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Abstract. We introduce and analyse a problem related to maximum
�ow problem in networks, called reservation-allocation-problem. It is mo-
tivated by a practical application in the natural gas transportation in-
dustry. In this two-stage problem, we seek for maximizing reservation
values instead of �ows. A reservation is feasible if it admits to transport
any amount of �ow not greater than the reserved values. We conjecture
it is coNP-complete problem. Our main result is a decision algorithm
determining if a given reservation in feasible in a given network.

Keywords: Network Flows, Reservation, Allocation, Maximum Flow,
Minimum Cut.

1 Introduction

The maximum �ow problem in networks is one of the most prominent com-
binatorial optimization problems. Informally stated, the problem asks for the
maximum amount of �ow that can be pushed through a network, entering the
network at some sources and leaving at sinks, and respecting the network's ca-
pacity bounds. For its solution various theoretically and practically e�cient al-
gorithms are known [3, 1, 2, 5].

We introduce and analyze a related problem to this maximum �ow problem,
called reservation-allocation-problem, that is motivated by a practical applica-
tion in the natural gas transportation industry. In this two-stage problem, we
seek for maximizing reservation values instead of �ows. A reservation is feasible
if it admits to transport any amount of �ow not greater than the reserved values
(per node). A simple example shows that this problem can not be directly re-
duced to the max-�ow problem. In order to check if a given reservation is feasible
one has in principle to check an in�nite number of possible �ows. In this article
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we show that this is in fact not necessary. It is enough to restrict to a �nite
subset. The reservation-allocation is a coNP problem. It stays an open question
if it is coNP-complete.

Our work is inspired by recent deregulation e�orts in the natural gas market.
Due to new European laws, the gas network operator is no longer identical
with the gas owners. The operator has the only duty to transport the owners'
gas from the entry nodes to their respective customers at exit nodes. For this
the operator sells at each entry and exit nodes a reservation capacity (called
�booking� in this industry). Gas owners (sellers) and gas consumers (buyers)
then have the right to allocate any amount of gas up to the reserved capacity
(allocation is called �nomination� in this industry). In reality one has to deal
with further physical and technical aspects of gas transportation, for example, a
nonlinear pressure loss of the gas during the transport, and technical equipment
to increase or decrease the pressure (by compressors and control valves), and
to take control of the �ow by discrete routing decisions (opening and closing
pipelines by valves). For more information on the general background of recent
development of the gas industries, we refer to [4]. The nomination problem as a
mathematical optimization problem is described in [9]. The booking problem is
described in [4, 8], and also in the forthcoming book [7].

The remainder of this article is organized as follows. In Section 2 we introduce
our notation while describing the classical network �ow problem. In section 3
we present our main results, in section 4 we present some improvements of algo-
rithms presented in section 3 and in section 5 we discuss open problems related
to our work.

2 Preliminaries and problem formulation

A network is de�ned as a directed graph G = (V e, V i, V x, A, u), where V e, V i, V x, A
are �nite sets, and A ⊆ (V e∪V i∪V x)×(V e∪V i∪V x) with i 6= j for all (i, j) ∈ A.
The node set (or vertex set) V = V e ∪V i ∪V x is partitioned into three pairwise
disjoint subsets of entry nodes (or sources) V e, exit nodes (or sinks) V x and
inner nodes V i, where V e and V x are non-empty. Each arc (i, j) in the arc set A
has a capacity ui,j ∈ R+. A (feasible) �ow in G is a vector (a, f) ∈ RV e∪V x

+ ×RA
+

that ful�ls the following properties:

Capacity restriction on arcs:

fi,j ≤ ui,j , ∀ (i, j) ∈ A. (2.1)

Flow conservation in nodes:

∑

i:(i,j)∈A

fi,j + aj =
∑

k:(j,k)∈A

fj,k, ∀ j ∈ V e, (2.2a)

∑

i:(i,j)∈A

fi,j = aj +
∑

k:(j,k)∈A

fj,k, ∀ j ∈ V x, (2.2b)
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∑

i:(i,j)∈A

fi,j =
∑

k:(j,k)∈A

fj,k, ∀ j ∈ V i. (2.2c)

The components ai for i ∈ V e are called the in�ow into the network, and for
i ∈ V x they are called the out�ow. A necessary condition for a �ow to be feasible
is the balance of the total in- and out�ow

∑

i∈V e

ai =
∑

i∈V x

ai. (2.3)

