
Angewandte Mathematik und Optimierung Schriftenreihe
Applied Mathematics and Optimization Series

AMOS # 20(2015)

György Dósa, Armin Fügenschuh, Zhiyi Tan, Zsolt Tuza,
and Krzysztof Węsek

New Lower Bounds for Semi-online Scheduling
on Two Uniform Machines with Known Optimum

Herausgegeben von der
Professur für Angewandte Mathematik
Professor Dr. rer. nat. Armin Fügenschuh

Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg
Fachbereich Maschinenbau
Holstenhofweg 85
D-22043 Hamburg

Telefon: +49 (0)40 6541 3540
Fax: +49 (0)40 6541 3672

e-mail: appliedmath@hsu-hh.de
URL: http://www.hsu-hh.de/am

Angewandte Mathematik und Optimierung Schriftenreihe (AMOS), ISSN-Print 2199-1928
Angewandte Mathematik und Optimierung Schriftenreihe (AMOS), ISSN-Internet 2199-1936

New Lower Bounds for Semi-online Scheduling on

Two Uniform Machines with Known Optimum

György Dósa ∗ Armin Fügenschuh †

Zhiyi Tan (corresponding author) ‡ Zsolt Tuza §¶

Krzysztof W ↪esek ‖∗∗

January 10, 2015

Abstract

This problem is about to schedule a number of jobs of different lengths
on two uniform machines with given speeds 1 and s ≥ 1, so that the overall
finishing time, i.e. the makespan, is earliest possible. We consider a semi-
online variant introduced (for equal speeds) by Azar and Regev, where the
jobs are arriving one after the other, while the scheduling algorithm knows
the optimum value of the corresponding offline problem. It is desired to
construct an algorithm that achieves a schedule close to this optimum
value for any given sequence of incoming jobs. Furthermore, one can
ask how close any potential algorithm could get to the optimum value,
that is, to give a lower bound on the competitive ratio: the supremum
over ratios between the value of the solution given by the algorithm and
the optimal offline solution. For certain values of s, there are already
algorithms known to be tight in the sense that they are scheduling not
worse than this bound. For other values of s, this question remained open.
We contribute to this question by constructing better lower bounds for
some values of s. As a consequence, this proves that the two algorithms
given by Ng et al. were in fact optimal, at least, for certain intervals of s.

Keywords: Semi-online scheduling, makespan minimization, machine
scheduling, lower bounds.

∗Department of Mathematics, University of Pannonia, Veszprém, Hungary,
dosagy@almos.vein.hu
†Helmut Schmidt University / University of the Federal Armed Forces Hamburg, Holstenhofweg
85, 22043 Hamburg, Germany, fuegenschuh@hsu-hh.de
‡Department of Mathematics, Zhejiang University, Hangzhou, Peoples Republic of China,
tanzy@zju.edu.cn
§Department of Computer Science and Systems Technology, University of Pannonia, Veszprém,
Hungary, tuza@dcs.uni-pannon.hu
¶Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary
‖Helmut Schmidt University / University of the Federal Armed Forces Hamburg, Holstenhofweg
85, 22043 Hamburg, Germany, wesekk@hsu-hh.de

∗∗Faculty of Mathematics and Information Science, Warsaw University of Technology, ul.
Koszykowa 75, 00-662 Warszawa, Poland, wesekk@mini.pw.edu.pl

1

1 Introduction

We deal with the problem of scheduling two uniform machines: Given are two
machines, denoted by M1 and M2, that are both capable to process incoming
jobs. They only differ in the processing speed. We assume that machine M1 is
working at some unit speed 1, and machine M2 is s times faster, with s ≥ 1.
Hence when machine M1 processes a job of length L, then machine M2 can handle
this job in L/s time. There is a number of incoming jobs (finitely or infinitely
many) of various lengths. The task is to assign the jobs to the two machines. It
is desired to finish all incoming jobs as early as possible, that is, to minimize the
makespan. In the offline variant of this problem, all jobs to be assigned are fully
known in advance. If nothing is known about the jobs beforehand, we are faced
with an online problem. We deal here with a semi-online problem, that means,
the jobs are still not known individually, but we assume to have some further
overall knowledge. In particular, we assume that the value of the solution to the
corresponding offline problem, which we denote by OPT, is known in advance.

Assume there is an algorithm A that solves the semi-online variant of the
problem. This algorithm receives, besides the value of OPT, one job after the
other in an unknown order and must now immediately decide to which of the
two machines this job should go to (later changes not possible). This algorithm
A finally arrives at a makespan value M greater or equal than OPT. Still,
M can be compared to OPT by considering the ratio M

OPT . Of course, it is
preferred to have an algorithm where this ratio is close to 1 for any given input
data. Thus the question arises, how close to 1 can we get? Is it possible to
construct an algorithm reaches this value, or is there a theoretical lower bound
well above 1, that no algorithm will ever undercut, no matter how hard it tries?

The paradigm of revealing the instance of a problem in parts, and the de-
cision has to be made as the part is revealed, is naturally motivated by many
real-world applications. As it was mentioned before, if no information is given in
advance, then we call such problem online, and if some partial information about
the instance is known beforehand, then the scheme is called semi-online. The
most common way of measuring quality of an online or semi-online algorithm
uses the notion of the mentioned competitive ratio. Assume that we are dealing
with a minimization problem and the (offline) optimal value for instance I is
equal to OPT (I). Formally, an online algorithm is said to be r-competitive if for

any instance I the value of the result of the algorithm A(I) satisfies A(I)
OPT (I) ≤ r,

and the competitive ratio of an algorithm is defined as infimum of such ratios.
The question is: what is the best possible ratio for our (online or semi-online)
problem? Formally, we would ask for the optimal competitive ratio, that is the
infimum over all numbers r for which there exists an r-competitive algorithm.
An algorithm is optimal if its competitive ratio matches the lower bound (value
for which it is proven that no algorithm can have better competitive ratio).

2

1.1 Survey of the Literature

The on-line and various semi-online variations of the problem with a set of jobs
to be scheduled on m (not necessarily uniform) machines with an objective to
minimize the maximum completion time have been studied for decades. Here we
will describe some results concerning deterministic algorithms, uniformly related
machines, that is, every machine has its speed s and processing a job of length
p takes p

s time. We assume (except where noted) that any job has to be done
on one machine, and jobs arrive in a list one after another (list-online scheme).
For more information we refer to the survey of Tan and Zhang [25].

We will first deal with the basic case of identical machines (i.e. with the same
speed) in the pure online scheme. A classic work by Graham [18] is probably the
firsts step in this direction. It gives a (2− 1

m)-competitive algorithm, by using
a heuristic of assigning every task to the least loaded machine. It was proved
by Faigle et al. [16] that for m equal to 2 or 3 this algorithm is in fact optimal.
In the case of arbitrary m, many papers appeared in order to decrease the gaps
between lower and upper bounds. For the lower bound, Gormley et al. [17]
showed that no online algorithm can have competitive ratio better than 1.852
generally (when m can be arbitrarily large). For the upper bound, Albers [1]
proposed a 1.923-competitive algorithm for any m, and if m tends to infinity,
then work of Fleischer and Wahl gives an algorithm with competitive ration
tending to 1.9201.

Recently, a new approach was presented for this problem. What if we try to
compare with the best possible competitive ratio of any online algorithm, even
if it is not known? Assume that the optimal competitive ratio is ρ∗. Megow
and Wiese [23] and Chen et al. [9] independently provided competitive-ratio
approximation schemes that compute algorithms with a competitive ratio not
grater than (1 + ε)ρ∗ for any positive ε. However the best possible competitive
ratio is still unknown.

In more general case of machines with arbitrary speeds, the best general
bounds are the following. Berman et al. [7] provided an 5.828-competitive
algorithm, and Ebenlendr and Sgall [12] proved a lower bound of 2.564. If
m = 2 (and the speeds are 1 and s), then the greedy strategy of Graham is
again useful - in every step we choose the machine wich will finish the actual
job as soon as possible. Epstein showed that such algorithm is optimal and has
competitive ratio min{1 + s

1+s , 1 + 1
s}. We will later see that in semi-online

variants the situation is much more complex.
How much can we gain if some information is known in advance? In this

paper we are interested in the semi-online scheme when only the optimal offline
value is known (OPT version, for short), although there are many other studied
semi-online models. For example: known sum of jobs (SUM version) [20, 3, 4, 5,
24, 11, 21], known largest job [8, 2, 21], scheduling with a buffer [20], information
that the last job will be the largest [15], combinations of them. Interestingly, the
relation between SUM and OPT versions is very strong: for m (nonidentical)
machines the optimal competitive ratio of OPT version is at most the optimal
competitive ratio for SUM version (see Dósa et al. [11], first stated implicitly

3

for equal speeds by Chang et al. [10]). In fact, every algorithm for SUM version,
can be modified and used for OPT version with the same competitive ratio.

Azar and Regev [6] were first to investigate the OPT version for identical
machines (under the name of bin stretching), although the observation about
the relation with the SUM version implies that the first upper bound of 4

3 for
the case of two identical machines follows from the work of Kellerer et al. [20]
(now it is known to be optimal). Azar and Regev [6], Cheng et al. [10] and
Lee and Lim [21] continued the progress for the case of more than 2 identical
machines.

