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Abstract. Vertical flight planning concerns assigning optimal cruise al-
titude and speed to each trajectory-composing segment, such that the
fuel consumption is minimized, and the arrival time constraints are sat-
isfied. The previous work that assigns continuous speed to each segment
leads to prohibitively long computation time. In this work, we propose a
mixed integer linear programming model that assigns discrete speed. In
particular, an all-but-one speed discretization scheme is found to scale
well with problem size with only negligible objective deviation from using
continuous speed. Extensive experiments with real-world instances have
shown the practical effectiveness and feasibility of the proposed speed
discretization approach.

Keywords: Flight planning; mixed integer programming; variable dis-
cretization; piecewise linear interpolation

1 Introduction

Air transport is an important component of many international logistics net-
works, including transportation of goods and people. Planning a fuel-efficient
trajectory for each flight is a practically relevant and computationally hard op-
timization problem. Such a flight trajectory is in general four-dimensional (4D),
which consists of horizontally a 2D route on the earth surface, vertically, a num-
ber of discrete admissible altitude levels, and a time dimension controlled by
aircraft speed such that the flight can arrive within a certain strict time win-
dow. Due to the computational difficulty of such a 4D optimization problem, in
practice, it is usually approached in two separate phases [2]: a horizontal opti-
mization phase that searches for a trajectory on the earth surface consisting of
a set of segments, to which an optimal altitude and speed is assigned to in the
subsequent vertical optimization phase.

In this work, we focus on the vertical flight planning problem. The vertical
profile of a flight includes five stages: take-off, climb, cruise, descend, and land-
ing. Here we focus on the cruise stage, since it consumes the most fuel and time
during a flight, while the other stages are relatively short and usually have fixed
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procedures due to safety considerations, which leaves little flexibility for fuel
optimization. Computing an optimal altitude profile in the absence of wind can
also provide estimated altitude for the 2D horizontal trajectory optimization [12].
Such a steady-atmosphere optimal altitude profile increases approximately lin-
early as fuel burns, however, it becomes irregular if altitude-dependent wind is
considered [9]. A recent research by Lovegren and Hansman [10] confirmed a po-
tential fuel saving of up to 3.5% by reassigning only altitude and speed to fixed
flight trajectories, based on a study of 257 real flight operations in US. However,
no time constraint is taken into account in their computation as in real-world
airline operations. In such case, there exists a backward dynamic programming
approach to compute fuel-optimal vertical profile [17].

A practical challenge in airline operations is to handle time constraints, es-
pecially delays, due to disruptions such as undesirable weather conditions, un-
expected maintenance requirements, or waiting for passengers transferring from
other already delayed flights. Such delays are typically recovered by increasing
cruise speed, such that the next connection for passengers as well as for the air-
craft and the crew can be reached [1]. Varying cruise speed may also be useful,
e.g., to enter a time-dependent restricted airspace before it is closed (or after
it is open), or when an aircraft is reassigned to a flight that used to be served
by a faster (or slower) aircraft. The industrial standard suggests using a cost
index procedure to vary cruise speed. This requires inputing a value that reflects
the importance between time-related cost and fuel-related cost. The use of cost
index was criticized due to the difficulty to quantify the time-related cost in the
presence of delay, thus a dynamic cost index approach has been proposed to this
end [6]. However, such approach still cannot handle explicitly hard time con-
straints, such as the about-to-close airspace. Aktürk et al. [1] formulate the time
constraint explicitly into their MIP model in the context of aircraft rescheduling.
Their model uses only constant speed. Yuan et al. [18, 17] explicitly include the
time constraint and the use of variable speed in the vertical flight planning.

In [18, 17], the vertical flight planning problem with variable continuous speed
is identified as a mixed-integer second-order cone programming (MISOCP) prob-
lem. The second-order cone constraints consist in calculating the flight time, and
the integer variables consist in the 2D piecewise linear interpolation of the fuel
consumption function, as well as the selection of discrete admissible altitude lev-
els. The MISOCP model is reformulated as a mixed-integer linear programming
model by applying linear approximation techniques [4, 8] and various piecewise
linear approximation techniques. Despite the performance boost by using the
linear approximation of the MISOCP model, the long computation time still
prevents it from being a practically feasible approach.

