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Home Health Care Scheduling: A Case Study

Zhi Yuan · Armin Fügenschuh

Abstract This article provides a case study on the problem of scheduling nurses for home
health care on a weekly basis. The list of health care tasks are available before the start
of the week. Each clients may require multiple visits per week, and they can specify the
preferred day and the time window on each preferred day that they expect a visit. Besides,
certain visits require a minimum number of days’ difference in between. The nurse may also
specify the preferred working day and the maximum working hours. The optimal schedule
to be found should minimize the personnel cost as well as the total working time, with-
out compromising the service quality. This problem is a combination of the staff rostering
problem that consists in assigning health care tasks to a competent nurse on the appropri-
ate day without exceeding her maximum working hours, and the vehicle routing problem
with time windows, where an optimal route for each day’s scheduled visits should be found
respecting the time windows. We formulate this problem as an integer linear programming
model based on the multi-commodity network flow formulation, and develop also problem
specific greedy construction and local search approaches for it. The scalability of different
approaches are studied, and a real-world instance is used for validating our proposed ap-
proach. An estimate of at least 10% cost reduction potential is observed comparing with the
current manual plan.

1 Introduction

The health care service system in Germany and many other countries is facing increasing
costs due to the aging population. In this work in cooperation with a local health care service
provider in medium-size town (150,000 inhabitants) in Germany, we focus on the specific
field of home health care, i.e., visiting and providing medical services to clients at home.
These medical services range from cleaning, personal hygiene to some medical treatments,
including blood pressure measuring, medication prescription, injections and so on.

The home health care scheduling can be regarded as a combination of staff rostering
problem [8] and a vehicle routing problem (VRP) with time windows [7]. On the one side,
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one has to assign weekly visits to nurses with sufficient competence, following the preferred
days specified by both the nurses and clients, without exceeding the nurse maximum work-
load. On the other side, the workload or the working time of each nurse depends on how fast
one can arrive from one client’s home to another client’s home within each client’s specified
time slots on each of their preferred days. Besides, different from most of the existing home
health care scheduling problems in the literature, our scheduling task is on a weekly basis.
This is because certain medical treatments require a minimum day difference in between.
For example, the insulin injections of certain clients need to be given twice per week, with
three days difference in between. This inter-visit day difference is also considered in our
optimization process.

In this case study, the optimization objective is to cover all the weekly client visits with
minimal operating cost, especially the personnel size, and also to minimize the nurses’ total
workload by an effective routing procedure. This should be achieved without the loss of
the service quality, for example, sufficient treatment duration should be guaranteed, and the
client-specified day and time slots should be obeyed as hard constraint.

This weekly based home health care scheduling problem is formulated as an integer
linear programming (ILP) model as a multi-commodity flow problem. Besides, a problem
specific greedy construction method is developed and a local search procedure is applied
to further improve the constructed solution. The parameters of the algorithm are automati-
cally adapted during the algorithm run, to obtain an instance-specific best parameter setting.
Furthermore, the solution found by the heuristic approach is also input as an initial upper
bound for a commercial ILP solver to speed up the branch-and-bound process. Real-world
instances with up to 90 patients and 460 weekly treatments have been used to validate our
approach.

The rest of the article is organized as follows. Section 2 provides a brief literature
overview on the home health care scheduling problem. This problem will be described in
more details in Section 3, and will be formulated as an ILP model in Section 4. The primal
heuristics are presented in Section 5. Section 6 is dedicated to the experimental setup and
the computational results for the real-world instances from our industrial partner. Finally,
Section 7 provides some concluding remarks and discussions for potential future directions.

2 Literature Review

In general, the home health care scheduling problem can be regarded as a combination of
staff rostering problem [8] and a vehicle routing problem (VRP) with time windows [7].
Particularly from the staff rostering aspect, it has many things in common with the nurse
rostering and scheduling problem [5,4] in terms of skill category, shift type, and time related
constraints. However, the home health care scheduling problem has the further requirement
of a routing task from patient to patient.

For example, Begur et al. [2] presented the use of a spatial decision support system to
schedule and route home health care nurses in Birmingham, Alabama, USA. The system
integrates geographic information system with scheduling heuristics and databases, and it
is reported an over 20,000 US Dollars saving annually for travel expenses and scheduling
preparation, and it helps improve the balance of work among nurses. A saving-type route-
building heuristic is proposed and described, and a route improvement is done manually
through a visual interactive system.

