,this will grantee that

point D will remain fixed after this rotation) such that point A will arrive on

equator. For to do this, we know the coordinate of point D after applying first

two rotation, and we are expecting after this third rotation the Z coordinate of D

is zero. There for we have the following equation to find rotation angle θx for this

rotation. denote Â is the point A after went through above two rotation



Chapter 6. Adapted Model on Earth Surface with Real World Data 53




cos θD 0 sin θD

0 1 0

− sin θD 0 cos θD







cosλD − sinλD 0

sinλD cosλD 0

0 0 1







R cosλA cosφA

R cosλA sinφA

R sinλA


 =




xÂ

yÂ

zÂ




Apply the Rx to Â




1 0 0

0 cos θx − sin θx

0 sin θx cos θx







xÂ

yÂ

zÂ


 =



zÂ




yÂ sin θx + zÂ cos θx = 0 (6.6)

θx = arctan(
−zÂ
yÂ

) (6.7)

So from above system , by solving last equation we can get the angle for third

rotation θx. Finally the rotation matrix M is given by:

M =




1 0 0

0 cos θx − sin θx

0 sin θx cos θx







cos θD 0 sin θD

0 1 0

− sin θD 0 cos θD







cosλD − sinλD 0

sinλD cosλD 0

0 0 1




• The second step is to choose a solution space on the earth surface according to our

starting pint and arrival point. We fix a square area on the earth surface around

the great circle line connecting starting pint and arrival pint, which included all

the possible trajectory. This is shown in figure (6.3).



Chapter 6. Adapted Model on Earth Surface with Real World Data 54

Figure 6.3: The projection of the area on equator

• Last step is, we map this area onto the x-y plane by a mapping that can preserve

distance between any two point. The procedure is shown in figure (6.4).

Figure 6.4: Projection of the area on x-y plane

Therefore, after all this preprocessing, we can map solution space and wind grids on the

earth to the x-y plane preserving distance, then we can simply formulate our problem

in the projected X-Y plane.



Chapter 6. Adapted Model on Earth Surface with Real World Data 55

6.2 3D Realistic Model with Real World Data

Assume the starting location D(φ1, θ1) and arrival location is A(φ2, θ2). We rotate

the earth to let the great circle line connecting D and A come to equator. After

rotation, let us denote the coordinate of departure point D by D̂(0, θ̂1) and the ar-

rival point A Â(0, θ̂2). We chose the area which include all the possible solution space

[θ̂1, θ̂2 + θ] × [−20, 20] (this means the area from latitude -20 degree to 20 degree, lon-

gitude from θ̂1 to θ̂2 + θ, we put θ as a small extension considering there will be have

deviation), we project the wind grid points by the method we presented in section 6.1

from the earth surface to the x-y plane by preserving the distance by following calcula-

tion:

D̂ = (0, 0) (6.8)

Â = (0, dgcd(0, θ̂1, 0, θ̂2 + θ) (6.9)

yi = φ̂i × 60 (6.10)

xi = dgcd(0, θ̂1, 0, θ̂2)− 1

2
dgcd(φ̂i, θ̂i, φ̂i, θ̂2 + θ) + 60.108× cos(φ̂i)× (θ̂i − θ̂1) (6.11)

Where great circle distance dgcd is given by :

dgcd = r∆σ (6.12)

∆σ = arctan(

√
(cosφ2 sin ∆θ)2 + (cosφ1 sinφ2 − sinφ1 cosφ2 cos ∆θ)2

sinφ1 sinφ2 − cosφ1 cosφ2 cos ∆θ
) (6.13)

After this projection, actually the equator will arrive at x axis, but for computation

convenient, we would like to work on positive y, so we just translate whole mapping by

y+dgcd(−20, 0, 20, 0), then whole area will be above the x axis. The mapping illustrated

in figure(6.5).



Chapter 6. Adapted Model on Earth Surface with Real World Data 56

Figure 6.5: Mapping

After all this preprocessing, we have the invertible mapping and wind data on x-y plane.