In this present work, we study an alternative model for the vertical flight
planning problem with discrete speed, i.e., only a set of speed levels can be se-
lected for each segment. The use of speed discretization replaces the quadratic
cone constraints by linear constraints, and it also reduces the 2D piecewise lin-
ear fuel function to 1D, at the expense of introducing more binary variables.
We experimentally investigate the computation scalability of the discrete speed
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model, and carefully analyze the discretization error that leads to differences in
the objective value. In particular, to balance the computational scalability and
the discretization error, an all-but-one discretization, which discretizes speed on
all but one segments, appears to be the most practically viable approach.

2 Vertical Flight Planning: The Problem Description

In the vertical flight planning problem (VFP), we are given a set of segments
that compose the flight trajectory. The wind information for each segment is
given in both the track direction (flight direction) and cross-track direction. The
task is to assign an altitude and a speed to each segment, such that the flight
consumes the least fuel while the arrival time constraints are satisfied. The alti-
tude and the speed on each segment are invariant, and they can only be changed
at the beginning of each segment, due to safety requirements. The cruise stage
under consideration in this work starts after the initial climb has brought the
aircraft above the crossover altitude of around 29 000 feet. Depending on the
flight direction (eastwards or westwards), a set of discrete admissible flight alti-
tudes are allowed. We consider IFR RVSM flight levels [13], where two adjacent
flight levels usually differ by 1 000 feet, and the eastwards and westwards flights
are allowed to fly in alternate flight levels.

The aircraft manufacturers provide the aircraft performance data as unit dis-
tance fuel consumption, which depends on three factors: aircraft speed, altitude,
and weight. Each aircraft’s unit distance fuel consumption data is measured at
discrete levels of each of the three factors. For a given value that does not lie on
these measured levels, it needs to be linearly interpolated by adjacent grid points.
An illustrative example is given in Fig. 1. As can be observed, in general, the
heavier the weight, the more fuel is consumed; besides, the higher the altitude,
the less fuel is burnt. If no time constraint is considered, a fuel-optimal vertical
profile can be determined by a backward dynamic programming approach [17]
by enumerating all speed and altitude levels from the last segment to the first
segment. However, if the arrival time constraint is enforced, such as to avoid
delays and missing connections, assigning speed and altitude is not an easy task.
Our previous works [18, 17] modeled the vertical flight planning problem as a
mixed-integer nonlinear programming (MINLP) model. We further observed, if
the arrival time window enforces speeding up the aircraft from its unconstrained
fuel-optimal vertical profile, such as to avoid delays, then the MINLP model can
be formulated as a mixed-integer second order cone programming (MISOCP)
model. In this work, we compared our proposed discrete speed model to the
continuous speed model in MISOCP, and adopted the instances in [18, 17] for
speeding up the aircraft. But the discrete speed model can be potentially also
applied to cases when the aircraft needs slowing down.
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Fig. 1. Unit distance
fuel consumption with
respect to aircraft
weight (in kg), altitude
(in feet), and speed (in
Mach number).

3 Vertical Flight Planning with Continuous Speed

To the best of our knowledge, the first mathematical programming model for
the vertical flight planning problem was proposed in [18], which studies the use
of variable speed during a flight in the absence of wind. This model is further
extended in [17] to include wind. Both models assign continuous speed to each
segment, and can be identified as mixed integer second-order cone programming
(MISCOP), if the aircraft needs to be speeded up. These two models are briefly
presented in this section.

3.1 Vertical Flight Planning without Wind (VFP-C)

In [18], a mathematical model for vertical flight planning without wind (VFP-C)
is presented as follows. The unit distance fuel consumption F of an aircraft is
given as measured data at discrete levels of the three dependent factors: speed
V , altitude H, and weight W , as illustrated in Figure 1. If no wind is considered,
given speed and weight, the optimal altitude can be precomputed by checking
all possible altitudes, thus it is not necessary to include its computation in the
optimization model. Other input parameters include a set of n segments S :=
{1, . . . , n} with length Li for all i ∈ S; the minimum and maximum trip duration
T and T ; and the dry aircraft weight W dry, i.e. the weight of a loaded aircraft
without trip fuel (reserve fuel for safety is included in the dry weight). The
variables include the time vector ti for i ∈ S ∪ {0}, where ti−1 and ti denote
the start and end time of segment i; the travel time ∆ti spent on a segment
i ∈ S; the weight vector wi for i ∈ S∪{0} and wmid

i for i ∈ S where wi−1, wmid
i ,

and wi denote the start, middle, and end weight at a segment i; the speed vi
on a segment i ∈ S; and the fuel fi consumed on a segment i ∈ S. A general
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mathematical model for VFP-C can be stated as follows:

min w0 − wn (1)

s.t. t0 = 0, T ≤ tn ≤ T (2)