Since we are interested in the OPT version with non-identical speeds on two
uniform machines, we will state the previous results in terms of s (recall that
the speeds are 1 and s). Epstein [14] was first to investigate this problem. She
proved the following bounds for the optimal competitive ratio r∗(s):

r∗(s) :

r∗(s) ∈
[
3s+1
3s , 2s+2

2s+1

]
for s ∈ [1, qE ≈ 1.1243]

r∗(s) ∈
[
s
(
3
4 +

√
65
20), 2s+2

2s+1

]
for s ∈

[
qE ,

1+
√
65

8 ≈ 1.1328
]

r∗(s) = 2s+2
2s+1 for s ∈

[
1+
√
65

8 , 1+
√
17

4 ≈ 1.2808
]

r∗(s) = s for s ∈
[
1+
√
17

4 , 1+
√
3

2 ≈ 1.3660
]

r∗(s) ∈
[
2s+1
2s , s

]
for s ∈

[
1+
√
3

2 ,
√

2 ≈ 1.4142
]

r∗(s) ∈
[
2s+1
2s , s+2

s+1

]
for s ∈

[√
2, 1+

√
5

2 ≈ 1.6180
]

r∗(s) ∈
[
s+2
s+1 ,

s+2
s+1

]
for s ∈

[
1+
√
5

2 ,
√

3 ≈ 1.7321
]

r∗(s) = s+2
s+1 for s ≥

√
3

Where qE is the solution of 36x2 − 135x3 + 45x2 + 60x+ 10 = 0. Ng et al. [24]
presented algorithms giving the following upper bounds:

r∗(s) ≤

2s+1
2s for s ∈

[
1+
√
3

2 , 1+
√
21

4 ≈ 1.3956
]

6s+6
4s+5 for s ∈

[
1+
√
21

4 , 1+
√
13

3 ≈ 1.5352
]

12s+10
9s+7 for s ∈

[
1+
√
13

3 , 5+
√
241

12 ≈ 1.7104
]

2s+3
4s+3 for s ∈

[
5+
√
241

12 ,
√

3
]

and provided the following lower bounds:

4

r∗(s) ≥

3s+5
2s+4 for s ∈

[√
2,
√
21
3 ≈ 1.5275

]

3s+3
3s+1 for s ∈

[√
21
3 , 5+

√
193

12 ≈ 1.5744
]

4s+2
2s+3 for s ∈

[
5+
√
193

12 , 7+
√
145

12 ≈ 1.5868
]

5s+2
4s+1 for s ∈

[
7+
√
145

19 , 9+
√
193

14 ≈ 1.6352
]

7s+4
7s for s ∈

[
9+
√
193

14 , 53
]

7s+4
4s+5 for s ∈

[
5
3 ,

5+
√
73

8 ≈ 1.6930
]

Finally, Dósa et al. [11] provided following bounds:

r∗(s) ≥
{

8s+5
5s+5 for s ∈

[
5+
√
205

18 , 1+
√
31

6 ≈ 1.0946
]

2s+2
2s+1 for s ∈

[
1+
√
31

6 , 1+
√
17

4 ≈ 1.2808
]

r∗(s) ≤
{

3s+1
3s for s ∈

[
1, qD ≈ 1.071

]

7s+6
4s+6 for s ∈

[
qD,

1+
√
145

12 ≈ 1.0868
]

Where qD is the unique root of equation 3s2(9s2 − s − 5) = (3s + 1)(5s + 5 −
6s2). For a visual summary (with our contribution included), see Figures 1–4.
Whenever the dotted line (that represents an upper bound) is on an unbroken
line (that represents a lower bound), the optimal competitive ratio is known.
As a consequence of all these results, before this publication three intervals were

open, namely
(
qd,

1+
√
31

6

)
≈ (1.071, 1.0946) and (1+

√
21

4 ,
√

3) ≈ (1.3660, 1.7321).
We will call the latter one the right interval.

There are also two variations of the aforementioned problems we find worth
mentioning, as those variations are studied also in the case of OPT version. In
the scheduling with preemption model it is allowed to split a job into multiple
parts and assign to different machines, as long as those parts will be processed
in disjoint time intervals. Ebenlendr and Sgall [13] presented one optimal pre-
emptive algorithm working for various semi-online conditions and their combi-
nations, including OPT version, SUM version, known longest job, jobs sorted in
decreasing order - this seems to be much different from the situation in models
without preemption. In the second variation, called under a grade of service
provision (GoS), not every job can be processed by every machine: there is
a level function for jobs, and job with level i can be processed only by ma-
chines with index at most i. GoS-OPT version for two (nonidentical) machines
is also solved due to Lu and Liu [22], with the optimal competitive ratio be-
ing min{ 1+2s

1+s ,
1+s
s }, again equal to the optimal competitive ratio of GoS-SUM

version.

1.2 Our Contribution

We deal with the semi-online two uniform machines scheduling problem with a
“known opt” condition, that is, Q2|OPT |Cmax according to three field notation

5

introduced by Graham et al. [19]. This problem is studied on two parts of the

right interval, [1+
√
21

4 , 3+
√
73

8] ≈ [1.3956, 1.443] and [53 ,
4+
√
133

9] ≈ [53 , 1.7258], for
which we give new lower bound constructions. (Note that these numbers are
solutions of certain equations, and will be formally introduced in the following
section.) We apply an adversary strategy, that is, depending on the current
assignment of a given job the adversary defines the next job that makes life
complicated for the algorithm. We show that the input can always be continued
in such malicious way, that any kind of algorithm will at some step exceed the
lower bound on the makespan.

“Marry, and you will regret it; don’t marry, you will also regret it; marry
or don’t marry, you will regret it either way” - says the Danish philosopher
Søren Kierkegaard. He describes a decision situation from which two different
possible choices will lead into the future. But no matter how the person decides,
the continuation will not lead to a happy end. Both can be seen as “unhappy
situations” (from the person’s point of view who has to make the decision).
This in our scheduling setting will correspond to the three “Final Cases” that
are described in Section 2.3. The scheduler (the algorithm) can make a decision,
similar to the person deciding for or against a marriage. No matter how the
algorithm decides, it will lead to an “unhappy situation”, since it is possible to
generate further jobs, based on its decision, in such way that the competitive
ratio of the algorithm is relatively high. It will not be obvious at first sight that
the algorithm is always trapped in a situation that leads to an unhappy ending;
it evolves over several rounds of further jobs that are determined in what we call
“intermediate cases” or “final cases”. At most, eight jobs need to be generated
to close the trap.

The moves of the algorithm and the generation of jobs can be seen as a two
player game, such as chess. One player is the algorithm, and the other player
is the adversary that constructs malicious jobs. What our result then shows is
that the player of the algorithm is “checkmate” after at most eight moves. Our
purpose was not to give a difficult construction, however, we were not able to
get the tight bounds with less than eight jobs.

Together with the upper bound result of Ng et al. [24] we obtain that our new
lower bound is tight (that is, the algorithms presented by Ng et al. are optimal)

for any value of s in one of these intervals: [1+
√
21

4 , 3+
√
73

8] ≈ [1.3956, 1.443],

[53 ,
13+
√
1429

30] ≈ [53 , 1.6934], and [31+
√
8305

72 , 5+
√
241

12] ≈ [1.6963, 1.7103], see also
Figure 1.

6

Figure 1: Our new lower bound in comparison with existing lower and upper
bounds from Epstein [14], Ng et al. [24], and Dósa et al. [11].

Figure 2: Zooming into the left part of Figure 1.

7

Figure 3: Zooming into the right part of Figure 1.

Figure 4: Zooming into the middle part of Figure 3.

8

2 Preliminaries and Notations

Let OPT and SUM mean, respectively, the known optimum value (given by
some oracle), and the total size of the jobs. By Jt we denote the family of all
sets of jobs with optimum value of t. In other words, if the oracle returns a
value of OPT, then there is a guarantee that the set of jobs belongs to JOPT.
We denote the prescribed competitive ratio (that we do not want to violate) by
r.

Lemma 1 Given a set of jobs. Assume we are able to assign these jobs to the
two machines in such way that M1 receives a load of t and M2 a load of s · t, then
this set of jobs belongs to Jt.

Proof. The assignment of jobs given in the formulation of the lemma is a
feasible solution with a makespan of t. It remains to show that there is no
better solution. The sum of jobs (the total load) is (s+ 1) · t. Assume there is
a better assignment with makespan t′ < t. Then the load on machine M1 can
be at most t′. Hence the load on machine M2 is the remaining load, which is
at least st + (t − t′) > st > st′. This contradicts the assumption that t′ is the
makespan.

As a consequence of Lemma 1, we remark that SUM ≤ (s+ 1) ·OPT, and that
the size of any job is at most s ·OPT. We denote SUM := (s+ 1) ·OPT.

2.1 Definitions

Let q1 :=
√
21+1
4 ≈ 1.3956, which is the positive solution of 2s+1

2s = 6s+6
4s+5 .

Let q2 :=
√
73+3
8 ≈ 1.443, which is the positive solution of 6s+6

4s+5 = 5s+2
4s+1 .

Let q3 := 13+
√
1429

30 ≈ 1.6934, which is the positive solution of 12s+10
9s+7 = 18s+16

16s+7 .

Let q4 := 30+7
√
186

74 ≈ 1.6955, which is the positive solution of 18s+16
16s+7 = 8s+7

3s+10 .

Let q5 := 31+
√
8305

72 ≈ 1.6963, which is the positive solution of 8s+7
3s+10 = 12s+10

9s+7 .

Let q6 := 4+
√
133

9 ≈ 1.7258, which is the positive solution of 12s+10
9s+7 = s+1

2 .

We note that in this paper we do not consider speeds between q2 and 5
3 .

Let

r(s) =

r1(s) := 6s+6
4s+5 if q1 ≤ s ≤ q2 ≈ 1.443 i.e. s is small

r2(s) := 12s+10
9s+7 if 5

3 ≤ s ≤ q3 ≈ 1.6934 i.e. s is smaller regular

r3(s) := 18s+16
16s+7 , if q3 ≤ s ≤ q4 ≈ 1.6955 i.e. s is smaller medium

r4(s) := 8s+7
3s+10 , if q4 ≤ s ≤ q5 ≈ 1.6963 i.e. s is bigger medium

r2(s) := 12s+10
9s+7 if q5 ≤ s ≤ q6 ≈ 1.7258 i.e. s is bigger regular

As we will show in the very end (cf. Theorem 16), this function will be our
lower bound on the optimal competitive ratio.