Therefore, from now on, we can use our 2D model formulation which we presented in

chapter 5.

6.3 Trip 2 with Lambda Method

We give a trip from from (N00,E45) flying to (N00, E87.5), where, N00 represent for

north latitude 0 degree and E45 represent for longitude 45 (east) degree. The whole

trip in great circle distance is 2554.6 nautical miles, We schedule 5 hour for whole trip

(remember that we only considering cruise stage). We chose the solution space as:

[−17.5, 17.5]× [45, 90]

The Model is given as following, the notation is same as before:

Model 6.1

• The objective function:

min (W0 −WN + 0.01× (σx + σy)) (6.14)

• Constraints:

V 2
i = (V x

i )2 + (V y
i )2 (6.15)

xi+1 = xi + ∆t · (V x
i + wx

i ) (6.16)



Chapter 6. Adapted Model on Earth Surface with Real World Data 57

yi+1 = yi + ∆t · (V y
i + wy

i ) (6.17)

wx
i = wx(xi, yi) (6.18)

wy
i = wy(xi, yi) (6.19)

li = Vi ·∆t for all i = 1, 2...N − 1 (6.20)

fi = li × Fri(Vi,Wi) for all i = 1, 2...N − 1 (6.21)

WN = 56613.75 (6.22)

x0 = 0 (6.23)

xN = 2554.6 + σx (6.24)

y0 = 0 (6.25)

yN = 0 + σy (6.26)

10 ≥ σx ≥ 0 (6.27)

10 ≥ σy ≥ 0 (6.28)

First, we solve the Model 6.1 using 2D lambda method for wind interpolation

(constraint (6.18),(6.19)) and 1D lambda method for fuel interpolation (constraint

(6.21)). The interpolation method is the same as we did in chapter 5 for trip 1.

Then we get a new model 6.2 as following : Model 6.2

• The objective function:

min (W0 −WN + 0.01× (σx + σy)) (6.29)

• subject to constraints :

constraint (6.15) to constraint (6.28)

constraint (5.46) to constraint (5.53)

constraint (5.81) to constraint (5.87)

We run model 6.2 in SCIP with 3 speed steps (0.76,0.81,0.82) and 4 weight grids (speed

level means the possible speed steps for aircraft, weight grids means we have 4 weight

grids used to interpolate the fuel consumption, it does not mean we only have 4 weight

steps for aircraft). Wind grids taken at each 2.5 degree, we have 19×15 wind grid points

and 504 wind triangles. The result is:



Chapter 6. Adapted Model on Earth Surface with Real World Data 58

The result for Trip2 with lambda method, with discrete speed

Optimal fuel consumption is: 13047.7027 kg Solving time is 94343.12 seconds

The trajectory is given in figure(6.6).

0 500 1000 1500 2000 2500 3000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

x

y

Figure 6.6: Optimal trajectory

6.4 Trip 2 with Delta Method

As we see above, the algorithm take too long time (more than 26 hours) to solve the

model, which is bad for practical use, and we need more good algorithm such that it

fits for practical application. Considering the practical usage of free flight, we need an

algorithm works more fast. There is only few ways to speed up the programm, either

change the solver or change the algorithm, for the former, we do not have much choice

because of the computational complexity of the problem. As we see there is second

order constrain, which CPLEX can not solve, one way to linearise it is quadratic cone.

However, as we proved before it only work for the speed that is bigger than the optimal

speed, this have a limitation for the algorithm. It seems, up to now, we only can use SCIP

to solve the model. Therefore, in order to speed up, we need to modify the model, as



Chapter 6. Adapted Model on Earth Surface with Real World Data 59

we see in chapter 4, for non-linear function approximation, we have 3 different methods,

[23] shows that the lambda method is computationally inferior to the delta method as

its linear programming relaxation always produce worse bound than the relaxation of

the delta method. And it is proven that both delta method and lambda method produce

same value.