∀i ∈ S : ∆ti = ti − ti−1 (3)

∀i ∈ S : Li = vi ·∆ti (4)

wn = W dry (5)

∀i ∈ S : wi−1 = wi + fi (6)

∀i ∈ S : wi−1 + wi = 2 · wmid
i (7)

∀i ∈ S : fi = Li · F̂ (vi, w
mid
i ). (8)

The objective function (1) minimizes the total fuel consumption measured by
the difference of aircraft weight before and after the flight; (2) ensures the flight
duration within a given interval; time consistency is preserved by (3); the basic
equation of motion (4) is enforced on each segment; (5) initializes the weight
vector by assuming all trip fuel is burnt during the flight; weight consistency is
ensured in (6), and the middle weight of each segment calculated in (7) will be

used in the calculation of fuel consumption of each segment in (8), where F̂ (v, w)
is a piecewise linear function interpolating F for all the continuous values of v
and w within the given grid of V ×W . F̂ can be formulated as a MILP submodel
using Dantzig’s convex combination method [7, 16], a.k.a. lambda method. Our
previous work [18] presents a variant of the 2D lambda method tailored for this
problem. The quadratic constraint (4) can also be formulated as second-order
cone constraint, if the time constraint (2) requires the aircraft to speed up from
its unconstrained fuel-optimal travel time. A variable transformation technique
to formulate it into a standard second-order cone constraint is presented in
[18]. The resulting MISOCP can be solved by applying the linear approximation
formulation for the second-order cone constraints that was proposed by Ben-Tal
and Nemirovski [4] and refined by Glineur [8] (see [18] for more details).

3.2 Vertical Flight Planning with Wind (VFPW-C)

In practice, wind plays an important roll in planning a fuel-optimal flight tra-
jectory. In vertical flight planning, the wind also depends on the flight altitude.
Since the segments S are given, the track wind component U t

i,h, i.e., the wind in
the flight direction, as well as the cross-track wind component U c

i,h, i.e., the wind
perpendicular to the flight direction, can be precomputed for each segment i at
each altitude h. The mathematical model without wind presented in Section 3.1
is extended in [17] to include wind influence. Firstly, a further binary variable
µi,h is introduced to indicate whether a segment i is flown on altitude h. Then

∀i ∈ S :
∑

h∈H
µi,h = 1 (9)
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guarantees only one altitude is assigned to each segment. With the help of vari-
able µ, the wind can be assigned to each segment by

∀i ∈ S : uti =
∑

h∈H
µi,h · U t

i,h, (10)

∀i ∈ S : uci =
∑

h∈H
µi,h · U c

i,h. (11)

The equation of motion (4) is reformulated based on the wind triangle (Figure 2):

Fig. 2. Wind triangle. vground

denotes the ground speed; vair

denotes the aircraft speed; vt

and ut denote the aircraft speed
and wind speed in the track di-
rection, respectively; uc denotes
the cross-track wind speed.

∀i ∈ S : Li = vgroundi ·∆ti (12)

∀i ∈ S : vgroundi = vti + uti (13)

∀i ∈ S : (vairi )2 = (vti)
2 + (uci )

2. (14)

The two quadratic constraints (12) and (14) can be transformed into second-
order cone if speeding up the aircraft is enforced, and thus can be reformulated
by linear approximation [17]. Furthermore, the fuel consumption per segment in
(8) should be reformulated using the air speed and air distance as

∀i ∈ S : fi =
∑

h∈H
µi,h · F̂L

i,h(vairi , wmid
i ), (15)

where FL
i,h(v, w) denotes the fuel consumed by flying a segment i on an altitude

h, which can be computed in the preprocessing phase by

∀(v, w) ∈ V ×W : FL
i,h(v, w) = F (v, w) · Li ·

v√
v2 − (U c

i,h)2 + U t
i,h

based on the wind triangle. F̂L
i,h(v, w) is the 2D piecewise linear interpolation of

the data FL
i,h(v, w) for all continuous values of (v, w) in the grid of V ×W , and

thus can be solved by the 2D piecewise linear function techniques. In particular,
the lambda method is found to outperform the delta method for this model [17].
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4 Speed Discretization in Vertical Flight Planning

The continuous speed models introduced in Section 3 can be classified as mixed-
integer second-order cone programming models. The drawback of such models
is their unpractically long computation time. In this section, another modeling
alternative by discretizing the aircraft speed is presented.