Cheng and Rich [6] formulated the home health care scheduling problem as a multiple
depot vehicle routing problem with time windows. Both full-time and part-time nurses are



considered, and each nurse starts and ends their daily service from their home. The lunch
break problem is considered by adding an additional lunch node into the scheduling graph.
Two mixed integer programming models were presented, and were reported to be able to
solve by CPLEX problems of size up to 10 patients. A two-phase heuristic is also developed,
using a randomized greedy algorithm to construct a possibly infeasible solution in the first
phase, and then improve it by a problem-specific local search in the second phase.

Eveborn et al. [9] introduced a decision support software, developed to aid the staff plan-
ner creating daily schedules at a home health care organization in Sweden. Various practical
constraints such as staff competence, time windows for visits, or breaks for meals were
considered. A mixed-integer programming formulation is given, based on a set partitioning
model. As solution method, they make use of repeated matching approach, which maps the
staffs-to-home-visits problem into a matching problem, and then solves the resulting match-
ing problem with an exact method or a repeated assignment heuristic. They estimate a total
cost saving of 20%, and a reduction of 7% of the total working time.

Rasmussen et al. [18] further presented the home care crew scheduling problem in Den-
mark. The scheduling is also on a daily basis with temporal dependencies and some other
service oriented constraints. One example of such temporal dependencies given by the au-
thors is this: A first home carer switches on a washing machine, and a second home carer
should come and empty the washing machine after two to four hours. In such case, the rout-
ing part of the problem amounts to the VRP with coupled time windows [11]. The other
service oriented constraints include, for example, leaving as few visits uncovered as possi-
ble. Each visit is associated with a priority, and if some visits may have to be rescheduled
or cancelled, it should not cancel the most important visits of the day. The problem is for-
mulated as a set partitioning problem and a branch-and-price algorithm is developed for its
solution.

Koeleman et al. [13] consider a home health care scheduling problem in a stochastic
setting. They assume the patients arrive according to a Poisson distribution, and the prob-
ability distribution of to which class the patients belong to, and their health care duration
per week, is assumed to be known. Then the decision has to be made whether they should
accept, reject, or put the patient in a waiting list. This problem is modelled as a Markov de-
cision process, and the (near-)optimal policy can be found by a trunk reservation heuristic.
However, no timetabling and routing of the nurses to patients have been considered.

Bertels and Fahle [3] also stated that the home health care scheduling problem is a
combination of a staff rostering and a vehicle routing problem. They developed also a hybrid
algorithm that consists of linear programming, constraint programming and metaheuristics
for solving the problem.

To the best of our knowledge, none of the presented models are completely applica-
ble to our problem, mainly for some or all of the following reasons. Our schedule is on
a weekly basis, and the inter-visit day difference should be integrated into the optimiza-
tion process [19]. In the literature, e.g. [2], a two-visit-per-week patient will be fixed to a
Monday and Thursday or a Tuesday and Friday before the optimization process starts. Al-
though such fixed assignments simplifies the problem, it also reduced scheduling flexibility
and efficiency. In this work, we model inter-visit day difference as a constraint, and let the
optimization process to determine the treatment day. Besides, not only the daily maximum
working time but also the total weekly maximum working time can be imposed for each
nurse. Furthermore, each nurse as well as the patient should be able to specify their individ-
ual preference on working days in advance.



3 Problem Description

For notational simplicity we will refer to the employees of the service as nurses, the clients
as patients, the service activities that the clients require as treatments. Our task is to develop
computer software to assist the health care provider to generate a nurse schedule on a weekly
basis.

The optimization task is to assign each patient or treatment to a nurse with competent
qualification on an appropriate day at a time within a patient-specified time window.

Patients and treatments. A patient may require a number of nurse visitations, or treat-
ments, in a week. A treatment is a medical activity to be performed by a visiting nurse
at a proper time on an appropriate day. These treatments include washing, cleaning,
bandage changing, medication prescription, and giving injections. The duration of each
treatment is fixed and given in advance, but the start time of each visit can be varied
within a patient-specified time window.

Day preference and time windows. Each patient can specify which days are preferred for
his weekly treatments, e.g., only Monday and Tuesday, or no treatments on Thursday,
etc. Furthermore, on each of these preferred days, a time window within which treatment
can start can be specified by the patient, e.g., the cleaning can start on Monday from 9:00
to 11:00 or Thursday from 8:00 to 9:00. Note that the time windows imposed here are
hard constraints, which means, if the nurse is scheduled to arrive earlier than the given
lower bound of the time window, he or she would have to wait.