9

M2

M1

S3

D3
B3 T3

S1

D1
B1 T1

S4

D4
B4 T4

S2

D2
B2 T2

Figure 5: Safe sets.

As abbreviations, we call s being regular, if s is smaller regular or bigger
regular, and we call s being medium, if s is smaller medium or bigger medium.

Now we define the so called ”safe sets”. A safe set is a time interval on
some of the machines, and it is safe in sense, that if the load of the machine is
in this interval, this enables a ”smart” algorithm to finish the schedule by not
violating the desired competitive ratio. In other words, from the view of point of
a lower bound construction (the adversary), we must avoid that the algorithm
can assign the actual job in a way that the increased load of some machine will
be inside a safe set.

Safe sets S1 and S3 are defined on the second machine, while safe sets S2

and S4 are defined on the first machine. We introduce notations for the top,
bottom, and length of the safe sets. Thus let Si = [Bi, Ti], and Di = Ti − Bi,
for any 1 ≤ i ≤ 4, see Figure 5. We will show in Section 2.2 that these intervals
are well-defined.

The optimum value is known. For the sake of simplicity let us assume
without loss of generality that OPT = 1. (This can be done by normalization:
If OPT differs from being unit, all values are multiplied by the value of OPT−1.)

Then the boundaries of safe sets Si are defined as follows. Below we show
that the safe sets are properly defined.

1. B1 = s+ 1− r, and T1 = rs, thus D1 = (s+ 1)(r − 1),

2. B2 = s+ 1− sr, and T2 = r, thus D2 = (s+ 1)(r − 1),

3. B3 = 2s− 2r − rs+ 2, and T3 = s(r − 1), thus D3 = 2r − 3s+ 2rs− 2,

4. B4 = 4s− 2r − 3rs+ 3, and T4 = r − 1, thus D4 = (3r − 4)(s+ 1),

10

We introduce as abbreviations some expressions that are used in the sequel.

a := T4 −B3,

b := T3 −B2,

c := OPT−D1,

and, if s ≥ 5
3 , let

d := b− c−B4.

For bigger regular speeds, we will also need the next notations:

e :=
1

2
(b− 2c− a−B4),

f :=
1

2
(a+ b−B4),

g :=
1

2
(b− a−B4).

By easy calculations we get the following expressions:

a = 3r − 2s+ rs− 3,

b = 2rs− 2s− 1,

c = s− r − rs+ 2,

d = 3r − 7s+ 6rs− 6.

Note that

a+ b = D4,

e+ f = d,

f + g = b−B4,

f − g = a,

c+ e = g.

And for the values of e, f and g, we get the following equalities:

e =
1

2
r − 3s+ 3rs− 5

2
,

f =
5

2
r − 4s+ 3rs− 7

2
,

g = 2rs− 2s− 1

2
r − 1

2
.

2.2 General Properties

In Figure 6 we show plots of the functions r2(s), r3(s), and r4(s). If s is medium,
then both r3(s) and r4(s) are below r2(s). Moreover r3(s) ≥ r4(s), if s is small
medium, and the opposite inequality holds if s is bigger medium. Note, that s
is medium sized only on a very narrow interval.

11

Figure 6: Comparing r2(s) (red), r3(s) (green), and r4(s) (blue).

Lemma 2 1. r1(s) ≤ r2(s) if s ≤ q2,

2. r2(s) ≤ r1(s) if s ≥ 5
3 ,

3. r3(s) ≤ r2(s) if s ≥ q3,

4. r4(s) ≤ r2(s) if s ≤ q5.

Proof.

1. This estimation was already proven in [24]. We repeat it here for the
sake of completeness. The inequality r1(s) ≤ r2(s) is equivalent to (12s+
10)(4s + 5) − (6s + 6)(9s + 7) = −6s2 + 4s + 8 ≥ 0, which holds iff
1−
√
13

3 ≤ s ≤ 1+
√
13

3 ≈ 1.5352. Hence it holds for all s ≤ q2.

2. Follows from the previous computations.

3. The inequality r3(s) ≤ r2(s) is equivalent to (12s+ 10)(16s+ 7)− (18s+

16)(9s + 7) = 30s2 − 26s − 42 ≥ 0, which holds iff s ≤ 13−
√
1429

30 or

s ≥ 13+
√
1429

30 = q3.

4. The inequality r4(s) ≤ r2(s) is equivalent to (12s + 10)(3s + 10) − (8s +

7)(9s + 7) = −36s2 + 31s + 51 ≥ 0, which holds iff 31−
√
8305

72 ≤ s ≤
31+
√
8305

72 = q5.

12

In the next lemma we prove a lower and upper bound result on r(s). These
bounds are needed to show that the safe sets are well-defined.

Lemma 3 1. 3s+2
2s+2 < 4

3 < 1.35 < r(s) < min
{

4s+3
3s+2 ,

s+2
s+1

}
< 2s+2

s+2 < 2s+1
s+1

hold in all considered domain of the function r, i.e., for all s ∈ [q1, q2] ∪
[53 , q6] =: Dom(r).

2. If s ≥ 5
3 , we have r(s) ≥ 8s+7

6s+5 .

Proof.

1. The leftmost lower bound holds as 3s+2
2s+2 <

4
3 is equivalent to 4(2s + 2) −

3(3s+ 2) > 0, hence s < 2.

Now we show that r(s) > 1.35.

• For q1 ≤ s ≤ q2 (where r(s) = r1(s)), we get 0 < 6s+6
4s+5 − 135

100 =
12s−15
80s+100 , which is true since s > 5

4 .

• For 5
3 ≤ s ≤ q3 (where r(s) = r2(s)), we similarly obtain 0 < 12s+10

9s+7 −
135
100 = 11−3s

20(9s+7) , which is true since s < 11
3 . This also includes the

case q5 ≤ s ≤ q6, where also r(s) = r2(s).

• For q3 ≤ s ≤ q4 (where r(s) = r3(s), we get 0 < 18s+16
16s+7 − 135

100 =
131−72s
20(16s+7) , which is true since s < 131

72 ≈ 1.8194.

• For q4 ≤ s ≤ q5 (where r(s) = r4(s), we get 0 < 8s+7
3s+10 − 135

100 =
79s−130
20(3s+10) , which is true since s > 130

79 ≈ 1.6456.

Hence r(s) > 1.35.

Regarding the rightmost upper bound, 2s+2
s+2 < 2s+1

s+1 holds since 2s+1
s+1 −

2s+2
s+2 = s

(s+2)(s+1) > 0.

Moreover, 2s+2
s+2 − 4s+3

3s+2 = 2s2−s−2
(s+2)(3s+2) > 0, which holds since 2s2 − s −

2 > 0 for all s < 1−
√
17

4 or s > 1+
√
17

4 ≈ 1.2808. Thus, it holds that

min
{

4s+3
3s+2 ,

s+2
s+1

}
< 2s+2

s+2 .

Thus it remained to show that r < min
{

s+2
s+1 ,

4s+3
3s+2

}
. Note that 4s+3

3s+2 ≤
s+2
s+1 holds for all s ∈ Dom(r), iff (4s + 3)(s + 1) − (s + 2)(3s + 2) =

s2 − s − 1 ≤ 0, i.e., 1−
√
5

2 ≤ s ≤ 1+
√
5

2 ≈ 1.618. Thus, if s ≤ q2, then we
need to verify that r < 4s+3

3s+2 , otherwise, if s ≥ 5
3 , we need to verify that

r < s+2
s+1 .

For q1 ≤ s ≤ q2 (where r(s) = r1(s)), we get 4s+3
3s+2 − 6s+6

4s+5 = 2s+3−2s2
(4s+5)(3s+2) >

0, which holds since 2s+ 3− 2s2 > 0 for all 1−
√
7

2 < s < 1+
√
7

2 ≈ 1.8229.

13

Now let us consider the case when 5
3 ≤ s ≤ q6. For the two cases where

r(s) = r2(s) we have that 12s+10
9s+7 < s+2

s+1 holds since s+2
s+1 − 12s+10

9s+7 =
−3s2+3s+4
(s+1)(9s+7) > 0, which holds since −3s2 + 3s+ 4 > 0 for all 1

2 −
√
57
6 < s <

1
2 +

√
57
6 ≈ 1.7583.

In Lemma 2 we showed that r3(s) ≤ r2(s) for all s ≥ q3 and that r4(s) ≤
r2(s) for all s ≤ q5. From this the claimed upper bound on r(s) follows.

2. For r(s) = r2(s) we get 12s+10
9s+7 − 8s+7

6s+5 = s+1
(6s+5)(9s+7) > 0.

For r(s) = r3(s) we get 18s+16
16s+7 − 8s+7

6s+5 = 31+18s−20s2
(6s+5)(16s+7) > 0 for all s <

9+
√
701

20 ≈ 1.7738.

For r(s) = r4(s) we get 8s+7
3s+10 − 8s+7

6s+5 = (8s+7)(3s−5)
(3s+10)(6s+5) ≥ 0, because s ≥ 5

3 .

Lemma 4 1. D1 = D2,

2. T1 − T3 = s ·OPT and T2 − T4 = OPT,

3. B3 = B1 −D1,

4. B4 = B2 −D3,

5. B2 + T3 = OPT,

6. T1 +B2 = T2 +B1 = SUM.

Proof. All properties are checked using the definition of the safe sets, where
we make use of the assumption OPT = 1.

1. D1 = D2 holds directly by definition.

2. T1−T3 = rs−s(r−1) = s = s ·OPT and T2−T4 = r−(r−1) = 1 = OPT.

3. B3 +D1 = (2s− 2r − rs+ 2) + (s+ 1)(r − 1) = s− r + 1 = B1.

4. B4 +D3 = (4s− 2r − 3rs+ 3) + (2r − 3s+ 2rs− 2) = s+ 1− rs = B2.

5. T3 + T4 = s(r − 1) + (r − 1) = (s+ 1)(r − 1) = D1.

6. B2 + T3 = (s+ 1− sr) + s(r − 1) = 1 = OPT.

7. T1 + B2 = rs + (s + 1 − sr) = s + 1 = SUM. Moreover T2 + B1 =
r + (s+ 1− r) = s+ 1 = SUM.

Now we show that the definition of the safe sets is of sense, these sets do not
intersect each other, and they follow each other on the machines.