4.1 Discrete Speed in VFP without Wind (VFP-D)

We first focus on the vertical flight planning model without wind. Given a dis-
crete set of aircraft speed V , we can further introduce binary variables µi,v,
which indicates whether a discrete speed level v is used when flying on segment
i. Then only one speed level can be assigned to each segment by

∀i ∈ S :
∑

v∈V
µi,v = 1. (16)

With the discretized speed, the travel time ∆Ti,v for segment i with speed v can
be calculated in preprocessing,

∀i ∈ S, v ∈ V : ∆Ti,v =
Li

v
,

such that the quadratic constraint (4) can be linearized as:

∀i ∈ S : ∆t =
∑

v∈V
µi,v ·∆Ti,v. (17)

Besides, the 2D matrix F (v, w) in (8) can be reduced to a 1D vector Fv(w) by
precomputing:

∀v ∈ V : Fv(w) = F (v, w),

such that the fuel consumption (8) can be reformulated as

∀i ∈ S : fi = Li ·
∑

v∈V
µi,v · F̂v(wmid

i ). (18)

Therefore, the speed discretization is the “stone that kills two birds”: it linearizes
the quadratic travel time constraint and reduces the 2D piecewise linear fuel
function to 1D.

4.2 Discrete Speed in VFP with Wind (VFPW-D)

Similarly as in the VFP-D model in Section 4.1, speed discretization can help to
simplify the travel time equation as well as the fuel interpolation in the VFPW-
C model. Firstly, the binary variables µi,h in the VFPW-C model are extended
to µi,h,v by one more dimension v ∈ V . Then (9) is replaced by

∀i ∈ S :
∑

h∈H,v∈V
µi,h,v = 1 (19)
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to ensure only one altitude and one speed level is assigned to each segment. Then
the travel time ∆Ti,h,v for a segment i traveled on altitude h with speed v can
be precomputed based on the wind triangle:

∀i ∈ S, h ∈ H, v ∈ V : ∆Ti,h,v =
Li√

v2 − (U c
i,h)2 + U t

i,h

.

Then the travel time computation given by (12, 13, 14) can be simply replaced
by linear constraint

∀i ∈ S : ∆t =
∑

h∈H,v∈V
µi,h,v ·∆Ti,h,v. (20)

And replacing 2D matrix FL
i,h(v, w) by 1D vector FL

i,h,v(w) as

∀v ∈ V : FL
i,h,v(w) = FL

i,h(v, w),

reduces the 2D piecewise linear function (15) by one dimension:

∀i ∈ S : fi =
∑

h∈H,v∈V
µi,h,v · F̂L

i,h,v(wmid
i ), (21)

4.3 Univariate Piecewise Linear Interpolation

Here we review three different techniques to model the univariate piecewise linear
function such as F̂v and F̂L

i,h,v into mixed integer linear programming. Despite
being mathematically equivalent (in the sense that they all describe the same
set of feasible solutions), their performances in terms of computation time are
problem dependent. Given an index set K0 := {0, 1, . . . ,m}, and the values for
the parameters W0 := {w0, w1, . . . , wm} are specified as F (wk) for k ∈ K0. We
further denote K := K0 \ {0} for the index set of intervals. A piecewise linear

function F̂ : [w0, wm]→ R interpolating F can be modeled as follows.

The Convex Combination (Lambda) Method. A variant of the convex
combination or lambda method [7] can be formulated as follows. To interpolate F
we introduce binary decision variables τk ∈ {0, 1} for each k ∈ K, and continuous
decision variables λlk, λ

r
k ∈ [0, 1] for each k ∈ K.

