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School Taxi Routing for Children with Special Needs

Anke Stieber - Zhi Eric Yuan - Armin
Fiigenschuh

Abstract School transport is essential in rural areas, where up to 80% of users
of public transport are pupils on their way to school and back. In this article
we are going to focus on a particular field of school transport for children
with special needs that even make school taxis necessary. We are going to
concentrate on children being taken to school in the mornings. This kind of
school taxi routing is completely different from ordinary school bus routing in
rural areas. First of all, vehicles used for this kind of routing would have to
provide specially designed spaces to possibly place and transport wheelchairs
of different types, as well as their owners. School taxis would collect pupils with
special needs from their homes in the mornings in order to take them to school.
For each school a time window would be given outside of which the school taxis
would not be allowed to drop the pupils at the school. With this, we are faced
with the classical vehicle routing problem with time windows generalized by
picking up, in our case, children with special needs, and delivering them.

We are addressing real-world instances by applying a new heuristic algo-
rithm which is an iterative construction approach combined with a parametrized
greedy metaheuristic (PGreedy). PGreedy is a parametrization of greedy scor-
ing functions where good weights are obtained by parameter optimization.
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1 Introduction

In Germany school attendance is compulsory for all children. The federal states
of Germany are responsible for all regulations connected with school and ed-
ucation as well as school transport. In general school transport is integrated
in public transport and therefore organized by counties and district towns.
Most school transport is done with school buses, especially in rural areas.
Here school transport is part of public transport with up to 80% of all passen-
gers being pupils, see Fiedler [14]. A minority of pupils is transported by so
called special purpose school buses. In order to reduce costs both with respect
to organizing the transport and the transport as such, and in order to save
tax money, the development of a computerized optimization system for school
bus routing and scheduling is currently more and more in demand. Here, we
focus on a special field of school transport, namely school transport for pupils
with special needs with the help of school taxis.

The routing of school taxis for children and young persons with special
needs is completely different from school bus routing in general. Pupils who
take a school bus in the morning gather to their neighboring bus stop and wait
for a bus to take them to school. In the afternoons a school bus takes them
from school back to their neighboring bus station. Usually, school buses are
deployed for the first and second classroom lessons in the mornings and for
the last two lessons in the afternoons. By contrast to this, school taxis pick up
pupils with special needs directly at their homes and transport them to their
school. In the afternoons the pupils are carried back to their homes. Often,
children with special needs have to travel a very long distance to get to one of
the few schools that provide for their special needs.

In our application, vehicles with special designed spaces for different types
of wheelchairs are required for some pupils. Several types of taxis controlled
by different taxi companies are available. The vehicles are characterized by a
certain passenger capacity and a certain wheelchair capacity. Some of them are
even capable of transporting different types of wheelchairs. In total, there are
about one hundred different types of vehicles. However, most of the vehicles
differ only slightly and therefore can be grouped into classes. The main differ-
ences between the vehicles from different classes are their capacity and costs.
The passenger capacity of vehicles ranges from 2 to 28 persons. Whereas on
some cars wheelchairs are not admissible at all, some vehicles can take from 1
up to 4 wheelchairs. Note that we consider two types of wheelchairs: a normal
wheelchair and an electronic wheelchair. The difference between both types
is, that the normal wheelchair can be folded up so that it takes less space
during transport, while the electronic wheelchair cannot. Thus, an electronic
wheelchair takes about twice the space of a normal one. In practice we may
assume that the space taken up by one electronic wheelchair equals the space
of two normal wheelchairs, and vice versa. Vehicles that have different capac-
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ities result in different transportation costs. In general, the cost of a taxi is
composed of two parts, the basic cost of a car being provided and the driving
cost per kilometer. In addition, some pupils need to be accompanied by an
accompanying person on their way to school. Usually, the cost for an accom-
panying person is fixed independent of the vehicle and the distance covered.
Further attributes such as the different speed potential of the vehicles are not
considered here.

School taxi transport is organized as follows. In the mornings several school
taxis spread out to pick up the pupils directly at their homes and transport
them to school, so that they arrive a few minutes before school starts. In the
afternoons, when classes have finished, a fleet of school taxis is sent to take the
pupils back home. Considering the morning situation, when a pupil is picked
up, the vehicle does not need to go to the respective school immediately. If
capacity for passengers and wheelchairs - if needed - is available, the taxi
may pick up some more pupils before heading for school. Note, that we do
not restrict pupils from the same school to be on the same vehicle at the same
time. Allowing pupils from different schools to be on board of the same vehicle
may makes routing more flexible, which may result in further potential savings
of costs.

Several time restrictions are an issue in our application. Driving times and
distances between each pupil’s home and school are given, and is assumed to
be invariant with respect to different school taxis. When a vehicle stops at a
pupil’s home, a pickup time is specified for each pupil, that is the time the pupil
needs to get into the car. A pupil without wheelchair usually takes one minute
to get in, while a pupil with a wheelchair needs a longer time, usually three
minutes. The drop time at school also depends on the number of wheelchairs
on board. Nevertheless we assume a uniform drop time of five minutes for
all school nodes. Another time restriction given is that of each pupil being
supposed to arrive at school within a certain maximum driving time, which is
the maximum time to take the pupil from home to school. Usually, pupils are
supposed to arrive at school within a time window of 10 to 15 minutes before
school starts. Combined with the maximum driving time, a lower and upper
bound on the departure time of the pupils can be derived.