Here we use Delta method for Model6.1 in order to speed up. In this case, which is

different from lambda method is that we need to order our triangles. There are a plenty

of different ways to order the triangles, we use the following ordering in our model which

shown in figure (6.7):

Figure 6.7: Triangle ordering for Delta Method

The wind interpolation by delta method:

Let A be the indices set for grids, B is the 4× n matrix such that B(1, :) is the index of

the triangles, and other three columns are the index of three vertices of corresponding

triangles,we introduce binary variables wi associated with triangle Ni i = 1, 2.....q, a

variable δji corresponding to jth vertex of triangle Ni, Then:



Chapter 6. Adapted Model on Earth Surface with Real World Data 60

3∑

j=1

δni,j ≤ 1 for all i = 1, 2....q, n ∈ T (6.30)

δni,j ≥ 0 for all i = 1, 2....q − 1, n ∈ T (6.31)

3∑

j=1

δni+1,j ≤ wn
i for all i = 1, 2....q − 1, n ∈ T (6.32)

wn
i ≤ δni,3, n ∈ T (6.33)

xn = x1,1 +

q∑

i=1

3∑

j=1

(xi,j − xi,1)δni,j , n ∈ T (6.34)

yn = y1,1 +

q∑

i=1

3∑

j=1

(yi,j − yi,1)δni,j , n ∈ T (6.35)

wn
x = wx(x1,1, x1,1) +

q∑

i=1

3∑

j=1

(wx(xi,j , yi,j)− wx(xi,1, yi,1))δni,j , n ∈ T (6.36)

wn
y = wy(x1,1, y1,1) +

q∑

i=1

3∑

j=1

(wy(xi,j , yi,j)− wy(xi,1, yi,1))δji , n ∈ T (6.37)

Unit distance fuel consumption function interpolation:

For fuel consumption function, since we descritize the speed, now we just need to do delta

method approximation on one dimension. Here we have segments instead of triangles,

and for segment, since it is on one line, the ordering is done automatically by binary

variables wi, use the same notes as above (here we use segment instead of triangles).

V = {vi, i = 1, 2..p} is the set of discrete speeds.

δni+1 ≤ wn
i for all i = 1, 2...q − 1, n ∈ T (6.38)

wn
i ≤ δni for all i = 1, 2...q − 1, n ∈ T (6.39)

0 ≤ δni ≤ 1 for all i = 1, 2...q − 1, n ∈ T (6.40)

Wn = W1 +

q−1∑

i=1

(Wi+1 −Wi)δ
n
i n ∈ T (6.41)

Frnl = Fr(Vl,W1) +

q−1∑

i=1

(Fr(Vl,Wi+1)− Fr(Vl,Wi))δ
n
i for all l = 1, 2...p, n ∈ T

(6.42)

here m = 1, 2...k − 1 m is the index of segment,

i is the index of time, j is the index of speed grids.

For trip 2 applying model 6.1 with fuel and wind interpolation by delta method we have

new model 6.3:



Chapter 6. Adapted Model on Earth Surface with Real World Data 61

Model 6.3

• The objective function:

min (W0 −WN + 0.01× (σx + σy)) (6.43)

• subject to constraints :

constraint (6.15) to constraint (6.28)

constraint (6.30) to constraint (6.37)

constraint (6.38) to constraint (6.42)

We implement the model 6.3 in SCIP, run with 3 speed levels, 4 weight grids and wind

grids given at each 2.5 degree, we have 19× 15 wind grid points and 504 wind triangles.

The result is:

The result for Trip2 with delta method, with discrete speed

Optimal fuel consumption is: 13047.70 kg Solving time is: 2139.33 seconds

If we don’t consider the wind and keep flying on the shortest distance, fuel consumption

is 13230, we save 183kg fuel (1.4 percent).