∑

k∈K
τk = 1 (22a)

∀ k ∈ K : λlk + λrk = τk (22b)

w =
∑

k∈K
(wk−1 · λlk + wk · λrk) (22c)

F̂ (w) =
∑

k∈K
(F (wk−1) · λlk + F (wk) · λrk) (22d)

Note that our variant uses twice as many lambda variables compared to the
original version of Dantzig [7], but in our numerical experiments it turned out
that problem instances can be solved significantly faster.
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The Special Ordered Set of Type 2 (SOS2) Method. Instead of intro-
ducing decision variables for the selection of a particular interval (the τk above),
we mark the lambda variables as belonging to a special ordered set of type 2
(SOS2). That is, from an ordered set (or list) of variables (λ0, λ1, . . . , λm) it is
required, that at most two of them are positive, and these two have to be adja-
cent with respect to the ordering. This information is implicitly treated by the
solver in the solution process when branching on such special ordered set. SOS2
branching was introduced by Beale and Tomlin [3]. We introduce continuous
decision variables 0 ≤ λk ≤ 1 for each k ∈ K0, and the following constraints:

SOS2(λ0, λ1, . . . , λm) (23a)

w =
∑

k∈K
(wk−1 · λk−1 + wk · λk) (23b)

F̂ (w) =
∑

k∈K
(F (wk−1) · λk−1 + F (wk) · λk) (23c)

The Incremental (Delta) Method. The incremental (delta) method is the
oldest of the three, introduced by Markowitz and Manne [11]. It uses binary
decision variable τk ∈ {0, 1} for k ∈ K and continuous decision variables δk ∈
[0, 1] for k ∈ K, and the following constraints:

∀ k ∈ K : τk ≥ δk (24a)

∀ k ∈ K \ {n} : δk ≥ τk+1 (24b)

w = w0 +
∑

k∈K
(wk − wk−1) · δk (24c)

F̂ (w) = F (w0) +
∑

k∈K
(F (wk)− F (wk−1)) · δk (24d)

4.4 All-but-one Speed Discretization

Variable discretization often leads to a discretization error and thus a loss of
optimality in the objective value. In particular, when an aircraft needs speeding
up, the shorter the flight time, the more fuel is consumed. Thus it is usually
fuel-optimal to arrive at the exact arrival time upper bound. But this is usually
not possible with discretized speed as it is with continuous speed. Therefore, it
may result in an unnecessary speedup on some segments, and the speed on some
segments may need to be adjusted from its optimal setting in order to arrive as
close to the prescribed time boundary as possible. This problem can be solved
by leaving one segment with continuous speed while discretizing the speed for
all other segments. More specifically, we pick the last segment to use continuous
speed by the method described in Section 3, and the discrete speed is used on
the rest of the segments and solved as described in this section.
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5 Experimental Results

5.1 Experimental Setup

Two of the most common aircraft types, Airbus 320 (A320) and Boeing 737
(B737), are used for the empirical studies in this work. The aircraft performance
data and the upper air data are provided by Lufthansa Systems AG. Two ver-
tical flight planning problems are considered, the one without wind (VFP), and
the other with wind (VFPW). For VFP, the instances considered in [18] for con-
tinuous speed are adopted here, including two speedup factors (flying 2.5% and
5% faster than unconstrained optimal). Five instances sizes are considered for
A320, ranging from 15, 20, 25, 30, and 35 segments, each of which is 100 nauti-
cal miles (NM) long,3 which results in flight ranges from 1500 NM to 3500 NM;
four B737 instance sizes are considered: 8, 12, 15, 18, i.e., flight ranges from 800
NM to 1800 NM, totalling 18 instances. For VFPW, we adopted the instances
considered in [17], with two different wind fields (one for westwards, and one
for its eastwards return trip), three speedup factors: 2%, 4%, and 6%, and three
different instance sizes: 10, 20, and 40 segments of 75 NM each for A320, and 10,
15, 20 segments of 75 NM each for B737, totaling 36 instances. All experiments
ran on a computing node with a 12-core Intel Xeon X5675 CPU at 3.07 GHz
and 48 GB RAM. Three MIP solvers are considered: SCIP 3.1, Cplex 12.6, and
Gurobi 6.0.0. Each solver run uses 12 threads, and an instance is considered
optimally solved, when the MIP gap is within 0.01%, which corresponds to a
maximum fuel error of 1 kg for B737, and maximum 2 kg for A320.