Inter-visit day difference. For some patients who need several visits per week, there may
be some pairs of visits between which at least one to three days’ difference must be
retained. Examples of such pairs of treatments include some injections that must be
given twice a week with at least three days break in between.

Nurses. There are mainly two types of nurses distinguished by our application partner,
namely, the professional nurse and the assistant nurse, differing in qualification and also
salary cost. To become a professional nurse in Germany requires a three years education,
and one must pass the national exam to obtain the medical certificate. These nurses are
able to perform all types of treatments. The assistant nurse usually receives a short-term
on-the-job training. They can perform simple treatments such as cleaning or changes of
bandages. However, they are not allowed to perform treatments such as prescriptions or
injections. The assistant nurses’ salary is also lower than the professional nurses, and it
is estimated to be 70% of what the professional nurses receive.

Working date and time. Nurses’ everyday work starts at 7 a.m. in the headquarter of the
organization with a car, and the car must return to the headquarter by the end of the
day’s work. According to the organization’s legal regulation, the daily working hour
of each nurse cannot exceed 6 hours, while the total weekly working hours for each
nurse cannot be over 30 hours. Each nurse also has the right to choose on which day
(normally working days from Monday to Friday) and at most how many hours she is
willing to work on a day or within a week. As working time counts the treatment time
that a nurse spends at a patient, the driving time between patients and from or to the
headquarter, as well as the waiting time, if she arrives at a patient too early.

Goals and objectives. In this work, our objective is to reduce the operating cost and the
nurses’ workload without compromising the service quality, e.g., the treatment duration,
patient-specified date and time and certain required treatment qualification need to be
kept. Our primary optimization goal is to reduce the personnel cost, i.e., to use as few



Fig. 1 A graphic example of the home health care problem. Triangles represent depot nodes, where node
di, j represents a nurse i on a day j. Note that some nurse may be totally free on some day. Circles represent
treatment nodes with its index. Each tour must start and end at a depot node.

staff as possible to carry out all the tasks. The secondary optimization goal is to reduce
the total working time of all nurses.

4 Mathematical Models

We formulated the home health care scheduling problem as an integer linear programming
(ILP) model based on the multi-commodity flow model with the Miller-Tucker-Zemlin con-
straints to handle the time consistency [16].

4.1 A graphical example

A graphical example of the home health care scheduling problem is shown in Figure 1.
Each depot node is depicted as a triangle, di, j, and represents a nurse i on a day j. Each
circle represents a treatment node. Here, nurse 1 carries out treatments t1, t2, and t5 on day
1, and carries out treatment t4 on day 2. Nurse 2 has treatments t6 and t3 on day 1, and has a
free day on day 2. We also follow the terms used in multi-commodity flow, meaning that the
arcs from a depot node to a treatment node, e.g., from d1,1 to t1, are called pull-out arcs, the
arcs between two treatment nodes, e.g., t1 to t2, are called deadhead arcs, and the arcs from
a treatment node to depot node, e.g., t5 to d1,1, are called pull-in arcs.



4.2 Sets

We denote the set of all nodes with N. There are two types of nodes in the example shown
in Figure 1, namely, depot nodes and treatment nodes.

– Nd p: the set of depot nodes where a nurse starts and ends his or her day at;
– Ntrm: the set of treatment nodes that should be visited by one of the nurses.

Similarly, we denote the set of all arcs with A, and distinguish three types of arcs existing
in our graphical example, namely, pull-out arcs, deadhead arcs, and pull-in arcs.

– Apullout : a pull-out arc starts from a depot node and ends at a treatment node;
– Adeadhead : a deadhead arc starts and ends both at a treatment node, representing a trip

from one patient to another patient;
– Apullin: a pull-in arc starts from a treatment node and ends at a depot node;

Apart from the sets that are visible in the figure, there are some other sets outside the
graph, such as

– K: the set of nurses;
– D: the set of working days, i.e., D := {1, . . . ,5}, representing Monday to Friday. Note

that we consider each nurse per day as a depot in our model;
– R ⊂ Ntrm×Ntrm: the set of pairs of treatments that are related, in the sense that if two

treatments i and j are related, (i, j) ∈ R, then treatments i and j must have some days’
difference between each other.

4.3 Parameters

The parameters used in the ILP model are listed below:

– ck
start : the starting cost of each nurse k ∈ K.