For the routing and the scheduling problem we are only considering the
morning problem, i.e. the transportation from pupils’ homes to their respective
schools. It is a more difficult issue than the afternoon issue. The afternoon
problem is picking up all pupils at their schools and delivering them back
home one by one. This cannot exactly be regarded as being symmetric with
the problem of collecting them from their respective homes in the morning. If
we go into more detail, it can be observed, that the time restrictions in the
afternoons are not as tight as in the mornings, thus, the transportation back
home can usually be done with fewer vehicles. The reason for this relaxed time
restriction is the school finishing time. While nearly all schools start within
a narrow time window at around 8 a.m. in the morning, the schools release
their pupils at different times over a wider range in the afternoon. This wider
range of finishing times may result in a smaller number of vehicles that are
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needed for the transportation of pupils from school to the pupils’ homes. A
second reason why the morning problem is more difficult than the afternoon
one is the traffic congestion, which is usually higher in the mornings than in
the afternoons.

The objective of the school taxi routing problem is to minimize its total
operational costs. This chiefly means reducing the number of deployed vehicles
due to the high basic cost of each vehicle and optimizing the total distance of
all vehicles. Note, that the driving distance from the school taxi depot to the
first pupil is not considered, neither is the distance from the last school to the
depot.

The described problem is an instance of the Heterogeneous Vehicle Rout-
ing Problem with Time Windows (HVRPTW). It consists of a fleet of vehi-
cles of different types (capacity) and customer demands have to be satisfied
within given time windows. Usually an heterogeneous Vehicle Routing Problem
(VRP) is modeled as a multi-commodity flow problem, whereas each vehicle
located in its depot represents a commodity in the network. In our case we
are additionally faced with pickup nodes, which consists of a certain supply.
This supply is described by pupils and accompanying people, that have to be
transferred to delivery nodes (schools). This problem is a generalization of the
HVRPTW and is called Pickup and Delivery Problem with Time Windows
(PDPTW). The given time windows for each request specify, that the pupils
are not allowed to arrive outside the given interval at their corresponding
schools. If they arrive earlier waiting is permitted until the start of the time
window.

One way to give a MILP formulation of the PDPTW is to put a multi-
commodity flow formulation in a time expanded network, see Ford and Fulk-
erson [7]. Another way is to use a multi-commodity flow model with time
variables and apply Miller-Tucker-Zemlin [17] constraints to embed the time
restrictions. We use a time discretization with a time unit of one minute since
our input time data is aligned to one minute. Due to this fine discretization
a model formulation in a time expanded network will result in large-scale
MILP problems even for small instances. This leads us to the second variant
using the Miller-Tucker-Zemlin constraints to include time restrictions. How-
ever, exact methods will not be able to solve large-scale problem instances.
Then, for those instances we are more interested in a near optimal solution
that can be obtained in reasonable time. To this end we present a metaheuris-
tic approach and apply it to our real-world instances that are related to two
German counties Aurich and Bentheim. The metaheuristic is a parametrized
greedy approach which is based on a iterative construction (route-building)
framework. This metaheuristic is already successfully applied to similar vehi-
cle routing problems such as the integrated planning problem of coordinating
bus and school starting times and bus schedules by Fiigenschuh [8], the ve-
hicle routing problem with coupled time windows by Fiigenschuh [9] and the
strategic locomotive scheduling problem by Fiigenschuh et al. [10].

The remainder of this article is organized as follows. In section 2 we give an
overview of the development in the field of vehicle routing problems with time
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windows and with respect to pickup and delivery problems of the last decades.
Since this field was well studied we only point to an excerpt of the whole set
of available publications. We present the mentioned formulation to the hetero-
geneous PDPTW in section 3. In section 4 we introduce our metaheuristic by
explaining the construction phase and the parametrization of different scoring
functions. We apply our approaches to two problem instances in section 5,
analyze the results and finally provide some conclusions in section 6.

2 Survey of the Literatur

One of the best-known routing problem in the literature is the Traveling Sales-
man Problem (TSP). A salesman has to visit a number of cities and thereafter
must return to his starting location. The aim is to construct a route, that
minimizes the traveled distances. For a survey on TSP we refer to Lawler et
al. [15] or Reinelt [20].

The VRPTW is a Multiple Traveling Salesman Problem (MTSP) where a
demand and a time window is associated with each city. Vehicles have a certain
capacity and demands are to be delivered within given time windows (Crainic
and Laporte [3], Toth and Vigo [23]). Whether there are all vehicles from the
same type or from different a classification of the VRPTW into homogeneous
and heterogeneous can be made.

The VRPTW problem class was well studied in the last decades. Kosko-
sidis et al. [24] addressed the problem concerning soft time windows. Braysy
and Gendreau [2] tackled the VRPTW from the metaheuristic side. They pre-
sented a comprehensive overview of different tabu search algorithms as well
analyzed and compared the different techniques for Solomon’s [22] benchmark
test problems. Hashimoto et al. [11] had a look at the VRP with flexible time
windows and flexible traveling times. Here, the time constraints were also
handled in a soft manner and therefore treated as cost functions. Route gener-
ation was done by local search and the determination of the optimal starting
times afterwards, which is NP-hard, was realized by a dynamic programming
approach.

There is another vehicle routing problem considering pickup and delivery,
called VRPPD. VRPPD considers demand, that is transferred between pickup
and delivery nodes, but without restricting time windows. A generalization of
VRPTW and VRPPD can be regarded as the Vehicle Routing Pickup and
Delivery Problem with Time Windows (PDPTW). The application described
in section 1 is an instance of such a problem.