5.2 Solver comparison in continuous speed

The MISOCP model for continuous speed is extensively studied in [17]. The
use of the linear approximation for the second-order cone constraints plus the
lambda method for the 2D piecewise linear fuel interpolation are found to be
the best performing MIP model. In this work, we compare three MIP solvers
on our best continuous speed model, including SCIP, Cplex and Gurobi. The
runtime development plot for this comparison is shown in Figure 3, with the
VFP-C on the left and VFPW-C on the right. On the horizontal axis, the
solver performance is displayed in terms of computation time in seconds. For
VFP-C, Cplex is faster than SCIP by an average factor of 7, while Gurobi is
faster than SCIP by an average factor of 30. For VFPW-C, the average speedup
factor of Cplex over SCIP is 5, while Gurobi is in average 15 times faster than
SCIP. The best performing solver Gurobi also scales best as the instance size
grows. Its speedup is more significant for large instances than for small instances.
The largest real-world instances can be solved with Gurobi within 100 seconds
when no wind is considered, and require around 1 hour when wind is included.

3 Note that we currently considered segments of maximum 100 NM, based on our
previous accuracy studies on using middle-weight segment fuel estimation [18]. In
fact, longer segments can also be used to reduce the number of segments, if the
segment fuel consumption is precomputed without using middle weight, e.g., using
a numerical integral approach of the unit distance fuel consumption function [5].
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Fig. 3. The comparison of three MIP solvers: SCIP, Cplex, and Gurobi, in the best
continuous speed models without wind (VFP-C, left) and with wind (VFPW-C, right).

5.3 Comparison of piecewise linear methods in speed discretization

The use of speed discretization replaces the second-order cone constraints with
linear constraints, and it also reduces the 2D piecewise linear function for fuel
computation to 1D. The three 1D piecewise linear interpolation techniques,
namely, lambda, delta, and SOS methods, are empirically studied in this section
with the two commercial MIP solvers Cplex and Gurobi. The comparison can
be visualized in the plots in Figure 4, where the model without wind VFP-D
is shown on the left, and the right plots with wind VFPW-D. The maximum
cutoff time is set to 4 hours (14400 seconds), and their gap between the upper
and lower bound after cutoff is also compared. For both models, Gurobi outper-
forms Cplex in almost all cases. For VFP-D, the delta method solved by Gurobi
appears to be the best performing one, and solves all instances within 2 seconds.
While the SOS method scales the worst for VFP-D, it appears to be the fastest
solver for 90% of the VFPW-D instances as shown on the right of Figure 4.
However, it scales poorly for the largest instances, and leaves the largest gap
(close to 0.1%) after 4 hours. The best approach for VFP-D, the delta method
by Gurobi (Del-G), appears to be the most robust and scalable approach also for
VFPW-D, and solves the largest instances to optimality in around one minute.

5.4 Comparison of discrete speed and continuous speed

The best approach for discrete speed studied in Section 5.3, namely Del-G, is
compared with the best approach for continuous speed (see Section 5.2), in
terms of computational performance as well as discretization error. As shown in
Figure 5, the use of discrete speed substantially speeds up the continuous speed
across all instances. The average speedup factor is 44 for VFP without wind, and
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Discrete speed without wind
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Fig. 4. The comparison of three piecewise linear function techniques (lambda, delta,
SOS) solved by two commercial MIP solvers (Cplex and Gurobi) on the vertical flight
planning models without wind (left) and with wind (right). The scatter plots show
comparison of the delta with lambda and SOS methods with Gurobi.

15 for VFP with wind. Note that the scalability of the discrete speed model is
especially noticeable for the largest instances. For instances that take more than
30 seconds by VFP-C, the average speedup of using discrete speed is of factor
80; while for instances that take over 30 minutes by VFPW-C, using discrete
speed is in average over 50 times faster. The computation time of the largest
instance is shortened from one hour to one minute by applying discrete speed.

However, the drawback of using fully discretized speed is its discretization er-
ror. The objective deviation from using continuous speed is shown in the columns
of VFP-D and VFPW-D in Fig. 6. The use of discrete speed results in an in-
crease in the objective value of over 0.1% in VFP without wind, and even over
0.5% for VFPW, which translates to a possible fuel increase of 50 kg for aircraft
B737 or 100 kg for A320.
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Fig. 5. The comparison of three piecewise linear techniques (lambda, delta, SOS) solved
by two commercial MIP solvers (Cplex and Gurobi) on the vertical flight planning
models without wind (left) and with wind (right).