– uk,d
i, j : the upper bound for the flow capacity on each arc (i, j) ∈ A for a nurse k ∈ K on a

day d ∈ D. The value of u is binary, since each treatment node must be visited once and
only once, and each depot can deploy only one unit of flow. Besides, we also use this
parameter to remove some infeasible arcs in preprocessing, e.g.,
1. if a treatment i ∈ Ntrm cannot be taken by a nurse k ∈ K, then we set all the arcs

that are incident to node i to be infeasible by assigning their upper bounds to 0, i.e.,
uk,d

i, j := 0,uk,d
j,i := 0,∀ j ∈ N,d ∈ D.

2. If a treatment i ∈ Ntrm cannot be taken on a day d ∈ D, similarly we set the upper
bounds of all arcs incident to node i on day d to 0.

3. If a nurse k ∈ K is not possible to work on day d ∈ D, then all arcs on this layer are
set to infeasible, uk,d

i, j := 0,∀(i, j) ∈ A.
– t i and t i: the lower bound and the upper bound of the time window for a treatment i.
– δi, j: the necessary duration from the start of treatment i until the start of treatment j,

if j is taken by the same nurse on the same day subsequently after i. It consists of
two parts, the service time for treatment i, and the trip duration from i to j, i.e., δi, j =
δ service

i +δ deadhead
i, j .

– T k,d
day : the daily maximum working time of a nurse k on day d.

– T k
week: the weekly maximum working time of nurse k.

– σi, j: the necessary day difference between two related treatments (i, j) ∈ R. The value
of σ is typically restricted by 1≤ σ ≤ 3.



4.4 Variables, Objective, and Constraints

The decision variables are listed as follows:

– xk,d
i, j ∈ {0,1}: the flow variable representing whether an arc (i, j) ∈ A is traveled by a

nurse k ∈ K on day d ∈ D;
– ti ∈ Z+: the starting time of a treatment i ∈∈ Ntrm;
– sk ∈ {0,1}: binary variable to indicate whether a nurse k ∈ K has been deployed.
– τk,d ∈ N: the working time of a nurse k on a day d minus the starting time of 420, i.e., 7

a.m. If a nurse on a day does not start any tour, then its value equals to 0.

The objective function consists of two hierarchical parts. Firstly, in this work, the pri-
mary objective for the organization is to reduce the personnel cost (without compromising
the service level, e.g., service time and nurse qualification). Imprecisely speaking, the goal
is to use as few nurses as possible to take care of all the clients. Note that nurses with dif-
ferent qualifications may require different starting cost, then it is the total starting cost to
be minimized. Secondly, at a subsidiary level, we wish to shorten the nurse’s daily working
hours. So the objective is formulated as follows:

min ∑
k∈K

ck
start · sk + ∑

k∈K,d∈D
τk,d (1)

subject to the following constraints:

– bundle constraint, every treatment will be visited exactly once,

∑
k∈K,d∈D,i∈N

xk,d
i, j = 1, ∀ j ∈ Ntrm (2)

– flow capacity constraint, the flow cannot exceed the upper bound on each arc,

xk,d
i, j ≤ uk,d

i, j , ∀(i, j) ∈ A,k ∈ K,d ∈ D (3)

– flow conservation constraint, the inflow of each treatment node should equals its outflow,

∑
j∈N

xk,d
j,i = ∑

j∈N
xk,d

i, j , ∀i ∈ Ntrm,k ∈ K,d ∈ D (4)

– time window constraint, which the starting time of each treatment should obey,

t i ≤ ti ≤ t i, ∀i ∈ Ntrm (5)

– time compatibility constraint, i.e., the starting time difference between two consecu-
tive nodes should not be smaller than its necessary amount, for the three types of arcs,
namely,
1. deadhead arcs:

ti +δi, j +M · (xk,d
i, j −1)≤ t j, ∀(i, j) ∈ Adeadhead ,k ∈ K,d ∈ D (6)

with sufficiently large value for M;
2. pull-out arcs:

420+δi, j +M · (xk,d
i, j −1)≤ t j, ∀(i, j) ∈ Apullout ,k ∈ K,d ∈ D (7)

where every nurse is supposed to start their daily work at 7 am (420 minutes after
0:00); and



3. pull-in arcs:

ti +δi, j +M · (xk,d
i, j −1)−420≤ τk,d , ∀(i, j) ∈ Apullin,k ∈ K,d ∈ D (8)

where the daily working time τk,d of a nurse k on a day d is measured by the differ-
ence between the ending time of her work at the depot and the starting time of her
work at 7 a.m.;