Savelsbergh and Sol [21] (1995) made the first attempt to cover all possible
generalizations of the VRPPD in a unified notion and presented an overview
of existing solution methods. Dumas et al. [5] dealt with the PDPTW and pre-
sented a column generation approach that uses constrained shortest path as
subproblem. Hosny and Mumford [12] addressed the multiple vehicle PDPTW
and presented four construction heuristics, which differ in the manner of iter-
ative or parallel construction and in the way the next solution component is
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selected. The iterative version seemed to be the most favorable one according
to their computational results. Lu and Dessouky [16] worked on a construc-
tion heuristic, which not only takes into account a distance increase to the
evaluation criterion but also time window slack reduction and visual attrac-
tiveness. The VRPPD was also addressed by Parragh et al. [19]. They proposed
a comprehensive survey on routing problems with pickups and deliveries. For-
mulations for different variants of pickup and delivery problems were given
and even time windows and maximum travel times were taken into account.
For an extensive overview of the state of the art in exact, heuristic and meta-
heuristic approaches for several versions of pickup and delivery problems we
refer to this article. In addition, they discussed the dynamic and stochastic
versions of pickup and delivery problems.

Desrochers et al. [4] present a formulation to the VRPTW and the PDPTW.
They present an early survey of exact solution techniques for these problems
such as Branch-and-Bound with a set partitioning approach and dynamic pro-
gramming which appears as subroutines using state space relaxation to com-
pute lower bounds. The authors point to construction heuristics, improvement
heuristics and incomplete optimization and address different types of vehicle
routing problems.

El-Sherbeny [6] gives a formulation for the VRPTW and different gener-
alizations such as the PDPTW. According to the author exact methods are
mainly lagrange relaxation, column generation and dynamic programming, but
in some cases they result in very long computation times (several days) to solve
fairly small instances. The main part of the article deals with recently pub-
lished heuristics and metaheuristics. El-Sherbeny summarizes route-building
heuristics (generate a solution from the scratch) and route-improving heuristics
(search the neighborhood of a solution to find a better one) as well as neigh-
borhood operators for the VRPTW. He also describes and compares some
powerful metaheuristics such as simulated annealing, tabu search and genetic
algorithms.

Some of the most useful application of the VRPTW contain bank deliveries,
postal deliveries, school bus routing and national franchise restaurant service.
The school bus routing problem as a VRPTW is addressed by Braca et al. [1].
They made a good attempt to describe the problem of school bus routing in
New York City including given data and constraints.

Nanry and Barnes [18] address the PDPTW with a homogeneous vehicle
fleet. They proposed a reactive tabu search algorithm, that incorporated three
distinct move neighborhoods with act on the dominance of the precedence
and coupling constraints. A hierarchical search is employed to change between
neighborhoods in order to handle different regions of the solution space. To
evaluate their approach they constructed a new set of benchmark problems
based on Solomon’s benchmark sets.
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3 Formulation of the School Taxi Routing Problem

We present a formulation of the school taxi routing problem as a mixed-integer
linear program (MILP). In general vehicle routing problems with time windows
(VRPTW) and pickup and delivery problems with time windows (PDPTW)
are modeled as a multi-commodity minimum cost flow problems, where feasi-
bility of the flow is ensured by subtour elimination constraints or by Miller-
Tucker-Zemlin constraints, see Desrochers et al. [4]. In the first case the num-
ber of subtour elimination constraints is exponentially in the number of nodes
and therefore impractical to solve, we present a formulation using the Miller-
Tucker-Zemlin conditions, whereas the number of constraints is polynomially
bounded.

3.1 Instance Data

Here, we present the instance data to set up the model formulation for the
problem of school taxi routing of pupils with special needs.

We denote the set of all available vehicles or school taxis by K. The pickup
nodes Vp describe the location of all pupils homes. The delivery or school nodes
Vs depict the location of the schools, where pupils have to be transported to.
Then, we need each school nodes to be decomposed into several nodes at the
same geographic location. This is done in a way, that there is a school node
for each pupil attending this school or equivalently for each given transport
request of this school. That means after decomposition there is a one-to-one
correspondence between pickup nodes i € Vp and delivery nodes j € Vg, in a
way that j = ¢ + n, where n := [Vp| = |Vs|. The same structure is used by
Desrochers et al. [4] on page 68 for the PDPTW formulation.

In addition, we have a set of depots Vp and a complete set of all nodes
V :=Vp UVs UVp. Each vehicle starts and ends the transportation in its own
depot. We split each depot node in an origin depot node and a destination depot
node, so that each vehicle k£ has a origin depot dy € Vp and a destination
depot ax € Vp. We denote the set of arcs (roads) connecting pupils home
locations, schools and depots by A := (Vp x Vp) U As U (Vs X Vp), whereas
the set of service arcs As C (Vp U Vs) x (Vp UVs) contains only those arcs,
that correspond to feasible trips between pickup and school nodes. Waiting at
a pickup or delivery node is permitted for the vehicles. To model waiting we
introduce a loop at each pickup and school node, that has a distance of zero
units and a travel time of one minute. Note, that each vehicle first visits a
pick up node and then its corresponding school node. Therefore we assume,
that all arcs leaving a depot node enter a pick up node, i.e. for all v € Vp we
have 1 (v) € Vp. On the other hand we further assume, that all arcs entering
a depot node leave a school node, i.e. for all v € Vp we have 6~ (v) € Vs. We
denote the set of pupils transportation requests by the following set of pairs
R CVp X Vs.
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For each vehicle k£ € K the passenger capacity is ¢, and the wheelchair
capacity is ¢. Each request (r,s) € R provides a supply at its corresponding
pickup node r € Vp, that is the number of passengers p, to be picked up by
a school taxi and transported to school s. The demand at each school node
s € Vg is denoted by g5 and it is equal to the aggregated supply value of all
requests, that consist of a transportation to that certain school s:

ds = — Z Pr-

ri(r,s)ER

Usually, the supply at a pickup node is one pupil, but there are pupils, who
have to be accompanied by a person on their way to school. Furthermore,
for each request (r, s) the supply of passengers goes along with the supply of
wheelchairs p,., that also have to be transported to school s. In our case we
only differentiate two types of wheelchairs, a normal one and an electronic
one. Note, that each normal wheelchair counts as one unit, while an electronic
wheelchair counts as two units of a normal wheelchair. The corresponding
wheelchair demand at a school node s € Vg is denoted by ¢,, with

qs = - Z ﬁr'

ri(r,s)ER

For a vehicle k € IC driving on the arc (7, j) € A the transportation cost is
denoted by ¢; j . In the case 4,5 € Vp U Vs, ¢; ;1 is given by the distance of
the arc (4, j) multiplied with the kilometer price of vehicle k. For i € Vp, ¢; j «
is given by the basic cost of vehicle k, whereas c; ; , = 0 for j € Vp. Note that
there are no arcs between depot nodes.

Given an arc (4, j) we denote the transportation time between node ¢ and
node j by 6, ;. If j is visited directly after ¢ and (7, ) € R, then it will consist
of the pick up time (one minute for a pupil without wheelchair and three
minutes for a pupil together with a wheelchair), the driving time and the
drop time. For reasons of simplification the drop time is set to five minutes
independently of dropping wheelchairs or not. For a path starting in 7 and
finishing in j the transportation time is accumulated over all arcs belonging
to that path with respect to the corresponding pickup and drop times. Sm is
the maximum transportation time for the request (i,j) € R, that means the
pupil belonging to this request is not allowed to travel to school longer than

0i,j-

Considering the time at which each pupil arrives at its requested school
s € Vg, a narrow time window of 10-15 minutes before school start is given.
This time window is specified by the earliest possible arrival time ¢, and the
latest possible arrival time ¢,. Since school starting times differ from school
to school and may even be different considering pupils of the same school, we
introduce a time horizon 7 = [rg, 7g] for the transportation problem that is
about six hours from 4 to 10 am (7¢ = 240, 75 = 600). Usually school starts
around 8 o’clock, thus, even very long transportation due to a long distance
between pupils home and school can be taken into account.
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Variables

To formulate the school taxi routing problem as an instance of the heteroge-
neous PDPTW we introduce the following variables.

V(i,j) € A, ke K: y); €{0,1}, (1)

where yf ; = L if and only if school taxi k travels from ¢ to j. Furthermore we
have some integer variables to model the departure time of the flow at pickup
and delivery nodes:

VieVpUVs: t; €N (2)
The following variables
VieV,keK: nfeN (3)
and
VieV,kek: wfeN (4)

are essential for the pickup and delivery part of this vehicle routing problem.
We use this variables to represent the passenger load respectively wheelchair
load after node ¢ has been serviced by vehicle k. The initial passenger load
as well as the initial wheelchair load at depot nodes is set to 0. Again, an
electronic wheelchair is replaced by two units of a normal wheelchair.

Objective Function

The objective function is to minimize the total operating costs:

Z Zci,jyk-yf’j —  min. (5)

(i,j)€A kek
Constraints

Routing of vehicles. Each depot contains only one vehicle and therefore
provides at most one unit of flow:

VieVp, keK: Y yf; <1 (6)

jeVp

In order to make sure, that each deployed vehicle returns to its depot at the
end of the schedule the following constraints must be satisfied:

VieVp, keK: Y ybi=> ok (7)

JEVP JEVg
Each pupil and school node has to be visited exactly once by exactly one

vehicle:
VieVpUVs: D) yf =1 (®)
i€V kek
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Flow conservation has to hold for all pickup and delivery nodes (inflow is equal
to outflow):

VieVeUVs, ket Y yf,=> b, (9)
i€V %
A request (a pair of pickup and delivery node) must be served by the same
vehicle, which requires the following condition:

VieVe ke kK: Y k=S "yki . (10)

US% i€V

Scheduling of vehicles. To model the time window restriction for all school
nodes, we use the time variables t;, i € Vp U Vs:

Vi € Vs : tz <t < fl (11)

The feasibility of the schedule is guaranteed by the following time compatibility
constraints:

V(i,j) EAs, k€K ti+0;;+M-(yf; —1) < ty, (12)

where M is a sufficiently large constant. These constraints accomplish route
connectivity, therefore we refer to the inequalities Miller, Tucker and Zemlin
proposed in their TSP formulation in [17] to replace the exponential number
of subtour elimination constraints. Miller, Tucker and Zemlin used a special
case where d; ; = 1 and M is the number of nodes in the TSP.

In addition, we have to include time restrictions, that ensure a school node
is visited after the corresponding pupil node and the maximum transportation
time for each request is not exceeded:

Vi€ Vp: ti+ 0iitn < tign, (13)

and
Vi€ Vp: ti+ Siitn > tisn. (14)

Loading constraints of vehicles. Two types of loads have to be taken
into account, passenger load and wheelchair load. Constraints to satisfy the
passenger load compatibility are given by

V(i,j7) € A, where j € VpUVs, k€ K : Wf+pj+M£“ss-(yﬁj—1) < 77?,

(15)
with sufficiently large constants M]“*". The initial passenger load is set to:

VieVp, ke K: af =0. (16)
The passenger load at each node is restricted to the vehicle capacity:

ViEVpUVs,kGIC:ﬂ'fSCk. (17)
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Finally the passenger load conditions have to be transferred to the wheelchair
load:

V(i,j) € A, where j € VpUVs, k € K : wf+p;+MP" - (yF . —1) < wk, (18)

2,7

with sufficiently large constants M@ ¢!, The initial wheelchair load is set to:
VieVp, ke K: wf=0. (19)