Because of this equality we can de�ne the �ow value for a feasible �ow (a, f) as
either one side of this equation, for example:

�ow(G; a, f) :=
∑

i∈V e

ai. (2.4)

Connected with the notion of �ow is that of a cut. A cut C in G is a subset
of arcs with the property that every path from any i ∈ V e to any j ∈ V x uses
at least one arc in C. When removing all arcs in C from G, there is no more
connection between entry and exit nodes. The capacity of a cut equals the sum
of capacities of its arcs:

cut(G; C) :=
∑

(i,j)∈C

ui,j . (2.5)

Since any feasible �ow (a, f) between sources and sinks must cross any cut C in
G, we have that

�ow(G; a, f) ≤ cut(G; C) (2.6)

A famous result of Ford and Fulkerson states that for the maximum �ow and
the minimum cut equality holds:

max�ow(G) := max{�ow(G; a, f) : (a, f) feasible �ow in G}
= min{cut(G; C) : C cut in G} =: mincut(G). (2.7)

Ford and Fulkerson also described an algorithm to �nd such maximum �ow in
polynomial time. In the following decades their algorithm was improved and also
other methods for constructing maximal �ows were described [6].

Let G be a network as de�ned above. An allocation is a vector a ∈ RV e×V x

+ .
A balanced allocation is an allocation with

∑

i∈V e

ai =
∑

i∈V x

ai. (2.8)

An allocation is feasible if there exists a vector f ∈ RA such that (a, f) is a fea-
sible �ow in the network. Note that a feasible allocation is necessarily balanced.

A reservation is a vector r ∈ (R+ ∪∞)V e×V x

. A reservation is feasible if any
balanced allocation a ∈ RV e×V x

+ with 0 ≤ a ≤ r is feasible (by 0 ≤ a ≤ r we
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mean ∀v ∈ V e × V x 0 ≤ av ≤ rv). Note that a reservation does not need to be
balanced. We say that a is an allocation for r, if a is balanced and 0 ≤ a ≤ r.

We de�ne the following extension of the network G = (V e, V i, V x, A, u) and
S ⊆ V e and T ⊆ V x in the following way. Let Gr

S,T := ({s}, V e, V i, V x, {t}, AS,T , uS,T )
where AS,T := A ∪ {(s, i) : i ∈ S} ∪ {(i, t) : i ∈ T} and uS,T (i, j) = u(i, j) for
(i, j) ∈ A), uS,T (s, i) = r(i) for i ∈ V e, uS,T (i, t) = r(i) for i ∈ V x. As ab-
breviation, we also write GS,T for Gr

S,T , if the dependency is clear from the
context.

The following three problems are of interest.

Reservation Validation. Given: Network: G = (V e, V i, V x, A, u) and reser-
vation r ∈ (R+ ∪∞)V e×V x

Question: Is a given reservation r feasible. If it is not feasible, then a certi�-
cate, i.e., an infeasible allocation a for r, is to be determined. We can state
two special cases of the reservation validation problem, motivated by real
problems in gas networks: Entry-bounded (and exit-unbounded) - in this
variant we can take any value on exits and have to impose the transport
limitations of the network only on the entry side. The Exit-bounded (and
entry-unbounded) case is de�ned in analogous way.

Subset Flow Problem. Given: Network: G = (V e, V i, V x, A, u) and reserva-
tion r,
Question: Weather for all sets S ⊆ V e, T ⊆ V x hold
max�ow(Gr

S,T ) ≥ min(
∑

v∈S rv,
∑

v∈T rv)?
Reservation Value Optimization. Given: Network: G = (V e, V i, V x, A, u)

and a weight vector w ∈ RV e×V x

. This vector represents the value per unit
entry or exit reservation capacity.,
Question: Find a feasible reservation vector r, such that wT r is maximal.

Let us consider a simple example of a network of a shape of a letter H, shown
in Figure 2.1, left (cf. [7]). Let V e = {sL, sR}, V i = {iL, iR}, V x = {xL, xR}, A =
{sLiL, sRiR, iLiR, iLxL, iRxR}, u(sLiL) = u(sRiR) = u(iLxL) = u(iRxR) = 10
and u(iLiR) = u(iRiL) = 1. Notice that there exists a �ow with a value 20:
f(sLiL) = f(sRiR) = f(iLxL) = f(iRxR) = 10 (Figure 2.1, middle), but the
reservation r(sL) = r(sR) = 10 is not valid. To show it is not valid it is enough to
consider a allocation a(sL) = 10, a(sR) = 0, a(xL) = 0, a(xR) = 10 (Figure 2.1,
right).