Here the wind around our trip is quite small, average is 1.5m/s. So actually the trip

is not benefiting much from wind much. If we try to enlarge the wind by 10 times

(Assume we have wind around 15m/s), we got fuel consumption 12764.1246kg which is

much smaller than the case if we don‘t fly wind optimal direction. In this case we save

3.5% fuel. Trajectory is given in the figure (6.8)



Chapter 6. Adapted Model on Earth Surface with Real World Data 62

0 500 1000 1500 2000 2500 3000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

x

y

Figure 6.8: Trajectory in stronger wind

As we show above, we implemented our model by using various method of linearization,

using various grid and run with SCIP. It turns out that delta method is more efficient

than lambda method while returning the same value for objective function. The method

used for linearization is not the only factor that influence solving speed of our algorithm,

it also depends on how big our instance. For example, how fine the grid points for wind,

how many weight and speed steps we are considering when doing the fuel and wind

interpolation, the finer the grid, the bigger the model become (in terms of number of

variables and instances) the more time it takes. The only reason we take more finer wind

grid is considering if there will have drastic change in wind in very small area, which

we may ignore if we use very coarse grids. And introducing more speed allowance for

aircraft also may bring fuel saving. Therefore it is very important to chose reasonable

grid levels which can bring the accuracy and efficiency for our model. We did several

experiments for trip 2 with different methods, and different grid points. The result is

shown in the following table (figure(6.9)):



Chapter 6. Adapted Model on Earth Surface with Real World Data 63

possible speed steps and weigh grids used in trip 2 experiment

3 speed step, 4 weight grids 0.76, 0.81, 0.82 56500, 64000, 71500, 77500
7 speed step, 15 weight grids 0.76, 0.77,..., 0.82 56500, 58000,..., 77500
27 speed step, 15 weight grids 0.4, 0.44,...,0.82 56500, 58000,...,77500

Table 6.1: grid points

Figure 6.9: Trajectory in stronger wind

Here is the speed levels and weight grids we used in the experiment.

As we see from figure (6.9), the wind field dose not change drastically in 10 degrees.

This is also tested by above result. It is shown that, the result don’t benefit by taking

more fine wind grid. It does not make difference between taking grid points at each 2.5

degrees and at each 5 degrees, even at 10 degrees, but only slows down the algorithm.

However, we can‘t exclude some extreme case that even within 2.5 degrees distance,

the wind can be change dramatically. For this case we can try to take the average of

starting wind and ending wind for each segment(in above case we simply took the wind

at the starting point for each segment). As for speed, and weight, we have seen from

figure(6.9) that the more possible speed steps, and more finer weight grids we take, the

more fuel we save. Comparing the experiment result for 7/15 (7 possible speed step, 15

weight grids) and 27/15 (27 possible speed step, 15 weight grids), we have seen from

figure (6.9), there is no difference in the objective functions value. It seems slowing down

does not benefit a lot for fuel consumption, because the 27 possible speed is obtained

by adding more smaller speed to 7 possible speed. And most obviously, delta method,

is much faster than lambda method. Based on above testing result, From later on, we

run all experiment with delta method, and wind grids at each 5 degrees.



Chapter 6. Adapted Model on Earth Surface with Real World Data 64

6.5 Trip 3 with Delta method

We try model 6.3 with another trip

Flying from (N-5,E-125) to (N0,E-75), whole trip great circle distance is 3007.65812 nau-

tical miles, scheduled time for whole trip is 5.5 hours, time step is half hour. Using delta

interpolation for both wind and fuel function, taking wind grids 11× 9 (5 degrees),160

triangles, with 3 possible speed steps (0.76,0.81,0.81) and 4 weight steps. We run the

model in SCIP, the result is given as following:

The result for Trip 3 with delta method in weak wind

Optimal fuel consumption is: 15931.502kg Solving time is 547.94 seconds

The trajectory is as shown in figure (6.10)

0 500 1000 1500 2000 2500 3000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

x

y

Figure 6.10: Trajectory for trip 3 with weak wind with 3 speed, 4 weight grids

As same before, we have very weak wind (average 2 m/s) around the shortest distance

direction, so the trajectory still have less benefit from wind, So we try the model in a

stronger wind (enlarge the wind by 5 times), and the result is:



Chapter 6. Adapted Model on Earth Surface with Real World Data 65

The result for Trip 3 with delta method, in stronger wind

Optimal fuel consumption is: 14176.5212kg Solving time is: 639.85 seconds

The trajectory is given in figure (6.11)

0 500 1000 1500 2000 2500 3000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

x

y

Figure 6.11: Trajectory for trip 2 with stronger wind

If we run the model without wind, flying on shortest distance, the fuel consumption is

16824.13 kg. By estimating the wind contribution on the shortest distance, at least we

are saving 2% fuel by flying in optimal trajectory in weak wind and 6% by flying in

stronger wind.

We run the model 6.3 with trip 3 with different number of speed levels and weight grids,

The result is shown in the following table.



Chapter 6. Adapted Model on Earth Surface with Real World Data 66

Trip 3 with delta method with wind grids at each 5 degrees, 160 triangles,

(1) 3 speed steps, 4 weight grids with weak wind 15931.5023 kg 547.94 seconds

(2) 7 speed steps, 15 weight grids with weak wind 14953.982 kg 1245.21 seconds

(3) 27 speed steps, 8 weight grids with weak wind 14410.1621 kg 28090.12 seconds

(4) 3 speed steps, 4 weight grids with stronger wind 14176.52 kg 397.62 seconds

(5) 7 speed steps, 15 weight grids with stronger wind 14176.96 kg 479.24 seconds

(6) 27 speed steps, 8 weight grids with strong wind 11891.6313 kg 27127.5 seconds

Table 6.2: Trip 3 experiment result

As we seen above that, using more possible speed steps help us to save more fuel. For

previous trip, we see that only speeding up is befitting. However, for this longer trip,

giving only possible speed which is bigger than optimal speed is causing big deviation.

Therefore we need speed which allow the aircraft slow down. This will prevent deviation

and save more fuel than the case that only allow speeding up. For above table, the speed

and weight grids are given as following:

possible speed steps and weigh grids used in trip 3 experiment

3 speed step, 4 weight grids 0.76,0.81,0.82 56500, 64000,71500,77500

7 speed step, 15 weight grids 0.76,0.77,...0.82 56500,58000,59500,...77500

27 speed step, 8 weight grids 0.4,0.44,0.46,0.50,0.52...0.81,0.82 56500,59500,...77500

From by above two table, this trip actually benefit a lot from slowing down. Therefore,

this is again a strong proof that we can‘t just take speeding up from optimal speed,

and we can‘t use conic linearization. If we consider use conic, we end up with only

speed above 0.76 and have never reached this optimal fuel consumption. So from all

the experiments, we can come to the conclusion that, in all case we considered up to

now, taking wind grids at each 5 degrees is most reasonable choice from both accuracy

and solving time point.For speed steps and weight grids, 27 speed steps( or less but also

including speed that allow us slow down) and weight grids would be best choice for our

model. Here is the trajectory for trip 2 using the grids 27× 8 (speed, weight) with weak

wind (figure (6.12)) and strong wind (figure (6.13)):



Chapter 6. Adapted Model on Earth Surface with Real World Data 67

0 500 1000 1500 2000 2500 3000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

x

y

Figure 6.12: Trajectory for trip 2 with weak wind27× 8)

0 500 1000 1500 2000 2500 3000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

x

y

Figure 6.13: Trajectory for trip 2 with stronger wind 27× 8

We also tried the Trip 3 with model 6.3 taking time step more smaller ∆t = 0.25 The

result is:



Chapter 6. Adapted Model on Earth Surface with Real World Data 68

Trip 3 with ∆t = 0.25

(1) 3 speed step, 5 weight step with weak wind 14028.950851 kg 31436.74 seconds

(2) 7 speed step, 15 weight step with weak wind 14028.004 kg 57907.5 seconds

(3) 27 speed step, 8 weight step with weak wind not able to solve not able to solve

From above, we can see that, we are able to save more fuel by taking more smaller time

step. However, this slows down the solving procedure a lot. For this small time step , we

only able to solve the instance with up to 7 speed steps and 15 weight grids. Although,

we are benefiting by taking more small time step, but we need to consider passenger‘s

comfort level and pilot‘s workload. Changing direction every 15 minutes may not a good

choice from passengers point of view and also for pilot.