The wheelchair load at each node is restricted to the vehicle capacity:
VieVpUVs, ke K: wk <é. (20)

Constraints (12) ensure the route connectivity whereas (15) and (18) guar-
antee that the capacity of a vehicle is not exceeded throughout the tour. Note,
that for all those constraints we need to fix constant values M, MF*** and
M, fc”h“l. We set the constant values in the following way:

M =600, MP** :=c,+2 and MP" :=¢, +1 VkeK. (21)

In general applying Miller-Tucker-Zemlin constraints to vehicle routing prob-
lems instead of an exponential number of subtour elimination constraints re-
sults in weak linear programming relaxations and thus in poor lower bounds
in a Branch-and-Cut algorithm, see Desrochers and Laporte [5]. The reason
is, that the Miller-Tucker-Zemlin constraints do not define facets of the un-
derlying polytope of the convex hull of the feasible solution space.

4 Primal Heuristic

The PDPTW is NP-hard and large-scale instances of this combinatorial opti-
mization problem are too difficult to be solved exactly in a reasonable amount
of time. In cases where the focus is not only on obtaining a feasible solution but
on the quality of the solution, heuristics become important. Heuristic solutions
can also be applied to exact methods such as Branch-and-Cut procedures to
provide a good initial solution, which speeds up the computation. The result
of heuristic methods are not necessarily optimal, but they can be tuned to
perform very well.

El-Sherbeny [6] presents an overview of recently developed heuristic meth-
ods to the VRPTW. He separates route-building heuristics into iterative and
parallel variants. Iterative methods build routes one after another, often they
result in poor quality due to assigning the last unrouted customers to a route,
which are often scattered over the geographic area. In the contrary parallel
route-building heuristics generate several routes simultaneously to overcome
this drawback. In general parallel variants perform better compared to iter-
ative variants. As a second class route-improving heuristics are mentioned.
Therefore a neighborhood of a solution has to be defined. Checking some or
all of the neighboring solutions may expose better solutions regarding the ob-
jective function value. This is also called local search. El-Sherbeny presents
neighborhood-operators for the VRPTW.
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4.1 PGreedy Heuristic

At first, we present a heuristic method constructing a feasible solution based on
a greedy approach. This construction (route-building) procedure is an iterative
variant and generates routes one by one. When generating a route, a path
is built incrementally by appending unserved customers at the end of the
current path, while minimizing the driving time (or distance). Relying on one
simple greedy scoring function means relying on one criterion, since this is
doubtful and unstable, we want to overcome this structural problem. In order
to make the greedy approach more robust, we introduce a parametrized greedy
algorithm (PGreedy), which was proposed by Fiigenschuh [8] as a new type of
metaheuristic, while tackling the vehicle routing problem with coupled time
windows. At the end of our greedy construction a local search step is conducted
which replaces an expensive vehicle type by a cheaper one, if the capacity
constraints are satisfied. In the following we give a detailed explanation of our
algorithm.

Greedy Construction Framework

We present a greedy construction framework for the school taxi routing prob-
lem. The greedy construction heuristic builds a complete solution from scratch.
Each route is constructed sequentially by iteratively choosing an immediate
best solution component until a complete solution is generated. There are
mainly three greedy decisions to be made during the construction, as outlined
in Algorithm 1: select a vehicle, select the first node of a route and select every
next node.

Depending on our real-world instances there are different types of taxis,
which differ in cost and capacity (including passenger capacity and wheelchair
capacity). Since a vehicle type exchange local search procedure is applied, the
vehicle cost is not our first concern during the construction process. We build
a Pareto optimal set of taxis in terms of passenger capacity and wheelchair
capacity. In this Pareto set each vehicle type is no worse than any other taxi
regarding both capacities. Then, a taxi type is a uniformly selected random
element from the Pareto set to initialize a route.

In the next step we select the best pickup node to start the route. A
pickup node may serve as the first one if it starts as early as possible, so
that the duration of the route can be long. On the other hand, the pupils
who have the longest distances to their school should be preferred, so that
no detour is needed to pick them up in a later construction phase. A pupil
i € Vp going to school s € Vg has an implicit time window to be picked
up, with a lower bound of ¢, = ¢, — &75, i.e. the start of the schools arrival
time window minus the maximum transportation time of pupil 7. The upper
bound t; = ts — di.s, i.e. the end of the schools arrival time window minus the
minimum transportation time. The best first pickup node i* is selected as

x . - 1
¢" = argmin (t; + ;) - rand (7, 1) ) (22)
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where N denotes the set of unselected nodes. At this step N is initialized
to N = Vp and rand(%, 1) is a noise term that generates a uniformly random

number ranging from 1 to 1, where v > 1 is a parameter that allows candidates
of up to v times worse than the best one to be selected.

After the first pickup node is selected, the current time tc of the current
route is defined and set to the earliest possible time the selected first pupil
may be picked up. The selected pickup node is removed from the unselected
nodes NV and the corresponding delivery node is added to N. Then we have to
check N for feasibility, because only feasible nodes are allowed to be appended
to the route. Let Nyeqs be the set of feasible nodes from N. The following
feasibility criteria are checked to find Ny.s: passenger capacity, wheelchair
capacity, and time constraints. In a basic implementation, we allow only pupils
of the same school to be on board of a school taxi simultaneously. In such a
case, all pupils, belonging to a different school than the school of the pupil
recently selected, are not feasible, thus not included in Nge.s. They become
feasible when the current school will be delivered. In order to check for time
feasibility of a next pupil node, we need to check whether the taxi is able
to reach the current school before the latest school arrival time. In a more
advanced implementation when pupils of different schools are allowed to be
on board simultaneously, the time feasibility check is more complicated. All
permutations of the to be delivered schools have to be checked, to ensure that
there is at least one school permutation such that all pupils can be delivered
to their schools in time. Ny.qs contains all feasible nodes that can be selected
next and to determine the best next node j after node i was appended the
following factors are considered:

1. Link time At; := max{éi’j,ij — tc}, which is the maximum of minimum
transportation time between 7 and j and the difference of the earliest start-
ing time of node j and the current time.