14

Lemma 5 1. 0 < B3 < T3 < B1 < T1.

2. 0 < B4 < T4 < B2 < T2.

Proof. In the calculations we generally use Lemma 3, if not otherwise stated.

1. From r < 2s+2
s+2 follows 0 < 2s − 2r − rs + 2 = B3. From r > 3s+2

2s+2

follows 0 < 2r + 2rs − 3s − 2 = D3 = T3 − B3. From r < 2s+1
s+1 follows

0 < (s + 1 − r) − s(r − 1) = B1 − T3. From the definition we have that
0 < (s+ 1)(r − 1) = D1 = T1 −B1.

2. From r < 4s+3
3s+2 follows 0 < 4s + 3 − 3rs − 2r = B4. From r > 4

3 and the

definition we have that 0 < (3r−4)(s+1) = D4 = T4−B4. From r < s+2
s+1

follows 0 < (s+ 1− sr)− (r− 1) = B2 − T4. From the definition we have
that 0 < (s+ 1)(r − 1) = T2 −B2.

Now we have seen that the safe sets are properly defined. We will need some
further bounds on r. With their help, we can prove several properties of the
expressions we introduced.

Lemma 6 The following bounds on r are valid:

1. 2s+1
2s ≤ r < s.

2. If s ≥ 5
3 , then 7s+6

6s+3 ≤ r ≤ 3s+5
2s+4 .

3. If s is regular, then we have max
{

6s+5
6s+1 ,

8s+7
6s+5

}
≤ r.

Proof.

1. This bound was already proven in [24] (cf. Figure 1 in [24]). We give
it here for the sake of completeness. Regarding the lower bound, if s
is small (i.e., q1 ≤ s ≤ q2), then 2s+1

2s ≤ r = r1(s) = 6s+6
4s+5 holds, since

2s(6s+6)−(2s+1)(4s+5) = 4s2−2s−5 ≥ 0, if s ≥ 1+
√
21

4 = q1. For s ≥ 5
3 ,

we know from Lemma 3 that 4
3 < r, and thus get 4

3 − 2s+1
2s = 2s−3

6s > 0.
Now let us consider the upper bound. For a small speed ratio s, we get

s− 6s+6
4s+5 = 4s2−s−6

4s+5 > 0, if s ≥ 1+
√
97

8 ≈ 1.3561, in particular, for s ≥ q1.

For s ≥ 5
3 , the statement follows from Lemma 2.

2. Let us consider the lower bound. In the case r = r2(s), we get 12s+10
9s+7 −

7s+6
6s+3 = 9s2−7s−12

3(9s+7)(2s+1) ≥ 0, if s ≥ 7+
√
481

18 ≈ 1.6073. In the case r = r3(s),

we get 18s+16
16s+7 − 7s+6

6s+3 = (4s+3)(2−s)
3(2s+1)(16s+7) > 0. Finally, in the case r = r4(s),

we get 8s+7
3s+10 − 7s+6

6s+3 = 27s2−22s−39
3(3s+10)(2s+1) ≥ 0, if s ≥ 11+

√
1174

27 ≈ 1.6764,

which in particular holds for s ≥ q4. To prove the other upper bound, it
suffices to show that r2(s) ≤ 3s+5

2s+4 , since r ≤ r2(s) by Lemma 2. We get
3s+5
2s+4 − 12s+10

9s+7 = (s+1)(3s−5)
2(s+2)(9s+7) ≥ 0.

15

3. If s is regular, we get 12s+10
9s+7 − 6s+5

6s+1 = (6s+5)(3s−5)
(9s+7)(6s+1) ≥ 0, and we get

12s+10
9s+7 − 8s+7

6s+5 = s+1
(6s+5)(9s+7) > 0 (cf. proof of Lemma 3.2).

In the next lemma we prove properties regarding the just introduced expressions.
Note that d is defined only if s ≥ 5

3 , and e, f, g are defined only if s is bigger
regular.

Lemma 7 1. b, c, d, e, f, g ≥ 0,

2. If s ≥ 5
3 , then a ≤ c,

3. s > T2,

4. B1 > OPT .

Proof.

1. In the proof we use Lemma 3 and Lemma 6.

• b ≥ 0, since r ≥ 2s+1
2s .

• c > 0, since r < s+2
s+1 .

• d ≥ 0, since r ≥ 7s+6
6s+3 .

• e > 0, since r > 6s+5
6s+1 . The strict inequality follows from the proof of

Lemma 6, because e = 0 can only occur for s = 5
3 , which means, s

would be smaller regular.

• f > 0, since r > 8s+7
6s+5 . The strict inequality can also be seen in the

proof of Lemma 6.

• g > 0, since g = c+ e > 0.

2. If s ≥ 5
3 , then a ≤ c, since c− a = (s− r − rs+ 2)− (3r − 2s+ rs− 3) =

3s− 4r − 2rs+ 5 ≥ 0, where the last estimation uses r ≤ 3s+5
2s+4 .

3. Remind you that OPT = 1. We obtain s − T2 = s − r > 0, since r < s
from Lemma 6.1.

4. B1−OPT = B1−1 = (s+1−r)−1 = s−r > 0, since r < s by Lemma 6.1.

In fact, we did not forget to prove a ≥ 0, as the following remark shows.

Remark 8 If s > 5+
√
241

12 = 1.7103, then a is negative.

Proof. If s > 5+
√
241

12 , then s is bigger regular. Hence r = r2(s) = 12s+10
9s+7 .

Substituting this expression, we thus get a = 3r− 2s+ rs− 3 = −6s2+5s+9
9s+7 > 0,

since s > 5+
√
241

12 .

16

2.3 General Subcases

The general idea to show that no semi-online algorithm knowing s and OPT
can ever be better than the ratio r(s) is to construct a malicious sequence of
jobs that are in JOPT, but force any algorithm to schedule them in such way
that they have a makespan of at least r. We construct this sequence iteratively,
depending on the previous assignment choices of the algorithm. This leads to a
number of cases that need to be considered separately. Some cases are “final”
(or terminal): If such case is entered, the algorithm is trapped by adding just
one or a few more jobs, which ends in a situation described in the assumption of
the respective cases. When entering the case, the algorithm is trapped, because
we can then construct one or a few more jobs, which make the algorithm to
overshoot the desired makespan.

In this sense, the following three “G”-cases, G1, G2, and G3, are general,
because most of the other cases, independent of the particular interval of s, will
lead to them.

We will denote by L1 and L2 the current load of machine M1 and M2, respec-
tively. Moreover let L′1 and L′2 denote the increased load of that machine, if the
actual job is assigned there.

Final Case G1. Suppose T3 ≤ L2 and L1 + L2 ≤ OPT.

Note that OPT = B2 + T3 > T3 holds by Lemma 4.5. In this situation,
let the next job be A = s · OPT and B = OPT − (L1 + L2) ≥ 0. If A is
assigned to M2, we get that the new M2-load L′2 ≥ T3 + s · OPT = T1 by
Lemma 4.2, thus we are done. Otherwise A is assigned to M1. Then the
new M1-load L′1 ≥ s ·OPT = s > T2, by Lemma 7.3, we are done again.

The set of all jobs that were initially on M1 and M2, plus jobs A and B
belong to JOPT by Lemma 1, if we assign A to M2 and all other jobs to
M1.

Final Case G2. Suppose L1 = B2 and 0 ≤ L2 ≤ B3, and there exists an
already job with size c (where c as defined above.)

The next and last jobs are B = D1 and

C = SUM− (L1 + L2 +B) ≥ (T2 +B1)− (B2 +D2)−B3

= B1 −B3 = D1 = B

using SUM = T2 +B1, D1 = D2, and B1−B3 = D1 from Lemma 4.1, 4.3,
and 4.6. If any of B and C is assigned to M1, the lower bound holds since
L′1 ≥ B2 +D1 = B2 +D2 = T2. Otherwise both jobs go to M2 and we are
done again as L′2 = SUM−B2 = T1 by Lemma 4.6.

The set of jobs belong to JOPT by Lemma 1: assign jobs c and B = D1 to
machine M1, then L′1 = c+D1 = OPT by the definition of c. All remaining
jobs go to machine M2, then L′2 = B2 + L2 − c+ SUM− (L1 + L2 +B) =
B2 − c+ SUM− L1 −B = −c+ SUM−B = SUM−OPT = s ·OPT.

17

Final Case G3. Suppose L1 = T4 and L2 = 0.

The next and last two jobs are B = OPT and C = SUM− (T4 + OPT) =
(T2 +B1)−T4−OPT = B1 > OPT, by Lemma 4.6, 4.2, and 7.4. If any of
B or C is assigned to M1, then L′1 ≥ T4 + OPT = T2 by Lemma 4.2. Thus
the lower bound holds. Otherwise both go to M2 and L′2 = SUM − T4 >
SUM−B2 = T1 by Lemma 5.2 and 4.6, and we are done again.

The jobs belong to JOPT by Lemma 1, because we can assign B = OPT
to machine M1 and all other jobs to machine M2, which have a total sum of
T4 +C = T4 +SUM− (T4 +OPT) = SUM−OPT = (s+1)OPT−OPT =
sOPT.

3 Lower Bound for Small s

At the end of this section we will prove that r1(s) is a lower bound on the
competitive ratio for small s. This is done by constructing a sequence of jobs
in JOPT that will force the algorithm to make bad decisions about their assign-
ments, so that it soon will meet or overshoot the ratio r. Before giving this
construction, we consider a number of cases, from which the lower bound can
be soon achieved. We start with some further estimations.

3.1 Properties

Lemma 9 If s is small, then 2s−1
s ≤ r ≤ 5s+2

4s+1 ≤ 2
s .