Chapter 7

Conclusion

7.1 Error Estimation for Model

First, we want to evaluate how reliable our model when calculating the fuel consumption.

Considering the safety side, we need to give very accurate result about fuel consumption

for whole trip. Besides the estimated minimum fuel for trip, we need to load some

amount of extra fuel for safety side. This extra fuel must include the part of fuel due

to the error coming from model. However, fuel burns fuel, we never fill up the tanks,

so estimating the error is as important as estimating the optimal fuel consumption. We

give the error estimation from our model side, which should be considered when the

captain load the extra fuel before taking off. The table (7.1) shows the error estimation.

We simulate the path from our solution, calculate the fuel consumption for the optimal

trip manually. It shows that, the result of our model is quite reliable when the data

from industry is accurate enough. We estimate the error for model 6.3 in strong wind

and weak wind, with 4 different instance by taking different speed steps, weight grids

and wind grids.

This error estimation table indicates that, we can reduce the error from 0.15% to 0.007%

by taking more possible speed steps and more fine weight grids.

Estimated error for model 6.3 with wind grid at each 5 degree(11× 9)

3× 5, weak wind Model: 15931.5023 Simulation: 15955.585852kg Error 0.1509%
7× 15, weak wind Model: 14953.982 kg Simulation: 14954.1005kg Error 0.007 %
3× 5, strong wind Model: 14176.52 simulation: 14201.3527kg Error 0.174 8%
7× 15, strong wind Model :14953.982 kg Simulation: 14954.1005kg Error 0.004 %

Table 7.1: Error estimation

69



Chapter 7. Conclusion 70

7.2 Conclusion

We formulate the Free-Flight routing problem using Mixed Integer Programming and

presented different approaches to interpolate the black box functions (fuel consumption

and wind) with piecewise linear functions. We also tried different methods such as

second order quadratic conic linearization, speed discretization to linearise the non linear

constraint and speed up the programm. Moreover, we presented the methods to project

the solution space on earth surface to the X-Y plane. By this mapping, we successfully

handled the roundness of the earth and made the model more accurate and practical.

Most importantly we developed an algorithm that produce an optimal path for Free-

Flight. We test our model for aircraft type A320, in different wind field, for different

time steps and different grid size (wind grid, speed steps, weight grid).

The result of our study indicates that when the conditions are favourable, aircraft flight

profile optimization with respect to known wind conditions can improve performance

more than achieved in this study. The performance of our algorithm depends on the

wind grid size, time step, possible speed steps and weigh grids. Therefore, it is important

to choose a proper grid size, which can speed up the program and does not lower accuracy

at the same time. The experiment result shows that, taking wind at each 5 degrees can

give better solution than taking wind on more bigger grids, but taking more finer grids

than 5 degrees don‘t benefit the model, but slows down. Allowing more speed steps

benefits a lot in most of the cases, especially taking speed steps which include both

speeds possible to speed up and speed down from optimal speed. For weight grids, too

fine weight grids may slow down the solving procedure, but it make our fuel consumption

estimation more accurate. Therefore, if more weight grids available for interpolating fuel

consumption function, it is good to use more fine weight grids.

For our model, we came to the conclusion that, wind grids at each 5 degrees, 27 speed

steps (including speeds that are smaller than the optimal speed), 15 weight grids, ∆t =

0.5 is the best choice for model. From our model, the result shows that with weak wind

we can save from 1.5% fuel to 3.5% , in strong wind we can save around 6% to 13% fuel.