2. Pickup time t?wkup € {1,3}, depends on the wheelchair supply at j (pupils
with wheelchair usually need a longer time to get in the taxi). If the taxi
still has space for wheelchairs, pupils with wheelchairs will be preferred.

3. School time tjc'w(’l := 0, j+n is the transportation time required to get from
pupil j’s home to his school.

4. All school time 4% is defined as follows. If pupil j is from a school different
from the pupils on board, the transportation time from pupil j’s school to
the furthest school in the current route is computed, otherwise, it is set to
0. This is to penalize picking up pupils from different schools.

The greedy best next node j* is selected as follows:

j* = arg min )\1 . Atj + /\2 . t?idﬂm + )\3 . t;ChOOZ + >\4 : t?lla (23)
JENfeas
where the four-element vector A = (A1, A2, A3, Ag)T contains the greedy pa-
rameter that are to be determined dynamically by our PGreedy approach
described below. Besides updating the current time ¢ of the route that is
under construction, we also have to update the passenger and wheelchair load
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of the route to check for vehicle capacity feasibility. In case a school node is
added to the current route, the route respectively school taxi has be unloaded
at this location by the number of pupils and wheelchairs that are dropped. A
route is finished when there are no more feasible nodes available. In the case
N is not empty a new route is started and the construction terminates when
all pupils are served, i.e. N = (.

Algorithm 1: Greedy construction for school taxi routing
Data: Set of taxis K, set of pickup nodes P, set of delivery nodes S
Result: Set of routes R

1 Initialize unselected nodes N « P;

2 Initialize R < 0;

3 while N is not empty do

4 Initialize new route r by selecting a best taxi k € K

5 Select best first pickup node ng € N, and append it to route r;
6 Remove ng from N;

7 Add the corresponding delivery node sqg of ng to V;

8 while route r is not full and N is not empty do

9 Find feasible nodes Nyeqs € N;

10 Select a best next node n € Nyeqs;

11 Append n to route r;

12 if n is pickup node then

13 Remove n from N;

14 Add the corresponding delivery node s of n to IV;
15 else

16 L Unload route r and remove n from N;

17 R+ r;

18 return R;

PGreedy Algorithm

Since there are further vehicle routing applications where PGreedy could be
applied successfully, see [8], [9] and [10], we use this metaheuristic to solve our
PDPTW instances to near optimality in reasonably short time. The crucial
point within every greedy algorithm is finding a proper criterion to select local
solutions. Such a criterion decides for the search direction.

Our greedy scoring function in equation (23) consists of four criteria, as
described in section 4.1. Each criterion has a weight A;, i € {1,2,3,4}. Thus
our parametrized scoring function s; is a mapping s; : Q* — Q, where j € N
is a pickup node or a delivery node. Let us recall the scoring function s; which
is linear in its parameter vector A € Q*:

S;j ()\) = Atj + Ao - t;)ickup + A3 - t?ChOOZ + A4 - t?”. (24)

It is obvious that the local selection of elements and hence the entire heuristic
solution depends on the choice of A € Q*. Thus we have to find an appropriate
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vector A to yield a reasonable good heuristic solution. Let z(A) be the objective
function value for the heuristic solution with parameter vector A and x(\) the
corresponding solution. Then we have to find a vector A so that z(\) < z(p)
for all 4 € Q*, that means we have to find

2PIreedy — min{z(\) : A € Q*}. (25)

According to [8] the parameter search space may be restricted to a compact
subset of the unbounded set Q*. The theoretical basis for this step is given
below. Let p € N be the dimension of the parameter search space.

Theorem 1 Let A\, N € QP. If there is a positive scalar t € Q. such that
N =t- X then x(\) = z(N) and hence z(A) = z(X).

Corollary 1 Let ||.| be an arbitrary norm. For every solution x(\) with A €
QP \ {0} there is a N € QP with ||X|| =1 such that z(A) = z(X).

For the proofs of Theorem 1 and Corollary 1 we refer to [8] or [9]. These results
lead us to
ZPIreedy — min{z(\) : |\ = 1}. (26)

This in particular means that the parameter search space is restricted to the
unit hypersphere in Q*, which can speed up the computation of the vector A
considerably.

In order to find appropriate parameters \ a straightforward or randomized
sampling over the surface of the hypersphere might be considered, but it turns
out to be inefficient. Instead we apply a procedure that iteratively looks for
a better parameter vector based on the location of the best point found so
far. This algorithm is called improving hit-and-run (IHR for short). ITHR was
introduced by Zabinsky et al. [25] and is a randomized Monte-Carlo algorithm
for global optimization problems. Note, that the bounded parameter domain
is essential to apply IHR. Without Corollary 1 THR would not be applicable.

We apply this algorithm to determine appropriate parameters for our
greedy scoring function. The idea of IHR is to randomly generate a new candi-
date point based on the location of the current best point. It is worth mention-
ing, that points which are structurally nearer to the current best point have
a higher hitting probability. If the new candidate point is an improvement
(objective function value) it is kept and replaces the current best point. This
parameter optimization technique was also used for the other applications of
PGreedy. Next, a detailed description of the algorithm is given.