3 Main result

The Subset Flow Problem is obviously a subproblem of Reservation Validation
problem. Our main result states that the Reservation Validation problem can be
reduced to Subset Flow Problem, i.e., it is enough to verify only a �nite set of
allocations.

Theorem 1. The Subset Flow Problem and Reservation Validation Problem are
equivalent.
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Fig. 2.1: Network example for a reservation capacity strictly less than maximum
�ow.

Proof. We show that an allocation a ≤ r with max�ow(Ga
V e,V x) <

∑
v∈V e av oc-

curs, if and only if there exist sets that S ⊆ V e, T ⊆ V x, for which max�ow(Gr
S,T ) <

min{∑v∈S rv,
∑

v∈T rv} occurs.

1. We show that if sets S, T such that max�ow(Gr
S,T ) < min{∑v∈S rv,

∑
v∈T rv}

exist then r is infeasible. We assume that F := max�ow(Gr
S,T ) and with-

out loss of generality we assume that min{∑v∈S rv,
∑

v∈T rv} =
∑

v∈S rv.
Therefore F <

∑
v∈S rv.

We de�ne an allocation as follows:

ai =





ri, i ∈ S,

ri

∑
v∈S rv∑
v∈T rv

, i ∈ T,

0, i ∈ (V e ∪ V x) \ (S ∪ T ).

Clearly, 0 ≤ a ≤ r. If there exists feasible �ow for this allocation then F =∑
v∈V e rv =

∑
v∈S rv which contradicts the assumption that F <

∑
v∈S rv.

2. We will show that if there exists infeasible allocation a, then there exist
sets S, T such that max�ow(Gr

S,T ) < min{∑v∈S rv,
∑

v∈T rv}. Let MV e,V x

be the minimal cut in graph Ga
V e,V x . From the fact that a is infeasible, we

get that mincut(Ga
V e,V x) = max�ow(Ga

V e,V x) <
∑

v∈V e av. Let mV e,V x :=
mincut(Ga

V e,V x). We de�ne sets S, T as follows:

S = {v ∈ V e | (s, v) /∈MV e,V x},
T = {v ∈ V x | (v, t) /∈MV e,V x}.

We will show that |S| ≥ 1. Let us assume, on the contrary, that S is empty.
Then MV e,V x contains all arcs that exit from s. Therefore, the sum of ca-
pacities of arcs belonging to MV e,V x is equal to mV e,V x =

∑
v∈V e av, which
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contradicts assumption that mV e,V x <
∑

v∈V e av. Hence |S| ≥ 1. By the
same arguments we show that |T | ≥ 1.
Let MS,T := MV e,V x\({(s, i) | i /∈ S} ∪ {(i, t) | i /∈ T}), then MS,T is a cut
in the graph Gr

S,T . Its cut value (the sum of capacities of arcs that belong
to MS,T ) is equal to mV e,V x − (

∑
v∈V e\S av +

∑
v∈V x\T av) = mS,T . Note

that
∑

v∈V e av =
∑

v∈V x av = min{∑v∈V e av,
∑

v∈V x av}. From the above,
the cut MS,T is equal to:

mS,T = mV e,V x −
∑

v∈V e\S
av −

∑

v∈V x\T
av

< min{
∑

v∈V e

av,
∑

v∈V x

av} −
∑

v∈V e\S
av −

∑

v∈V x\T
av

= min{
∑

v∈V e\S
av +

∑

v∈S

av,
∑

v∈V x\T
av +

∑

v∈T

av}

−
∑

v∈V e\S
av −

∑

v∈V x\T
av

= min{
∑

v∈V e\S
av +

∑

v∈S

av −
∑

v∈V e\S
av −

∑

v∈V x\T
av,

∑

v∈V x\T
av +

∑

v∈T

av −
∑

v∈V e\S
av −

∑

v∈V x\T
av}

= min{
∑

v∈S

av −
∑

v∈V x\T
av,
∑

v∈T

av −
∑

v∈V e\S
av}

≤ min{
∑

v∈S

av,
∑

v∈T

av}

≤ min{
∑

v∈S

rv,
∑

v∈T

rv}.

From the above, it follows that max�ow(Gr
S,T ) = mincut(Gr

S,T ) ≤ mS,T <
min{∑v∈S rv,

∑
v∈T rv}.

This Theorem gives us a natural algorithm for Reservation Validation Prob-
lem.