The all-but-one (abo) speed discretization proposed in Section 4.4 can be
used to reduce the discretization error. The speed discretization leaving one
segment with continuous speed significantly lowers the discretization error as
shown in Figure 6 in columns VFP-A and VFPW-A. As visualized in the box
plot, around 75% of the instances in both models without or with wind have an
objective deviation of less than 0.01%, which is the solver termination MIP gap,
and it translates to maximum 1 kg fuel consumption for B737 and 2 kg for A320.
Besides, the maximum objective deviation is reduced to 0.02% from 0.5%. With
such practically negligible discretization error, the abo-discretization is still in
average 13 times faster than using continuous speed in VFP without wind, and
6 times faster when wind is considered. Furthermore, the abo approach scales
especially well for large instances, as shown in Figure 5, since only one segment is
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Fig. 6. The percentage discretization
error in terms of objective increase
over using continuous speed. VFP-
D and VFP-A denote the fully dis-
crete and all-but-one-discrete (abo-
discrete) approach for VFP without
wind, while VFPW-D and VFPW-
A denote the fully discrete and abo-
discrete approach for VFPW.
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assigned with continuous speed. For the largest instances that require more than
30 seconds by VFP-C as well as largest instances that need over 30 minutes by
VFPW-C, abo is in average around 30 times faster than continuous speed. The
largest instance without wind is solved within 2 seconds, and the largest instance
with wind can be solved within 2 minutes. Considering both the computational
scalability and discretization error, the Abo-discretization appears to be the
most practically viable approach for vertical flight planning.

6 Conclusions and Future Works

In this work, we address the vertical flight planning problem, which concerns
assigning optimal altitude and speed to each composing segment of a flight tra-
jectory. The previous work has employed a mixed integer second-order cone
programming (MISOCP) model to assign continuous speed to segments. How-
ever, such model usually takes hours to solve instances of realistic sizes. In this
work, we studied an alternative MIP model by assigning discretized speed. The
speed discretization leads to significant speedup, since it not only transforms the
quadratic constraints for travel time determination into linear constraints, but
also reduce the 2D piecewise linear fuel interpolation into 1D. Computational
experiments with various real-world instances have confirmed the effectiveness
of the proposed discrete speed model, which can deliver optimal solution within
minutes. To cope with the discretization error, an all-but-one (abo) discretiza-
tion scheme that discretizes speed for all but one segments is proposed. The
abo approach is confirmed to scale well to especially large instances, and deliver
solution that are under 0.02% discretization error within 2 minutes, thus proves
to be a practically viable approach.

Our experiments so far have focused on the instances with time constraint
that speeds up the aircraft from its unconstrained fuel-optimal vertical profile,



Discrete Speed in Vertical Flight Planning 15

in order to compare with the MISOCP formulation for continuous speed. In the
future, it will also be interesting to compute the optimal vertical profile with
time constraints that require slowing down the aircraft. Advanced techniques
for modeling piecewise linear function such as spatial branching [14] and a loga-
rithmic model [15] may be applied to further speed up our discrete speed model.
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1. Aktürk, M.S., Atamtürk, A., Gürel, S.: Aircraft rescheduling with cruise speed
control. Operations Research 62(4), 829–845 (2014)

2. Altus, S.: Flight planning – the forgotten field in airline operations. www.agifors.
org/studygrp/opsctl/2007/, presented at AGIFORS Airline Operations 2007.

3. Beale, E.L.M., Tomlin, J.A.: Global Optimization Using Special Ordered Sets.
Mathematical Programming 10, 52–69 (1976)

4. Ben-Tal, A., Nemirovski, A.: On Polyhedral Approximations of the Second-Order
Cone. Mathematics of Operations Research 26(2), 193 – 205 (2001)

5. Blanco, M., Hoang, N.D.: personal communication on segment fuel estimation in
Erlangen, Germany, 2015-04-21

6. Cook, A., Tanner, G., Williams, V., Meise, G.: Dynamic cost indexing–managing
airline delay costs. Journal of air transport management 15(1), 26–35 (2009)

7. Dantzig, G.B.: On the significance of solving linear programming problems with
some integer variables. Econometrica 28(1), 30 – 44 (1960)

8. Glineur, F.: Computational Experiments with a Linear Approximation of Second-
Order Cone Optimization. Tech. rep., Image Technical Report 0001, Faculté Poly-
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