THR is supposed to compute the parameters controlling the greedy scoring
function and hence the selection strategy. It calls the PGreedy procedure as
a black-box to yield a new objective function value z(A). The basic steps
executed by the IHR are the following. Let B C Q* be a bounded subset and
z : B — Q a given objective function. In the first iteration k := 0 we start
with Ag € B. Then the following steps are repeated until a stopping criterion is
met. Generate a new candidate point w41 by randomly choosing a direction dj,
uniformly distributed on the boundary of the unit hypersphere. With a random
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Table 1 Characteristics of two full instances.

Instance No. of pupils  No. of schools  No. of vehicle types
Bentheim 76 7 5
Aurich 696 53 11

selection of a distance t;, > 0 uniformly distributed on the feasible line segment
along the direction from the current point, we receive the new candidate point
W41 = Ak + b - d. If the candidate is improving, i.e. z(wg11 < z(Ag), then
Ak+1 := Wk41, otherwise A1 := Ag. Finally, iteration number £ is increased
by 1.

A stopping criterion may be the iteration number reaches a certain limit
or a time limit is specified as we used for our problem instances.

Local Search

A generated route is assigned a certain vehicle with the greedy best capacity.
After finishing the greedy solution we have a look at how many load (passenger
and wheelchair) is in fact transported and can decide for a cheaper vehicle type,
if a school taxi of this kind is available.

5 Computational Results

In order to solve our heterogeneous PDPTW we address it from two sides. At
first we use a Branch-and-Cut procedure to solve our given instances to global
optimality. We use the presented formulation for the Branch-and-Cut method.
Then we apply our PGreedy metaheuristic to produce near optimal solutions
to our PDPTW instances.

We are dealing with two real-world instances from our industry partner
ZIV (Zentrum fiir integrierte Verkehrssysteme, Darmstadt). Both are named
according to the German counties Bentheim and Aurich, from where the data
was drawn from. The size of the complete data set is given in table 1. Our
computational experiments were carried out on a computing node with a 12-
core Intel Xeon X5675 at 3.07 GHz and 48 GB RAM running Red Hat Linux
Server 6.5. As solver for the MILPs we used ILOG CPLEX 12.6 [13]. Each
CPLEX run uses 12 threads and the maximum computation time is 24 hours.
Our heuristic is implemented in Java using JDK6. For each run only a single
thread is used.

Both instances are of a size that CPLEX’ Branch-and-Cut algorithm is
not capable of solving. To get a detailed look at the computational limits of
this type of problem instances we extracted some small and mid-sized instances
from both given instances Bentheim and Aurich. Table 2 shows the size of these
extracted instances together with the complete instance. The column ’setting’
consists of three subcolumns 'np’ for the number of pupils (or requests), 'ns’ for
the number of different schools and 'nv’ for the number of available vehicles.
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Table 2 Setting of the extracted instances

instance | np ns nv instance np ns
ben_02 2 2 2

ben_03 3 2 4

ben_05 5 2 6 aur-100 100 12
ben_10 10 3 9 aur-200 200 25
ben_20 20 4 11 aur_300 300 28
ben_30 30 6 14 aur_400 400 40
ben_40 40 7 16 aur_500 500 47
ben_50 50 7 18 aur_600 600 50
ben_full 76 7 21 aur_full 696 53

Table 3 Optimal solutions of the extracted instances

instance size instance size preproc. solution
inst var cons nz var cons nz opt t
ben_02 70 138 470 35 42 149 58.72 0.01
ben_03 189 444 1,626 117 193 707 85.27 0.05
ben_05 715 2,010 7,700 440 894 3,586 165.95 0.23
ben_10 4,349 14,377 56,479 2,715 6,965 28,500 221.24  339.80
ben 20 | 19,411 70,293 278,831 | 11,690 35,154 143,714

The Aurich instance are large-scale instances, which we only use to apply our
heuristic hence no vehicle number is given and needed.

CPLEX is only capable of solving small instances. The results of the small
instances extracted from the Bentheim instance are given in table 3. The size
of the instances is given in the subcolumns of ’instance size’ where the num-
ber of variables (’var’), the number of constraints (’cons’) and the number
of non-zeros ('nz’) is presented respectively. The subcolumns of 'instance size
preproc.’ provide the size of the reduced MILP instances, that is the instance
size after the preprocessing step of CPLEX. CPLEX was only capable of solv-
ing instances up to the size of 10 pupils, the associated objective function
values and computing times for these instances are provided in column ’opt’
and column ’t’ respectively. Instance ben_20 and all the other instances which
have a higher number of requests are to large to be solved to proven optimality
by CPLEX’ Branch-and-Cut algorithm. However, for the instance ben_20 we
could at least obtain an incumbent solution with an objective function value
of 339.65 and a remaining gap of 42.46%.

We have used the proposed PGreedy heuristic to address our problem in-
stances. For each of the instances we computed 10 runs and set a time limit of
300 seconds to optimize the parameters of the scoring function by improving
hit-and-run. The results are given in table 4 and table 5, where the best objec-
tive function values, found within these 10 runs, are provided in column "best’.
The median value of the objective function values, which is the average of the
5th and 6th element, is shown in column 'median’, the average value of all
runs are given in column 'mean’ and the worst objective function value can be
obtained from column ’worst’. The variance of the PGreedy output is low as
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Table 4 PGreedy results of the Bentheim instance and the instances extracted from it

inst best median mean worst
ben_02 58.72 58.72 58.72 58.72
ben_03 85.27 85.27 85.27 85.27

ben_05 165.95 165.95 165.95 165.95
ben_10 239.57 239.57 239.57 239.57
ben_20 357.78 357.78 357.92 361.99
ben_30 547.52 557.02 555.67 565.98
ben_40 691.21 707.17 706.82 716.19
ben_50 796.34 816.16 815.63 826.86
ben_76 | 1,040.20 1,061.57 1,061.18 1,083.77