Proof.

• For the first estimation, we see that 6s+6
4s+5 − 2s−1

s = 5−2s2
(4s+5)s ≥ 0 holds for

all s ≤
√
10
2 ≈ 1.5811, in particular, for small s.

• For the second estimation, we obtain that 5s+2
4s+1 − 6s+6

4s+5 = −4s2+3s+4
(4s+1)(4s+5) ≥ 0

for s ≤ 3+
√
73

8 = q2, in particular, for small s.

• For the third estimation, we compute that 2
s − 5s+2

4s+1 = −5s2+6s+2
s(4s+1) ≥ 0 for

all s ≤ 3+
√
19

5 ≈ 1.4717, in particular, for small s.

Lemma 10 1. (T3 −B2) + c = b+ c ≤ B4,

2. c ≤ B4,

3. 2c ≥ B4,

4. 2c ≥ B3,

5. B3 = D4,

18

6. c < B3,

7. B2 +B4 < OPT.

Proof.

1. B4 − b − c = (4s − 2r − 3rs + 3) − (2rs − 2s − 1) − (s − r − rs + 2) =
5s− r − 4rs+ 2 ≥ 0, since r ≤ 5s+2

4s+1 by Lemma 9.

2. Follows from Lemma 10.1, together with b ≥ 0 from Lemma 7.1.

3. 2c − B4 = 2(s − r − rs + 2) − (4s − 2r − 3rs + 3) = rs − 2s + 1 ≥ 0, as
r ≥ 2s−1

s from Lemma 9.

4. 2c − B3 = 2(s − r − rs + 2) − (2s − 2r − rs + 2) = 2 − rs ≥ 0, as r ≤ 2
s

from Lemma 9.

5. B3 −D4 = (2s− 2r − rs+ 2)− (3r − 4)(s+ 1) = 6s+ 6− r(4s+ 5) = 0,
since r = r1(s) for small s.

6. B3 − c = (2s − 2r − rs + 2) − (s − r − rs + 2) = s − r > 0, as r < s by
Lemma 6.1.

7. Since OPT = B2 + T3 by Lemma 4.5, we have to show that B4 < T3.
From Lemma 5.2 and the definitions of T3, T4, it follows that B4 < T4 =
r − 1 < s(r − 1) = T3.

3.2 Subcases

The adversary constructs a sequence of jobs in such way that any assignment
strategy of an arbitrary algorithm will lead to one of the “S”-cases described
below, which make use of the fact that s is small. When the assumptions of these
cases are fulfilled, the adversary knows how to define the next jobs, so that the
algorithm is trapped, and must return a solution having a ratio worse-or-equal
than r = r1(s).

Case S1. Suppose L1 = 0 and L2 = B4 − c ≥ 0 (by Lemma 10.2).

Let the next job be A = B2. Suppose A is assigned to M2. Then L′1 +
L′2 = B2 + B4 − c ≤ B2 + T4 ≤ B2 + T3 = OPT holds (applying c ≥ 0,
T4 = r− 1 ≤ s(r− 1) = T3 and Lemma 4.3). Moreover by Lemma 10.1 we
get L′2 = B2 + B4 − c ≥ T3, thus case G1 holds for the new loads L′1, L

′
2,

and hence we are done.

Otherwise A is assigned to M1. At this moment L′1 = B2 and L′2 = B4− c.
Then we are in case S2.

19

Final Case S2. Assume that L′1 = B2 and L′2 = B4 − c.
Then the next jobs are B = OPT−(B4−c) ≥ c−(B4−c) = 2c−B4 ≥ 0 (by
Lemma 10.3) and C = SUM− (L′1 +L′2 +B) = (B2 +T1)− (B2 + OPT) =
T1−OPT = (T1−D1)−c = B1−c ≥ D2, since B1 ≥ D2 +c = OPT holds
by Lemma 7.4. Note that B = OPT−(B4−c) = (D2+c)−(B4−c) = D2+
2c−B4 ≥ D2 also holds by Lemma 10.3. If any of B or C is assigned to M1,
we are done: If B is assigned to M1, then L′′1 = L′1+B ≥ B2+D2 = T2, and
similar for C. Otherwise both B and C are assigned to M2, and we are done
again: L′′2 = B4−c+B+C = B4−c+(OPT−(B4−c))+(T1−OPT) = T1.

The set of jobs A,B,C and the previous load of M2 belong to JOPT (by
Lemma 1): assign the previous load of machine M2 and B to machine
M1, then its load is L2 + B = (B4 − c) + (OPT − (B4 − c)) = OPT.
The remaining jobs A and C go to machine M2, which then has a load of
A+C = B2+(B1−c) = (s+1−r)+(s+1+sr)−(s−r−rs+2) = s = s·OPT.

Case S3. Suppose L1 = B4 − c and L2 = c.

Let the next job be A = B2 − (B4 − c) = D3 + c by Lemma 4.4. Suppose
A is assigned to M2. Then L′1 + L′2 = (B4 − c) + c + B2 − (B4 − c) =
B2 + c ≤ B2 + B4 ≤ OPT by Lemma 10.7. Moreover L′2 = D3 + 2c ≥
D3 +B3 = T3−B3 +B3 = T3, since 2c ≥ B3 holds by Lemma 10.4. Thus
case G1 holds for L′1, L

′
2, and we are done. Otherwise A is assigned to M1.

Then the loads are L′1 = B4− c+A = B4− c+ (B2− (B4− c)) = B2 and
L′2 = c ≤ B3 by Lemma 10.6. Hence, case G2 holds for loads L′1, L

′
2, and

we are done again.

3.3 The Construction

Assume that we have an algorithm to solve the semi-online scheduling problem,
where the values s and OPT are known. This algorithm now has to schedule
all incoming jobs in the best possible way. In the following construction, we
take the point of view of an adversary, and try to make the algorithm’s life as
hard as possible. More formally, we will show that the algorithm will provide
a schedule having the optimality ratio of at least r1(s). Although the whole
family of jobs belongs to JOPT, the adversary still has enough freedom to force
any algorithm to an assignment where it ends up with a load L1 on machine
M1 with L1 ≥ T2 = r or a load L2 on machine M2 with L2 ≥ T1 = rs. Recall
that OPT = 1, so having a load of at least r on machine M1 means that the
makespan is (at least) r, so the optimality ratio is (at least) r. Similarly, having
a load of at least rs on the s-times faster machine M2 means that the makespan
is also at least r, and again the optimality ratio is at least r. Note that the
family of jobs has a total size of (s+ 1)OPT, hence by Lemma 1 we know that
it belongs to JOPT.

The adversary decides that the first job shall be J1 = B4−c. This job is non-
negative by Lemma 10.2. Suppose J1 goes to M2, then case S1 is satisfied, and

20

we are done (i.e., we trapped the algorithm as explained above). We conclude
J1 goes to M1.

The second job is J2 = c. Suppose J2 goes to M2. Then case S3 is satisfied,
and we are done. We conclude J2 goes to M1. At this moment the loads are
L1 = B4 and L2 = 0.

The third job is J3 = B3. Suppose J3 goes to M1. Since L′1 = B4 +B3 = T4
holds by Lemma 10.5, we are in case G3, and thus we are done. We conclude
J3 goes to M2. At this moment the loads are L1 = B4 and L2 = B3.

Then the next (and final) job is J4 = D3. Suppose J4 goes to M2. Then
L′1 = B4 and L′2 = T3. We estimate that L′1 +L′2 = T3 +B4 < T3 +B2 = OPT,
where we applied first Lemma 5.2 and then Lemma 4.5. Thus we showed that
we are in case G1, and we are done. We conclude J4 goes to M1. At this moment
L1 = B4 +D3 = B2 by Lemma 4.4, and L2 = B3. Now we are in case G2, and
we are done.

We remark that the sequence of jobs can be drawn as a decision tree, with
the first job at its root node, and all other jobs at the subsequent nodes. A
left branch means that the job at a node is assigned to machine M1, and a right
branch means that it is assigned to machine M2. Note that this tree has a depth
of 6 jobs.

4 Lower bounds for regular and medium s

Here we consider the four cases of s being small regular, small medium, big-
ger medium or bigger regular, respectively. We need several further properties
regarding the lower bounds.

4.1 Properties

Lemma 11 If s ≥ 5
3 , then

1. max
{

2
s ,

5s+6
4s+4 ,

6s+5
6s+1

}
≤ r ≤ 7s+5

6s+2 ,

2. if s is small medium, then also holds that 11s+8
8s+6 ≤ r.

Proof.

1. Regarding the lower bounds, applying from Lemma 3.1 that 4
3 < 1.35 <

r, we get 4
3 − 2

s = 2(2s−3)
3s > 0, and 135

100 − 5s+6
4s+4 = 2s−3

20(s+1) > 0, both

inequalities are true since s ≥ 5
3 . Let us see r ≥ 6s+5

6s+1 . We already have
seen this for regular speeds in Lemma 6.1. For smaller medium s we get
18s+16
16s+7 − 6s+5

6s+1 = 12s2−8s−19
(16s+7)(6s+1) ≥ 0, which is true for s ≥ 3+

√
73

8 ≈ 1.443, in

particular for s ≥ 5
3 . Considering upper medium s, we get 8s+7

3s+10 − 6s+5
6s+1 =

30s2−25s−43
(3s+10)(6s+1) ≥ 0, which is true for s ≥ 25+

√
5785

60 ≈ 1.684, in particular for
s ≥ q4.

21

Regarding the upper bound, by Lemma 2 it is enough to show that r2(s)

is at most the upper bound. We get 7s+4
5s+3 − 12s+10

9s+7 = (3s+2)(s−1)
(9s+7)(5s+3) ≥ 0.

2. We get 18s+16
16s+7 − 11s+8

8s+6 = −32s2+31s+40
(16s+7)(8s+6) ≥ 0, which is true, since −32s2 +

31s + 40 ≥ 0 for 31−
√
6081

64 ≤ s ≤ 31+
√
6081

64 ≈ 1.703, in particular for
q3 ≤ s ≤ q4.