– the maximum daily working time should not be exceeded,

τk,d ≤ T k,d
day , ∀k ∈ K,d ∈ D (9)

– the maximum weekly working time should not be exceeded,

τk ≤ T k
week, ∀k ∈ K (10)

– the nurse deployment indicator sk is determined by checking each pull-out arc,

sk ≥ ∑
(i, j)∈Apullout ,d∈D

xk,d
i, j , ∀k ∈ K (11)

– and the necessary day difference between a pair of related treatments is modeled in two
steps:
1. the former treatment i should not start too late so that the latter treatment j can be

visited during the week, i.e., i should start latest on the day of (5−σi, j):

∑
h∈N,k∈K,d∈{1,...,5−σi, j}

xk,d
h,i = 1, ∀(i, j) ∈ R (12)

2. then the latter treatment j should be started no earlier than the day d′ ≥ d +σi, j,

∑
h∈N,k∈K

xk,d
h,i + ∑

h′∈N,k′∈K,d′∈{1,...,d+σi, j−1}
xk′,d′

h′,i ≤ 1, ∀(i, j)∈R,d ∈{1, . . . ,5−σi, j}.

(13)

To sum up, the home health care scheduling problem can be formulated as follows:

minimize (1)

subject to (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13)

x ∈ {0,1}|A|×|K|×|D|, t ∈ Z|Ntrm|
+ ,s ∈ {0,1}|K|,τ ∈ N|K|×|D|.

5 Primal Heuristics

5.1 Greedy Construction Heuristic

The greedy construction heuristic builds a complete solution from scratch, by iteratively
choosing an immediate best solution component, until a complete solution is generated.
There are two greedy decisions to be made during the construction: choosing a nurse to
start, and choosing a next treatment node to append.

There are two types of nurses. An assistant nurse can handle only a subset of “simple”
treatments and is less expensive than professional nurses. If there are only very few (less
than 20) simple treatments left, we will always start with the professional nurse. Otherwise,



given the proportion of simple treatments as Ps, we select an assistant nurse by the prob-
ability Passist := Ps · cpro f

cassist
, where cpro f and cassist refer to the cost of a professional and an

assistant nurse, respectively. Within the same nurse type, we start with the nurse with the
most maximum weekly working time.

After the nurse is chosen, all his or her allowed working days are randomized. Then for
each day, we first filter the treatments that are feasible for that day, and then build the sched-
ule by iteratively appending the next best treatment node. For selecting the next treatment,
the following factors are considered:

Link time. ∆ t j := min{δi, j, t j− tcurrent}, i.e., the earliest possible starting time of the next
node j minus the current time;

Time window size. tday
j := t j−max{t j, t

current + δi, j}, i.e., how flexible the treatment can
start during the day, since the treatments that are less flexible may be more preferred
during the construction, while the more flexible treatment may be treated at a later time;

Time window in other days. tother
j , which is the sum of the time window size of any other

days. The same rationale above applies here: if a treatment can be only taken on this
day, it should have a higher priority than the ones that are more flexible.

Then the greedy best next node j∗ is selected as follows:

j∗ = arg min
i∈N f easible

∆ t j +α · tday
j +β · tother

j , (14)

where the two greedy weighting parameters α and β are determined dynamically by a
PGreedy approach described below.

5.2 Local Search

We have applied two types of local search operators: a node insertion and a nurse type
exchange operator.

Node insertion. Since our primary objective is to reduce the number of nurses, this is also
the goal for the node insertion. We first sort all the nurses in the constructed schedule
by the number of treatments handled. Then we iteratively try to insert a treatment node
from the least-loaded nurse to all the nurses that are more-loaded. The best-improvement
strategy is applied, i.e., if there are multiple positions with multiple nurses where a treat-
ment can be inserted, then the one with the least additional working hours is chosen. Ties
are broken randomly. Note that after a node has been inserted, the corresponding time
windows of the treatment nodes have to be updated by a constraint propagation. After all
the nodes from the least-loaded nurse have been tried, then we resort all the nurses ex-
cept the least-loaded nurse, and we start from the second least-loaded nurse, and repeat
inserting all its nodes to more-loaded nurses as described above. Once a node is inserted
to the schedule of another nurse, we check immediately whether the least-loaded nurse
can insert its nodes to the nurse with a decremented node. This process ends, when all
the nurses but the most-loaded one have been tried to insert their nodes. Note that this
node insertion local search does not necessarily reduce the overall objective value, but
its goal is mainly to try to reduce the number of nurses. It happens in some cases that the
objective value may increase after the node insertion operation, since the total working
time increases. However, it is very effective in reducing the number of nurses.