Table 5 PGreedy results of the Aurich instance and the instances extracted from it

inst best median mean worst
aur-100 | 1,745.11 1,749.46 1,749.46 1,753.81
aur_200 | 2,859.13 2,865.14 2,865.14 2,871.14
aur_300 | 3,697.44 3,713.38 3,713.38  3,729.32
aur_400 | 4,426.42  4,428.69 4,428.69 4,430.96
aur_500 | 5,026.46 5,042.74 5,042.74 5,059.01
aur_600 | 5,643.41 5,665.36 5,665.36  5,687.32
aur_696 | 6,020.56 6,044.23 6,044.23 6,067.90

Table 6 Number of used vehicles computed by PGreedy

inst PGreedy Current Saving | OptiTours

Schedule  Potential by ZIV
Aurich 105 130 19.2% 109
Bentheim 12 - - 13

one can see best and worst values are very close to each other. Unfortunately
we are only able to compare our heuristic values with Bentheim instances up
to a number of pupil requests of 10, because all other instances are too large
to yield a global optimal solution by CPLEX due to limited main memory. For
the instance ben_10 we obtain a heuristic solution that is 8.3% worse than the
global optimum. For the incumbent solution of instance ben_20 our heuristic
solution only differs by around 5%. For the small instances heuristic solution
and global optimal solutions are equal.

Until now, we used a fixed drop time of five minutes for a delivery at a
school independently if there are children with wheelchairs to drop or not.
In a different variant of our implementation we used a variable drop time.
That means we assume a service time of three minutes to drop children with
wheelchairs and one minute for children without wheelchairs. With this vari-
able service time we are able to compare our solution with the schedule cur-
rently being used for the school taxi transport in Aurich. The results are
presented in table 6. According to our PGreedy solution 105 school taxis are
needed to meet all pupil requests in the Aurich instance. This solution has got
a saving potential of almost 20% compared to the schedule that is currently in
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Table 7 Branch-and-Cut results using best heuristic solutions as initial upper bound

inst Primal CPLEX with initial solution
Heuristic
obj. root best best

value gap | incumbent node gap time
ben_10 239.57 7.65% 221.24  221.24 0%  245.37s
ben_20 357.78  43.26% 319.81 203.02 36.52% 24h
ben_30 547.52  57.04% 492.74 23519 52.27% 24h
ben_40 691.21  58.94% 691.21 283.76  58.94% 24h
ben_50 796.34  61.36% 796.34 307.68 61.36% 24h
ben_76 | 1040.20 63.28% 1040.20 381.95 63.28% 24h

use and deploys 130 school taxis. Unfortunately we do not know the number of
vehicles currently being used for the Bentheim instance and hence are not able
to compare our result. However, there is an optimization software developed
by our partner ZIV with which we can compete. This optimization software is
called OptiTours and is based on Genetic programming. ZIV solved the given
instances by running OptiTours for several hours and reported the number of
vehicles according to the solutions received by OptiTours of 109 for the Au-
rich instance and 13 for the Bentheim instance. In both cases our PGreedy
algorithm outperforms their implementation.

Finally we provide our best heuristic solution as an initial feasible solution
to the Branch-and-Cut procedure of CPLEX. On one hand, the branch-and-
bound procedure may also further improve the initial solution; on the other
hand, providing an initial upper bound should help speed up the branch-and-
bound procedure by pruning inferior subbranches earlier. As shown in Table 7,
the initial heuristic solutions are further improved in instance ben_10, ben_20,
and ben_30 by around 5 to 10%. However, the heuristic solution in the larger
instances cannot be improved anymore. It is also found that the lower bounds
are improved. However, the gap between the best integer solution and the LP
relaxation bound is still quite large, from 36.5% in instance ben_20 to 63.28%
in instance ben_76. A procedure with a tighter lower bound should be used.

6 Conclusion

In this article, we addressed the problem of routing school taxi to transport
children with special needs to school. This application can be described as a
heterogeneous pickup and delivery problem with time windows. We presented
a MILP model using multi-commodity flow formulation and Miller-Tucker-
Zemlin constraints. Since exact methods such as Branch-and-Cut approaches
are not able to handle large-scale instances as in our case, we used the PGreedy
metaheuristic to address them. PGreedy is based on parametrizing greedy
scoring functions to include more than one selection criterion during route
construction. The parameters are determined automatically by the global op-
timization technique improving hit-and-run. Currently only small instances
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up to 10 pupils can be solved to proven optimality. The commercial MILP
solver cannot even obtain a feasible solution within 24 hours for instances
with 20 pupils and more. The general-purposed PGreedy algorithm appears
to be very effective on the small problems. It reaches solution within 10%
from optimum or best-known solutions within 300 seconds computation time.
For the largest real world instance Aurich with 696 pupils, we observe an
improvement of around 20% compare to the current manual taxi schedule.
Our PGreedy heuristic also outperforms the commercial software OptiTours
specialized for the school taxi routing problem.

There are a number of directions that the current work can be extended.
The LP relaxation lower bound for our current MILP model is not tight
enough. More work should be done to improve the lower bounds, includ-
ing model reformulation, adding more problem specific valid inequalities, and
Branch-and-Price procedures. On the primal aspect, we plan to extend the
current PGreedy to the framework of iterated greedy, which iteratively de-
struct part of the complete solution and reconstruct the partial solution us-
ing a greedy approach. As this is also a new real-world network application
problem, we also plan to extract more real-world instances and make these
instances available online, so that other researchers can test their algorithm
on this problem.
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