Lemma 12 1. s ≥ T2 + c.

2. B2 ≤ (s− 1) ·OPT.

3. T4 +B2 − 2c > T3, i.e., T4 − 2c > T3 −B2 = b, i.e., T4 > b+ 2c.

4. T4 ≥ d.

5. T4 + c ≤ B3 + d, i.e., c+ (T4 −B3) ≤ d, i.e., c+ a ≤ d.

6. c ≤ B3.

7. T4 +B2 + c− d < OPT = B2 +T3 (c.f. Lemma 4.5), i.e., T4 + c < T3 + d.

8. 2T3 + 2B4 ≤ s ·OPT.

9. If s is regular, then 3B4 = T4 < B2.

10. T4 ≤ 3B4 ≤ B2, if s is small medium.

11. B3 +B4 ≤ (s− 1)OPT.

Proof. We apply Lemma 11, if not stated otherwise.

1. From the definitions of T2 and c we get s−T2−c = s−r−(s−r−rs+2) =
rs− 2 ≥ 0, which is true, because r ≥ 2

s .

2. As before, we obtain s− 1−B2 = s− 1− (s+ 1− sr) = rs− 2 ≥ 0.

3. We have from the definitions: T4 − b − 2c = (r − 1) − (2rs − 2s − 1) −
2(s − r − rs + 2) = 3r − 4 > 0, where the last inequality was shown in
Lemma 3.1.

4. We get T4 − d = (r − 1) − (3r − 7s + 6rs − 6) = 7s + 5 − r(6s + 2) ≥ 0,
since r ≤ 7s+5

6s+2 .

5. We compute d−c−a = (3r−7s+6rs−6)−(s−r−rs+2)−(3r−2s+rs−3) =
r − 6s+ 6rs− 5 ≥ 0, which follows from r ≥ 6s+5

6s+1 .

6. Applying Lemma 12.4 and 12.5, we get c ≤ B3 + d− T4 ≤ B3.

7. Follows from Lemma 12.5 and Lemma 5.1.

22

8. From the definitions we obtain s−2T3−2B4 = s−2s(r−1)−2(4s−2r−
3rs+ 3) = 4r − 5s+ 4rs− 6 ≥ 0, since r ≥ 5s+6

4s+4 .

9. From the definitions we have 3B4 − T4 = 3(4s− 2r− 3rs+ 3)− (r− 1) =
12s+10−r(9s+7) = 0, since r = r2(s). Moreover, T4 < B2 by Lemma 5.2.

10. For small medium s, it holds that 3B4 − T4 = 12s + 10 − r(9s + 7) ≥ 0,
since r = r3(s) ≤ r2(s) by Lemma 2.3. Moreover, B2 − 3B4 = (s + 1 −
sr)− 3(4s− 2r − 3rs+ 3) = 6r − 11s+ 8rs− 8 ≥ 0, as r ≥ 11s+8

8s+6 .

11. We estimate s−1−B3−B4 = s−1−(2s−2r−rs+2)−(4s−2r−3rs+3) =
4r − 5s+ 4rs− 6 ≥ 0, since r ≥ 5s+6

4s+4 .

In the next lemma we consider only the cases that s is smaller regular or smaller
medium.

Lemma 13 1. T4+c ≥ b+2d holds if s is smaller regular and s ≤
√
4633+23

54 ≈
1.6864,

2. 2B2+c ≥ T3+2d holds if s is smaller regular and 1.6864 ≤ s ≤ 13+
√
1429

30 ≈
1.6934,

3. 2B2 + c = T3 + 2d holds if s is smaller medium,

4. c+B2 ≤ B3 + d holds if s is smaller regular and s ≥ 1.6864,

5. c+B2 ≤ B3 + d holds if s is smaller medium,

6. 2B2 + c−d ≤ OPT = B2 +T3, i.e. B2 + c ≤ T3 +d, if s is smaller regular
and s ≥ 1.6864, or if s is smaller medium.

Proof.

1. T4+c−(b+2d) = (r−1)+(s−r−rs+2)−(2rs−2s−1)−2(3r−7s+6rs−6) =

17s+14−r(6+15s) = 17s+14− 12s+10
9s+7 (6+15s) = 38+23s−27s2

9s+7 ≥ 0, which

holds because 38 + 23s− 27s2 ≥ 0 if and only if 23−
√
4633

54 ≤ s ≤ 23+
√
4633

54 .

2. 2B2 + c− 2d− T3 = 2(s+ 1− sr) + (s− r − rs+ 2)− 2(3r − 7s+ 6rs−
6) − s(r − 1) = 18s + 16 − r(7 + 16s) = 18s + 16 − (7 + 16s) 12s+10)

9s+7 =
2(21+13s−15s2)

9s+7 ≥ 0, which holds because 21 + 13s− 15s2 ≥ 0 if and only if
13−
√
1429

30 ≤ s ≤ 13+
√
1429

30 .

3. 2B2 +c−2d−T3 = 18s+16− (7+16s)r = 18s+16− (7+16s) 18s+16
16s+7 = 0.

4. B3 +d−c−B2 = (2s−2r−rs+2)+(3r−7s+6rs−6)− (s−r−rs+2)−
(s+1−sr) = (7s+2)r−7s−7 = (7s+2) 12s+10

9s+7 −7s−7 = 21s2−18s−29
9s+7 ≥ 0,

since 21s2−18s−29 ≥ 0 if and only if s ≤ 9−
√
690

21 or s ≥ 9+
√
690

21 ≈ 1.6794.

23

5. B3+d−c−B2 = (7s+2)r−7s−7 = (7s+2)(18s+16)
16s+7 −7s−7 = 14s2−13s−17

16s+7 ≥
0, since 14s2− 13s− 17 ≥ 0 if and only if s ≤ 13−

√
1121

28 or s ≥ 13+
√
1121

28 ≈
1.660.

6. Follows from Lemma 13.4 and Lemma 13.5 using Lemma 4.5.

In the next lemma we consider only bigger regular s.

Lemma 14 Let s be bigger regular. Then

1. c+B2 + T4 − 2e ≥ T3, i.e., c+ T4 − 2e ≥ T3 −B2 = b.

2. c+ T4 ≤ B3 + e, i.e., c+ (T4 −B3) = c+ a ≤ e.

3. c+B2 + T4 − e < OPT = B2 + T3, i.e., c+ T4 < T3 + e.

4. B4 ≥ d.

Proof.

1. We derive that c+T4−2e−b = (s−r−rs+2)+(r−1)−2(1
2r−3s+3rs−

5
2)− (2rs−2s−1) = 11s+6−r(9s+1) ≥ 0. The last estimation is true, if
11s+6
9s+1 − 12s+10

9s+7 = −9s2+29s+32
(9s+1)(9s+7) ≥ 0, which holds since −9s2 + 29s+ 32 ≥ 0

if and only if 29−
√
1993

18 ≤ s ≤ 29+
√
1993

18 ≈ 4.0912, in particular, for bigger
regular s.

2. e− c− a = (1
2r − 3s+ 3rs− 5

2)− (s− r − rs+ 2)− (3r − 2s+ rs− 3) =
3rs − 2s − 3

2r − 3
2 ≥ 0, which is true for r ≥ 4s+3

6s−3 . Hence we need

to verify that 12s+10
9s+7 − 4s+3

6s−3 = 36s2−31s−51
3(9s+7)(2s−1) ≥ 0, which holds for all

s ≥ 31+
√
8305

72 = q5 ≈ 1.6963 (and some negative values for s, which we
can ignore).

3. Follows from Lemma 14.2 and Lemma 5.1: c+ T4 ≤ B3 + e < T3 + e.

4. Using the definitions of B4 and d it is to show that 4s − 2r − 3rs + 3 ≥
3r− 7s+ 6rs− 6, which is equivalent to −9rs− 5r+ 11s+ 9 ≥ 0. Taking

into account that r = r2(s) = 12s+10
9s+7 , we arrive at − 9s2−8s−13

9s+7 ≥ 0, which
is in particular true for bigger regular values for s.

Now we consider the case of the bigger medium speeds.

Lemma 15 If s is bigger medium, then

1. 4c+ 4a = B4,

24

2. b ≤ 8c+ 7a ≤ B3.

Proof.

1. B4

4 − c − a = 4s−2r−3rs+3
4 − (s − r − rs + 2) − (3r − 2s + rs − 3) =

− r(3s+10)−8s−7
4 = 0.

2. Left inequality: 8c+7a−b = 8(s−r−rs+2)+7(3r−2s+rs−3)− (2rs−
2s− 1) = r(13− 3s)− 4s− 4 = 8s+7

3s+10 (13− 3s)− 4s− 4 = 31s+51−36s2
3s+10 ≥ 0.

The inequality is satisfied since 31s + 51 − 36s2 ≥ 0 holds if and only if
31−
√
8305

72 ≤ s ≤ 31+
√
8305

72 = q5.

Right inequality: B3 − 8c− 7a = (2s− 2r − rs+ 2)− 8(s− r − rs+ 2)−
7(3r − 2s+ rs− 3) = 8s− 15r + 7 = 15

(
8s+7
15 − r

)
= 15

(
8s+7
15 − 8s+7

3s+10

)
=

(8s+7)(3s−5)
15(3s+10) ≥ 0, which is true for s ≥ 5

3 .

4.2 Subcases

For s being regular or medium (“RM”), we consider several further situations,
from which the lower bound can be quickly achieved directly, or that lead to
other general cases we dealt with before.

Final Case RM1. Suppose T4 ≤ L1 ≤ B2 and 0 ≤ L1 + L2 ≤ (s− 1) ·OPT.