Nurse type exchange. After the node insertion operation, a nurse type exchange is per-
formed. It starts by checking all the treatments of each professional nurse, if all the
treatments taken by a professional nurse can be taken by an assistant nurse, then an
assistant nurse is deployed instead.

5.3 Online Parameter Adaptation

The best greedy criterion is usually unknown in advance, besides, each instance may have
a different best greedy criterion. The weighting parameters in the greedy construction, α
and β can be adapted while running the algorithm. This is done by following the procedure
described as Parameterized Greedy (PGreedy) [10]. The PGreedy algorithm can find the best
greedy criterion while running on a particular instance, by using a black-box optimization
algorithm to search the greedy parameter space. One example of such black-box search
algorithm proposed in [10], and adopted in our work, is the improving hit-and run (IHR)
procedure [20].

The heuristic procedure works as follows. The improving hit-and-run is applied to adapt
the best-so-far greedy parameter setting to start each iteration. In each iteration, it runs a
greedy construction (Section 5.1) with the adapted parameter setting, followed by a local
search (Section 5.2). If a new best-so-far solution is found, we also update the best-so-far
greedy parameter setting to the new one as in the IHR procedure. It leaves to define the range
of the parameters. In our experiments, α is set to [0,0.2], and β is set to [0,0.1].

6 Experiments and Results

The primal heuristics are implemented in Java. The code is executed on a personal computer
with AMD AthlonXP CPU at 1.5 GHz and 256 MB DDR RAM, running Windows XP as
operating system. The mathematical model is formulated using the Zimpl language [12],
and the Zimpl generated ILP model is then solved by ILOG CPLEX 10. Zimpl and CPLEX
ran on a computing server with 32 GB RAM and 8 × 2.4 GHz AMD Opteron 880 CPU,
running SUSE 10.2 Linux OS.

6.1 The Instances

One data set is available from our application partner, a local home health care service
provider in the whole town area. This instance is a real-world weekly nurse schedule cur-
rently in use. It contains 99 patients, 460 treatments, and 9 nurses, and is named nurse460.
The number of pairs with inter-visit day difference is already greatly reduced in our dataset
preprocessing phase, and 17 pairs are still left. Each treatment has a patient-specific time
window, which is given in advance. The size of the time window varies greatly, ranging
from 30 minutes to 360 minutes. The resulting ILP model from Zimpl consists of over 8
millions variables, 9 millions constraints, and 70 millions non-zeros, as listed in the last row
of Table 1. CPLEX is not able to even finish one run of the simplex algorithm for the LP
relaxation model within our computation time limit, which is set to 6 hours.

In order to better study the problem scalability, we further extract smaller instances from
the real-world instance nurse460. These instances were extracted by randomly selecting a
number of patients, and then including all the treatments and related pairs of the selected



Table 1 The instances used in our case study, extracted from a current real-world home care schedule. The
entire instance has 99 patients, 460 treatments, and 9 nurses. Smaller instances were extracted, including from
22 to 285 treatments. Below it lists the size of the problems including the number of patients, treatments,
nurses and related pairs, as well as the size of the ILP models built by Zimpl, including the number of
variables, constraints and non-zero coeffecients.

Instance Problem size ILP model size
#patient #treatment #nurse #related-pair #variable #constr #non-zero

nurse22 5 22 2 0 5.3K 8.4K 4.3K
nurse75 15 75 3 4 87K 99K 124K
nurse110 25 110 3 3 185K 218K 202K
nurse153 33 153 4 5 474K 542K 583K
nurse210 46 210 4 10 891K 962K 1.4M
nurse285 60 285 6 9 2.1M 2.1M 3.0M
nurse460 99 460 9 17 8.5M 8.9M 69.8M

Table 2 The computational results of the primal heuristics. Reported is the best solution out of 10 runs of
30 CPU seconds each. The objective value, total number of nurses and number of nurses of the two different
types (professional or assistant), total working time and the average working time per nurse are listed.