7.3 Future Plan for Project

As we mentioned in chapter 1, the thesis was carried out on the project by Lufthansa

System, aiming to be practically used in near future in industry. The Free-Flight routing

is 4D problem, 2D in horizontal direction, 1D in vertical, and 1D in time. With our

algorithm, for a fixed altitude, we are able to produce a wind optimal route in horizontal

direction with guaranteeing that the trip will be finished on time.



Bibliography 71

From long term expectation, next main task for the project will be find the optimal route

in vertical direction, and combine with horizontal profile, so that we are able to combine

the horizontal work with vertical profile, develop an algorithm which can produce 4D

optimal trajectory. By combining the horizontal and vertical profile, we will be able

to use more track wind field (wind is different at each altitude)and optimal altitude

(remember that fuel consumption function also depend on altitude, there is optimal

altitude exists for specific weather conditions, aircraft speed and weight). Therefore we

are expecting to save more fuel in 4D optimization. This project is planned for two

years, because of the huge data, big amount of work, and technical restrictions such as

no efficient solvers available for MIP (the current solvers either slow or very restrictive.

From short term, we have few aspects for horizontal optimization profile need to be

improved further. First, there is still nonlinearites in our model which slowing down

the solving procedure. In model 6.3, we still have quadratic constraint (6.15) which we

can be linearized by conic linearization but only for the cases to speed up. In next step

we would like to try SOS Type 2 method, to approximate the quadratic functions by

picewise linear functions. This linearization procedure may will speed up the algorithm,

and also enable us to use CPLEX (only be able to solve MILP , can‘t handle with either

nonlinear bijective functions or constraint.

Secondly, we want to connect the algorithm with preprocessing part (mapping, generat-

ing wind data, fuel consumption data, triangle ordering), produce an interface that just

with one comment, telling the location of departure airport and arrival airport to the

algorithm, we can have the optimal trajectory in few seconds.

Third, evaluate the error for preprocessing part. Above the error estimation only given

from model side. We didn‘t consider the error coming from mapping, next step we would

like to find out how big error we are introducing by mapping the earth surface onto the

plane, this will help us improve the accuracy.

Forth, currently, we are using the static wind. However, wind change over time, we have

wind data from Lufthansa measured every three hour. This means, if we are having

longer trip than three hours, wind may change. Therefore, we need to consider to use

dynamic wind. This might have crucial impact if we have longer trip. For example,

Flying from China to the United states, if the trip take 13 hours, using dynamic wind

would be the best choice.

So this work may take 1 year to 2 year to finish all. Hoping we can get a good solution

that Lufthansa System can use and save more fuel. We are looking forward to get

Free-Flight practically used in future.



Bibliography 72

[1] Airbus global market forcast future journeys 2013-2032.

[2] Andrea Peter. Ein MILP, ein MINLP und ein graphentheoreatischer Ansatz Für

die Free-Flight Optimierung. Diplomarbeit. 2007.

[3] Hok K.Ng, Banavar Sridhar, Shon Grabbe. Optimizing Aircraft Trajectories with

Multiple Cruise Altitude in the Presence of Winds. 2010.

[4] Alexander Martin, Armin Fügenschuh, Susanne Moritz.Computational integer

programming and cutting planes. Preprint 2221, Technical University Damstadt,2002.

[5] H.Marchand, A.Martin, R.Weismantel, and L.A.Wolsey. Cutting planes in integer

and mixed integer Programming. Discrete Applied Mathematics, 123/124:391-440,

2002.

[6] E.M.L.Beale, J.J.H. Forrest. Global Optimization Using Special Ordered Sets.

Mathematical Programming. 1975.

[7] E.M.L.Beale. Branch and Bound Methods For Mathematical Programming Sys-

tems. Analysis of Discrete Mathematics. 1979.

[8] Susanne Moritz. A Mixed Integer Approach for the Transient Case of Gas Network

Optimization. PhD thesis, TU Darmstadt, 2007.

[9] Ashish Singhai. Optimal triangulation and mesh generation, august 1994.