Note that by Lemma 12.2, we have (s − 1) · OPT > B2. The next and
last two jobs are B = OPT and C = SUM − (L1 + L2 + B) ≥ (s +
1)OPT − sOPT = OPT = B. If any of B and C is assigned to M1, then
L′1 ≥ T4 + OPT = T2 thus the lower bound holds, otherwise both go to
M2 and L′2 ≥ SUM−B2 = T1, we are done again.

The set of jobs belong to JOPT by Lemma 1: assign B to M1 and the
remaining jobs to M2, which is a load of L1 +L2 +C = L1 +L2 + SUM−
(L1 + L2 +B) = SUM−B = (s+ 1)OPT−OPT = s ·OPT.

Case RM2. Suppose L1 = c and L2 = 0.

Let the next job be A = T4−c. This is nonnegative by Lemma 12.3, using
that b > 0 from Lemma 7.1. Suppose A is assigned to M1. At this time
L′1 = T4 and L2 = 0. Case G3 holds, we are done. Now suppose A goes
to M2, then let the next job be B = B2− c. This is nonnegative, as c ≤ T4
(which we already observed) and T4 ≤ B2. If B goes to M2, then the load
of M2 will be L′2 = A+B = T4+B2−2c. This is at least T3 by Lemma 12.3.
Moreover, using T3 = sT4 > T4 (by the definitions of T3 and T4) and c ≥ 0
(by Lemma 7.1), we have L′1 +L′2 = T4 +B2− c < T3 +B2 = OPT. Thus
we are in case G1, we are done. Otherwise B goes to M1. At this moment
the loads are L′1 = B2 and L′2 = A = T4 − c ≤ B3, since T4 −B3 = a ≤ c
by the definition of a and Lemma 7.2. Hence we are in case G2, and we
are done.

25

Case RM3. Suppose L1 = T4 and L2 = c. Applying T2 − T4 = OPT by
Lemma 4.2, we get L1+L2+OPT = (T4+OPT)+c = T2+c ≤ s = s·OPT,
by Lemma 12.1 and the assumption OPT = 1. Thus L1+L2 ≤ (s−1)OPT.
So we are in case RM1, and thus we are done.

Case RM4. Suppose L1 = d and L2 = c and s is smaller regular or smaller
medium.

1. Assume 5
3 ≤ s ≤ 23+

√
4633

54 ≈ 1.6864.

Note that L1 = d > 0. Let the next job be A = T4−d. This is positive
by Lemma 12.4. If A is assigned to M1, we meet the prerequisites of
case RM3, and we are done. Thus suppose A goes to M2. Let the
next job be B = B2 − d. (This is positive as B2 > T4.) If B goes
to M2, then L′2 = c + A + B. Moreover, L′1 + L′2 = d + c + (T4 −
d) + (B2 − d) = T4 + B2 + c − d < OPT, applying Lemma 12.7.
We state that L′2 = T4 + B2 + c − 2d ≥ T3 holds in the considered
interval. Since b = T3 − B2, it suffices to see T4 + c ≥ b+ 2d, which
holds by Lemma 13.1. Thus we are in case G1, and we are done.
Otherwise B goes to M1. At this moment the loads are L′1 = B2 and
L′2 = L2 + A = c + T4 − d ≤ B3 by Lemma 12.5. Thus this is case
G2, and we are done.

2. Assume 23+
√
4633

54 ≈ 1.6864 ≤ s ≤ q3 or s is smaller medium.

Note that 0 < L1 = d ≤ T4 by Lemma 12.4. Let the next job be
A = B2 − d, which is positive, since B2 > T4 by Lemma 5.2. If
A is assigned to M1, then the new load on this machine is L′1 =
d+ B2 − d = B2, and L′2 = L2 = c. By Lemma 12.6 we get c < B3,
thus we are in case G2, and we are done. Thus suppose A goes
to M2. Then, let the next job be B = B2 − d. If B goes to M2,
then the load of M2 will be L′2 = c + A + B = c + 2(B2 − d). Then
L′1+L′2 = 2B2+c−d. This is at most OPT by Lemma 13.6. Moreover,
L′2 = 2B2 + c − 2d ≥ T3, by Lemma 13.2 and 13.3. Thus we are at
case G1, we are done. Otherwise, B goes to M1. In this moment, the
loads are L′1 = d+(B2−d) = B2 and L′2 = L2+A = c+B2−d ≤ B3,
by Lemma 13.4 and 13.5. We are in case G2, and we are done.

Case RM5. Suppose L1 = B4, and L2 = b−B4, and s is small medium.

Let the next job be A = 2B4. Suppose A is assigned to M1. At this time
L′1 = 3B4 and L2 = b − B4. Note that T4 ≤ 3B4 ≤ B2 by Lemma 12.10.
Using Lemma 4.5, the definition of b and Lemma 12.8 we get L′1 + L′2 +
OPT = 3B4 + (b − B4) + (T3 + B2) = 2B4 + (T3 − B2) + (T3 + B2) =
2T3 + 2B4 < s = s · OPT. Hence we are in case RM1, and we are done.
We conclude A is assigned to M2. Let the next job be B = B2 − B4 (this
is positive, since B2 > B4). Suppose B goes to M2, then

L′2 = L2 +A+B = (b−B4) + 2B4 + (B2 −B4) = (T3 −B2) +B2 = T3.

26

by the definition of b. Therefore L′1 + L′2 = B4 + T3 < B2 + T3 = OPT,
by Lemma 5.2 and Lemma 4.5. Since L′2 equals T3, we are in case G1,
and we are done. Otherwise B goes to M1. At this moment the loads are
L′1 = B2 and

L′2 = L2 +A = (b−B4) + 2B4 = (T3 −B2) +B4

= (B3 +D3)−B2 +B4 = B3 + (B2 −B4)−B2 +B4 = B3,

using T3 = B3 +D3 and D3 = B2 −B4 (by Lemma 4.4). Hence we are in
case G2, and we are done.

Case RM6. Suppose L1 = e and L2 = c, and s is bigger regular.

Let the next job be A = T4 − e. This job is non-negative by Lemma 12.4,
A ≥ d − e, and d = e + f ≥ e by Lemma 7.1. Suppose A is assigned
to M1. Then L′1 = T4 and L′2 = c, thus case RM3 holds, and so we
are done. Otherwise, A goes to M2. Let the next job be B = B2 − e.
(This job is positive, since B2 > T4 from Lemma 5.2, and the observation
that T4 ≥ e from above.) If B goes to M2, then the load of M2 will be
L′2 = c+(T4−e)+(B2−e) = c+B2 +T4−2e ≥ T3 by Lemma 14.1. Then
L′1 + L′2 = c + B2 + T4 − e. This is smaller than OPT by Lemma 14.3.
Thus we are at case G1, we are done. Otherwise B goes to M1. At this
moment, the loads are L′1 = B2 and L′2 = c+T4−e ≤ B3 by Lemma 14.2.
Hence we are in case G2, and we are done again.

Case RM7. Suppose L1 = L2 + a ≤ B4.

Let the next job be A = T4 − L1. This is positive as L1 ≤ B4 and
B4 < T4 (by Lemma 5.2). Suppose A is assigned to M1. Since L′1 + L′2 ≤
T4 + B4 − a = T4 + B4 − (T4 − B3) = B3 + B4 ≤ (s − 1)OPT holds by
the definition of a and Lemma 12.11, we are in case RM1, and we are
done. Now suppose A goes to M2. Then let the next job be B = B2 −L1,
which is positive by Lemma 5.2. Suppose B goes to M2. Then the load
of M2 will be L′2 = (L1 − a) + (T4 − L1) + (B2 − L1) = B2 + T4 − a −
L1 ≥ B2 + T4 − (T4 − B3) − B4 = (B2 − B4) + B3 = D3 + B3 = T3,
by the definition of a and Lemma 4.4. On the other hand, L′1 + L′2 =
B2 + T4 − a = B2 + T4 − (T4 − B3) = B2 + B3 < B2 + T3 = OPT, by
the definition of a and Lemma 5.2. Thus we are in case G1, and we are
done. Otherwise B goes to M1. At this moment the loads are L′1 = B2

and L′2 = (L1 − a) + (T4 − L1) = T4 − a = T4 − (T4 − B3) = B3 by the
definition of a. Thus we meet case G2, and we are done again.

Case RM8. Suppose L1 = 0, and b ≤ L2 ≤ B3.

Let the next job be A = B2. Suppose job A goes to M2, then the increased
load of M2 will be L′2 = L2 +B2 ≥ b+B2 = (T3 −B2) +B2 = T3 (by the
definition of b), and L′1 +L′2 ≤ B2 +B3 < B2 +T3 = OPT (by Lemma 5.1
and Lemma 4.5), thus case G1 is satisfied, and we are done. Otherwise,
A is assigned to M1. We meet case G2, we are also done.

27

4.3 The Construction

Similarly to the construction for small s in Section 3.3, we construct a sequence
of jobs such that any semi-online algorithm knowing s and OPT will assign in
such way that the optimality ratio is at least r(s), where s is between 5

3 and q6.
Again, the sequence of jobs belongs to JOPT, and the total size of the jobs is
SUM = (s+ 1)OPT.

First, the adversary choses the job J1 = c. Suppose that J1 goes to M1, then
case RM2 is satisfied, and we are done. We conclude that J1 goes to M2.

We divide the further construction into two main cases, depending on the
value of s.

Case 1: s is smaller regular, smaller medium, or bigger regular.

Case 1.1: s is smaller regular or smaller medium.

The second job is J2 = d. Suppose J2 goes to M1, then case RM4 is
satisfied, and we are done. Thus we conclude J2 goes to M2. At this
point L1 = 0 and L2 = d + c = (d − e) + (c + e) = f + g = b − B4.
We continue the construction after case 1.2.

Case 1.2: s is bigger regular.