Instance Comp. Time Obj. Value Nurses (prof. / temp.) Total #nurse Total Work Time Avg. Work Time

nurse22 300 1702200 1 / 1 2 2200 1100
nurse75 300 2702071 2 / 1 3 2071 690
nurse110 300 2704577 2 / 1 3 4577 1526
nurse153 300 3705336 3 / 1 4 5336 1334
nurse210 300 3706175 3 / 1 4 6175 1544
nurse285 300 5707509 5 / 1 6 7509 1252
nurse460 300 7713293 7 / 1 8 13293 1662

patients. The size of the extracted instances ranges from 5 patients with 22 treatments to
60 patients with 285 treatments. The number of nurses has an important influence on the
computational difficulty of the ILP model, since each individual nurse determines a specific
commodity layer in our multi-commodity network, hence the size of the network model
is proportional to the number of nurses. For more details on this issue, we refer to [19].
Therefore, we tried to minimize the number of nurses for the extracted instances by taking
the number of nurses of the best found heuristic solution. The size of the ILP model built
by Zimpl, including the number of variables, constraints, and non-zero coefficients for each
instance is also presented in Table 1.

6.2 Computational Results of the Primal Heuristics

For each of the extracted subinstances, 10 trials of the heuristic are run, and each trial was
allowed 30 seconds CPU time. We reported the best solution of the 10 trials in Table 2, and
reported its overall computation time as 30×10 = 300 seconds.

It is worth mentioning that for the real-world instance nurse460 a good scheduling
solution can be found by our heuristic algorithm within 5 minutes. This schedule requires
only eight nurses, which improves the original manual nurse schedule currently in use by
reducing one nurse. It would be also interesting to compare the secondary optimization goal,
the total working time, with the manual schedule, but unfortunately, this information is not
available from our application partner.



Table 3 The computational results of the commercial ILP solver. Two LP relaxation strategies were used:
simplex and interior point method. The computation time in seconds, the best integer solution (upper bound),
best node (lower bound) and the gap is reported.

Instance Simplex Interior Point
Comp. Time Best integer Best node Gap Comp. Time Best integer Best node Gap

nurse22 33 1702200 1702200 0% 27 1702200 1702200 0%
nurse75 21600 - 1003438 - 21600 2702103 2000098 26%
nurse110 21600 - 1000359 - 21600 - 1000359 -
nurse153 21600 - 1000000 - 21600 - 1333692 -
nurse210 21600 - 700633 - 21600 - 701800 -
nurse285 21600 - 0 - 21600 - 1000000 -
nurse460 21600 - 0 - 21600 - 0 -

6.3 Computational Results of the ILP Solver

The commercial ILP solver CPLEX is also used to solve the model of the instances presented
above. Two different strategies were applied to solve the subsidiary LP relaxation in the
branch-and-bound procedure: the default simplex method and the interior point method.

As shown in Table 3, the solver CPLEX has difficulty in solving the ILP model. Only the
smallest instance nurse22 can be solved to optimality. The interior point method appears
to be a better alternative for solving the LP relaxation problem by providing better lower
bounds compared to the default simplex method. Therefore, the interior point method is
used instead of simplex for solving LP relaxation. For instances that are larger than 75
treatments, no feasible integer solution was be found. In such case, the branch-and-bound
procedure cannot prune any subtree, and it amounts to an exhaustive search. Therefore, the
heuristic approach is essential for solving this problem. Not only can the heuristic provide
feasible solutions, it may also be used as an initial upper bound to help the branch-and-bound
procedure to prune provable inferior subtrees.

6.4 Initialize ILP Solver by Heuristic Solution

As indicated in the previous section, although the ILP solver CPLEX is equipped with var-
ious heuristic approaches for finding feasible solution, it is unable to find feasible solution
within our computation time limit. One possible speed-up is to provide the best heuristic
solution as an initial feasible solution for the ILP solver. The advantage of doing so is two
folds: on one side it may help the branch-and-bound procedure to reach more nodes by dis-
carding some provable inferior subtrees; and on the other hand, the ILP solver may help
further improve the heuristic solution.

The results are shown in Table 4. Comparing to the lower bound listed Table 3, the lower
bound in nurse75 and nurse153 is improved. Especially the lower bound improvement of
nurse153 leads to over 4% improvement of the root gap. From the upper bound perspective,
although the number of nurses calculated by the heuristic is not further improved, we observe
that the total working time in nurse75 and nurse110 has been improved by 3.4% and 1.1%,
respectively.



Table 4 The computational results of initializing the ILP solver CPLEX by heuristic solution. The second
and third column presents the best heuristic solution and its gap with respect to the lower bound calculated in
Table 3; the fourth to seventh column shows the computation time (in seconds), best integer, best node, and
the root gap of the ILP solver with initialization of the heuristic solution; the eighth and ninth column shows
the number of nurses, and the total working minutes (and the reduced minutes with respect to best heuristic
solution).