[10] A.Fügenschuh, A.,Nagy, C., Peter. Modelling alternatives for free-flight optimiza-

tion. Technical report. Fachbereich Mathematics, Tu Darmstadt

[11] Wilson. Polyhedral Methods for Piecewise-Linear Functions. PhD thesis, Uni-

versity of Kentucky , 1998.

[12] Paolo Dellolmo and Guglielmo Lulli. A new hierarchical architecture for air traffic

management: Optimisation of airway capacity in a free flight scenario. European

Journal of Operational Research, 144(1):179-193, 2003.

[13] Roger Fletcher, Sven Leyer. Solving mixed integer non-linear programs by outer

approximation. Math. Programming, 66(3, Ser. A):322-349, 1994.

[14] Mora-Camino F., Hagelauer P. A soft dynamic programming approach for on-line

aircraft 4D-trajectory optimization. European Journal of Operational Research,

107:87-95(9), 16. Mai 1998.

[15] Jimmy Krozel. Free flight research issues and literature search. NASA Ames

Research Center Moett Field, CA 94035, 2000.



Bibliography 73

[16] Jon Lee and Dan Wilson. Polyhedral methods for piecewise-linear functions. I.

The lambda method. Discrete Appl. Math., 108(3):269-285, 2001.

[17] Clyde F. Martin Magnus Egerstedt. Optimal trajectory planning and smoothing

splines. Automatica, 37(issue 7):1057-1064, July 2001.

[18] Nicoletta De Francesco Mieke Massink. Modelling free flight with collision avoid-

ance. 2001.

[19] Alexander Martin, Markus Möller, Susanne Moritz. Mixed integer models for the

stationary case of gas network optimization. Math. Program., 2006.

[20] Lorenz T.Biegler, Andrew R. Conn, Gerard Cornuejols, Ignacio E. Grossmann,

Carl D. Laird, Jon Lee, Andrea Lodi, Francois Margot, Nicolas Sawaya, Pierre

Bonami, Andreas Waechter. An algorithmic framework for convex mixed integer

nonlinear programs.Discrete Optimization. 2008.

[21] D. Wilson. Polyhedral Methods for Piecewise-Linear Functions. PhD thesis, Uni-

versity of Kentucky, 1998.

[22] M.Padberg Approximating separable nonlinear functions via mixed zero-one pro-

gram. Operations Research Letters, 27:1-5,2000

[23] Aharon Ben-Tal and Arkadi Nemiroviski On polyhedral approximations of the

second-order cone. May 30 1999.

[24] I.R. de Farias A.B. Kehe and G.L.Nemhauser. Models for representing piecewise

linear cost functions. Technical report, 2002.

[25] E. M. L. Beale and J. A. Tomlin. Special facilities in a general mathematical pro-

gramming system for non-convex problems using ordered sets of variables. Pro-

ceedings of the Fifth International Conference on Operations Research, Tavistock

Publications, pages 447-454, 1970.

[26] Armin Fügenschuh. Nonlinear Mixed Integer Programming-The MILP Perspec-

tive. Technical Report. 2014

[27] Aharon Ben-Tal, Arkadi Nemirovski. On polyhedral approximations of the second-

order cone. 1999.

[28] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wi-

ley, 1988.

[29] M.W. Padberg. Linear Optimization and Extensions. Springer, 1995.

[30] Christos H. Papadimitriou. Combinatorial Optimization. Prentice-Hall, 1982.



Bibliography 74

[31] A. Schrijver. Theory of Linear and Integer Programming. Wiley, Chichester, 1986.

[32] H.P. Williams. Model building in mathematical programming. Wiley, 1990.

[33] L.A. Wolsey. Integer Programming. Wiley, 1998.

[34] J.Cole Smith, Z.Caner Takkin. A tutorial Gide to Mixed-Integer Programming

Models and Solution Techniques. March 26,2007.

[35] Armin Fügenschuh, Zhi Yuan. Free-Flight routing: The problem definition. Tech-

nical report. 2014.