The second job is J21 = e. If J21 goes to M1, then the assumption of
case RM6 is satisfied, and we are done. We conclude that J21 goes to
M2. The next job is J22 = f . Suppose J22 goes to M1. Then L1 = f
and L2 = J1 + J21 = c+ e = g. From Lemma 14.4 and Lemma 7.1 it
follows that B4 ≥ d = e+ f ≥ f . Since we also have that f − g = a,
we are altogether in case RM7. Thus we are done. We conclude J22
goes to M2. At this point L1 = 0 and L2 = c+e+f = f+g = b−B4.

Now we join the treatments of these subcases, case 1.1 and case 1.2, and
finish the construction. In both subcases now L1 = 0 and L2 = b − B4.
Then comes J3 = B4. Suppose J3 goes to M1. Then L1 = B4 and L2 =
b−B4. If s is small medium, then we are in case RM5, and we are done.
Otherwise, if s is small regular or bigger regular, then we claim that we are
in case RM7, for which we have to show L2+a = L1 ≤ B4. The inequality
on the right follows already from the construction, and it remains to show
L1 = L2 + a. Thus by the definitions of a and b and Lemma 4.4, we
obtain L1 −L2 − a = B4 − (b−B4)− a = 2B4 − (T3 −B2)− (T4 −B3) =
2B4 + (B2 −D3) − T4 = 2B4 + B4 − T4 = 3B4 − T4 = 0, where the last
equality was shown in Lemma 12.9. Thus we can enter case RM7, and we
are done.

We conclude J3 goes to M2, and at this moment L1 = 0, L2 = b. We claim
that we are in case RM8 then, for which we need to show that L2 ≤ B3.
From Lemma 5.2 we know that B4 > 0. Hence we obtain from Lemma 4.4
and the definition of D3 that B2 = B4+D3 > D3 = T3−B3. We conclude
that B3 > T3 −B2 = b, by the definition of b.

28

Case 2: s is bigger medium.

The second job is J21 = c + a. If J21 goes to M1, then the assumptions
of case RM7, L1 = L2 + a ≤ B4, are satisfied, because B4 = 4c + 4a >
c+ a > 0 by Lemma 15.1 and Lemma 5.2, and we are done. We conclude
J21 goes to M2. Then comes J22 = 2c+ 2a. Suppose J22 goes to M1. Then
L1 = 2c+2a and L2 = J1+J21 = 2c+a. Thus we are again in case RM7 (by
repeating the previous arguments), and we are done again. We conclude
J22 goes to M2. At this point L1 = 0 and L2 = 4c + 3a. Then comes
J23 = 4c+4a. Suppose J23 goes to M1. Then L1 = 4c+4a and L2 = 4c+3a.
Thus case RM7 is applicable again (by applying Lemma 15.1), and we are
done. We conclude J23 goes to M2. At this moment L1 = 0, L2 = 8c+ 7a.
By Lemma 15.2 we know that b ≤ 8c + 7a ≤ B3. Hence we are in case
RM8, and we are done.

Again, it is possible to sketch the above assignment steps in a decision tree, as
explained at the end of Section 3.3. The depth of this tree depends on the value
of s. For smaller regular and smaller medium s, we have a depth of 7 jobs, and
for bigger medium and bigger regular s, we have a depth of 8 jobs.

5 Main Theorem

The following theorem summarizes the work done before.

Theorem 16 The function r(s) (defined in Section 2.1) is a lower bound on the
optimal competitive ratio for the two uniform machine semi-online scheduling
problem with known optimal offline objective function value.

Together with the algorithms from Ng et al. [24], we then obtain:

Corollary 17 The lower bound given by r(s) is tight for [1+
√
21

4 , 3+
√
73

8] ≈
[1.3956, 1.443], moreover for [53 ,

13+
√
1429

30] ≈ [1.6666, 1.6934], and [31+
√
8305

72 , 5+
√
241

12] ≈
[1.696 3, 1.710 3].

6 Conclusions and Outlook

Starting with the work of Epstein [14] on this semi-online two uniform ma-
chines scheduling problem with known-opt, researchers have continued to close
the gap between lower and upper bounds. As one can deduce from Figure 1,
this goal has been achieved for some large portions of the line [1,∞). We con-
tributed to this ultimate goal by giving new lower bounds and thus showing that
some already existing algorithms (of Ng et al. [24]) are in fact best-possible, so
our bounds are tight. Our new results give insight into the difficulty of the
problem: Why so hard to give the tight competitive ratio for this model? In
part, an answer lies in the fact that not a single algebraic function can de-
scribe the tight lower bound. From what is known by now, at least six different

29

piecewise-defined algebraic functions are necessary. And still, the question of
the optimal competitive ratio is open on certain parts of the ”right” interval,

namely(q2,
5
3), (q3, q5), (5+

√
241

12 ,
√

3).

Acknowledgements. György Dósa and Zsolt Tuza were supported by re-
search grant TÁMOP-4.2.2.A-11/1/KONV-2012-0072. Krzysztof W ↪esek’s work
was partially supported by the European Union in the framework of European
Social Fund through the Warsaw University of Technology Development Pro-
gramme, realized by Center for Advanced Studies. Furthermore, W ↪esek’s work
was conducted as a guest researcher at the Helmut Schmidt University.

References

[1] Susanne Albers. Better bounds for online scheduling. SIAM Journal of
Computing, 29:459 – 473, 1999.

[2] Susanne Albers and Matthias Hellwig. Semi-online scheduling revisited.
Theoretical Computer Science, 443:1 – 9, 2012.

[3] Enrico Angelelli, A.B. Nagy, Maria Grazia Speranza, and Zsolt Tuza. The
On-line Multiprocessor Scheduling Problem with Known Sum of the Tasks.
Journal of Scheduling, 7:421 – 428, 2004.

[4] Enrico Angelelli, Maria Grazia Speranza, and Zsolt Tuza. Semi on-line
scheduling on three processors with known sum of the tasks. Journal of
Scheduling, 10:263 – 269, 2007.

[5] Enrico Angelelli, Maria Grazia Speranza, and Zsolt Tuza. Semi-online
scheduling on two uniform processors. Theoretical Computer Science,
393:211 – 219, 2008.

[6] Yossi Azar and Oded Regev. On-line bin-stretching. Theoretical Computer
Science, 268(1):17 – 41, 2001.

[7] Piotr Berman, Moses Charikar, and Marek Karpinski. On-line load balanc-
ing for related machines. Journal of Algorithms, 35:108 – 121, 2000.

[8] Sheng-Yi Cai and Qi-Fan Yang. Semi-online scheduling on two uniform ma-
chines with the known largest size. Journal of Combinatorial Optimization,
21:393 – 408, 2011.

[9] Lin Chen, Deshi Ye, and Guochuan Zhang. Approximating the optimal
competitive ratio for an ancient online scheduling problem. Technical re-
port, College of Computer Science, Zhejiang University, Hangzhou, 310027,
China, 2013.

[10] T. C. E. Cheng, H. Kellerer, and V. Kotov. Semi-on-line multi-processor
scheduling with given total processing time. Theoretical Computer Science,
337:134 – 146, 2005.

30

[11] György Dósa, Maria Grazia Speranza, and Zsolt Tuza. Two uniform ma-
chines with nearly equal speeds: unified approach to known sum and known
optimum in semi on-line scheduling. Journal of Combinatorial Optimiza-
tion, 21:458 – 480, 2011.

[12] Tomas Ebenlendr and Jǐŕı Sgall. A lower bound on deterministic online
algorithms for scheduling onrelated machines without preemption. In Pro-
ceeding of the 9th Workshop on Approximationand Online Algorithms, Lec-
ture Notes in Computer Science, pages 102 – 108, 2007.

[13] Tomas Ebenlendr and Jǐŕı Sgall. Semi-Online Preemptive Scheduling: One
Algorithm for All Variants. Theory of Computer Systems, 48:577 – 613,
2011.

[14] Leah Epstein. Bin stretching revisited. Acta Informatica, 39:97 – 117, 2003.

[15] Leah Epstein and Deshi Ye. Semi-online scheduling with “end of sequence”
information. Journal of Combinatorial Optimization, 14:45 – 61, 2007.

[16] Ulrich Faigle, Walter Kern, and György Turán. On the performance of
on-line algorithm for particular problem. Acta cybernetica, 9:107 – 119,
1989.

[17] T. Gormley, N. Reingold, E. Torng, and J. Westbrook. Generating ad-
versaries for request-answer games. In Proceeding of the 11th ACM-SIAM
Symposium on Discrete Algorithms. ACM, New York/Society for Industrial
and Applied Mathematics, Philadelphia, 2000.

[18] R. L. Graham. Bounds for cer tain multiprocessing anomalies. Bell System
Technical Journal, 45:1563 – 1581, 1966.

[19] R. L. Graham, E. L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Op-
timization and approximation in deterministic sequencing and scheduling:
A survey. Annals of Discrete Mathematics, 5, 1979.

[20] Hans Kellerer, Vladimir Kotov, Maria Grazia Speranza, and Zsolt Tuza.
Semi on-line algorithms for the partition problem. Operations Research
Letters, 21:235 – 242, 1997.

[21] Kangbok Lee and Kyungkuk Lim. Semi-online scheduling problems on a
small number of machines. Journal of Scheduling, 16:461 – 477, 2013.

[22] Xinrong Lu and Zhaohui Liu. Semi-online scheduling problems on two
uniform machines under a grade of service provision. Theoretical Computer
Science, 489 – 490:58 – 66, 2013.

[23] Nicole Megow and Andreas Wiese. Competitive-Ratio Approximation
Schemes for Minimizing the Makespan in the Online-List Model. Tech-
nical report, Department of Mathematics, Technische Universität Berlin,
Germany, 2013.

31

[24] C.T. Ng, Zhiyi Tan, Yong He, and T.C.E. Cheng. Two semi-online schedul-
ing problems on two uniform machines. Theoretical Computer Science,
410(8 – 10):776 – 792, 2009.

[25] Zhiyi Tan and An Zhang. Online and Semi-online Scheduling. In
P. M. Pardalos et al., editor, Handbook of Combinatorial Optimization.
Springer Science+Business Media New York, 2013.

32