Instance Primal heuristic ILP solver with heuristic initinalization Final Solution
Obj. Value Gap Comp. Time Best integer Best node Gap #Nurse Work Time (diff.)

nurse22 1702200 0% 30 1702200 1702200 0% 2 2200 (0)
nurse75 2702071 26% 21600 2702001 2000144 26.0% 3 2001 (3.4%)
nurse110 2704577 63% 21600 2704525 1000359 63% 3 4525 (1.1%)
nurse153 3705336 64% 21600 3705336 1500359 60% 4 5336 (0)
nurse210 3706175 81% 21600 3706175 701800 81% 4 6175 (0)
nurse285 5707509 82% 21600 5707509 1000000 82% 6 7509 (0)
nurse460 7713293 100% 21600 7713293 0 100% 8 13293 (0)

7 Conclusions and Future Works

The current work presented a case study of the home health care scheduling problem for
a local health care provider in Germany. At the current stage, it is important to evaluate
the scalability of different solution approaches, as well as the potential cost saving for the
organization. In this work, we formulated the weekly based home health care scheduling
problem as an integer linear programming model, and applied a state-of-the art ILP solver
to it. Unfortunately, the current model is only able to be solved optimally up to a tiny in-
stance size. The heuristics on the other hand perform very well, and are able to obtain good
solutions within five minutes. Initializing the branch-and-bound process with a heuristic so-
lution seems to speed up the solving process, but the gap for a real-world size instance is still
vast. The results also indicate at least 10% cost saving potential for using a computerized
optimization process.

As this is still an ongoing work, there are many directions that the current work can
be extended. The future directions can be categorized into two aspects, methodology and
application. From the methodological aspect, although this works shows that local search
approaches are more preferable for the real-world size problem than the exact approaches, it
is still interesting to obtain a provable optimality or a lower bound to assess the local search
approaches. A potential direction is to reformulate the current mathematical model into a set
partitioning problem and solve it by a branch-and-price approach [1], since the branch-and-
price approaches have proven to be successful for solving the VRP with time windows [7].
As for the heuristic approach, it will be interesting to further explore the more effective local
search techniques. Our current node insertion operator is mainly aimed at reducing personnel
size. It will be interesting to start a second phase of the local search aiming at also reducing
the total working time, and rebalancing the workload among different nurses. To this end,
local search operators such as node exchange and swapping can be also effective. In fact,
it will also be interesting to iterate these local search operators in a variable neighborhood
descent fashion [17], so that the local optimum found is the local optimum with respect to
all the local search operators. Besides, instead of restarting the heuristic in each iteration
from scratch, it will be more effective to perturb a small part from the best-so-far solution,
and then perform local search afterwards without a full construction, as done in the iterated
local search [15].



From the application aspect, currently we consider mainly minimizing operating cost
as the optimization objectives. In fact, there are still other objectives that our application
partner cares about other than costs, such as follows.

Workload balancing. Each nurse should have more or less the same amount of workload,
such that each nurse has a similar number of patients or treatments to handle. The current
schedules generated by the node insertion local search may cause certain nurses with
very heavy workload while some other nurses have only very few treatments to handle.
This can be done by adding a balancing objectives into the mathematical model, and by
also applying node insertion to insert treatments from heavily-loaded nurses to less-load
nurses.

Dynamic reallocation. The scheduling tool should be robust in the presence of changes.
If any changes happen, the reallocation of a new schedule should be made in a short
time with as few modifications to the original schedule as possible. There are various
possible changes, for instances, new clients joining in, clients changing their preferred
visitation dates or time windows, or nurse staff’s availability. Some of these changes
are known one week before, but in some urgent cases, which are not rare, patients may
call in a short time to change the visit appointment to another time, nurses may call
in sick shortly before the schedule starts, or a damage to their car suddenly occurs. In
such cases, especially the last minute cases, a new schedule should be generated in a
short time, with as few changes to the original schedule as possible. In such case, a local
search procedure is important.

Consistent nurse. One important feature to improve the service quality is to always assign
the same nurse to the same patient’s treatments. From the nurse’s perspective, it is easier
to catch up with the patient’s situation, while from the client’s perspective, they also de-
sire more consistency. Keeping the nurse consistency may reduce scheduling flexibility,
and may result in higher operating cost or longer working time. Technically, each node
insertion will need to consider inserting a set of treatments of the same patient instead of
inserting one treatment node. To this end, Kovacs et al. [14] also provides a nice survey
of vehicle routing problems with consistency considerations.
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