The algorithm either terminates with returning sets S, T and a de�cit �ow
value F , which is less than the sum of reservation, or it terminates without a
message, which means that the reservation is feasible.

The above algorithm requires to iterate over all subsets of a given set, hence
it has an exponential running time. This raises the question if there might be a
more e�cient algorithm.

Corollary 1. The output of the Algorithm I is correct.
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Algorithm 1 RESERVATION-VALIDATION(G, r)
1: for all S ⊆ V e do

2: for all T ⊆ V x do

3: if F := max�ow(GS,T ) < min
{∑

i∈S ri,
∑

i∈T ri

}
then

4: return (S, T, F )
5: end if

6: end for

7: end for

8: return ∅

4 Improving the Algorithm

We speed up the algorithm by not taking all subsets S and T of V e, V x into
consideration.

Lemma 1. Let S ⊂ V e, T ⊂ V x. If min{∑v∈S rv,
∑

v∈T rv} =
∑

v∈S rv, mean-
ing max�ow(Gr

S,T ) =
∑

v∈S rv, then for any T ′ with T ⊂ T ′, we have that
max�ow(Gr

S,T ′) =
∑

v∈S rv. Vice versa, if min{∑v∈S rv,
∑

v∈T rv} =
∑

v∈T rv,
meaning max�ow(Gr

S,T ) =
∑

v∈T rv, then for any S′ with S ⊂ S′, we have that
max�ow(Gr

S,T ′) =
∑

v∈T rv.

Proof. Let T ⊂ T ′ ⊆ V x, Gr
S,T = (VS,T , AS,T , u, r), Gr

S,T ′ = (VS,T ′ , AS,T ′ , u, r).
Let f be a maximum �ow in Gr

S,T with value
∑

v∈S rv. Note that f is a feasible
�ow in Gr

S,T ′ . Let M = {(s, j) ∈ AS,T : j ∈ S}, then MV e,V x is a cut in Gr
S,T

with value
∑

v∈S rv. Hence by the Ford-Fulkerson Max�ow-Mincut Theorem [3],
MV e,V x is a minimum cut. Since in Gr

S,T ′ we only added arcs to T ′, MV e,V x is
still a cut in this extended graph. Again by the Max�ow-Mincut Theorem, f is
a maximum �ow in Gr

S,T ′ .

We remark that a termination of the RESERVATION-VALIDATION algo-
rithm occurs if and only if sets S and T are found with max�ow(Gr

S,T ) <
min{∑v∈S rv,

∑
v∈T rv}. Now if we compute max�ow(Gr

S,T ) for some sets S
and T and obtain max�ow(Gr

S,T ) = min{∑v∈S rv,
∑

v∈T rv} =
∑

v∈S rv, then
by Lemma 1 we can already exclude checking max�ow(Gr

S,T ′) for any superset
T ′ with T ⊂ T ′.

We introduce the notion of a relevant pair of sets S, T for which we have
to actually carry out the computation of max�ow(Gr

S,T ). Such pair S, T is rele-
vant, if min{∑v∈S rv,

∑
v∈T rv} =

∑
v∈S rv and for every T ∗ ⊂ T it holds that

min{∑v∈S rv,
∑

v∈T∗ rv} =
∑

v∈T∗ rv or if min{∑v∈S rv,
∑

v∈T rv} =
∑

v∈T rv

and for every S∗ ⊂ S it holds that min{∑v∈S∗ rv,
∑

v∈T rv} =
∑

v∈S∗ rv. We
exploit this observation now algorithmically.

Theorem 2. Algorithm 2 is equivalent to Algorithm 1, but checks only relevant
pairs (S, T ).

Proof. We �rst show that all and only relevant pairs are checked (S, T ). Let
(S0, T0) be a relevant pair. W.l.o.g. we assume that min{∑v∈S0

rv,
∑

v∈T0
rv} =
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Algorithm 2 FAST-RESERVATION-VALIDATION(G, r)

1: B = {(S, T ) : S ⊆ V e, T ⊆ V x, |S| = |T | = 1}
2: while B 6= ∅ do
3: Let S, T such that (S, T ) ∈ B
4: if F := max�ow(Gr

S,T ) < min{∑v∈S rv,
∑

v∈T rv} then

5: return (S, T, F )
6: end if

7: if min
(∑

v∈S rv,
∑

v∈T rv

)
=
∑

v∈S rv then

8: for all v ∈ V e \ S do

9: B = B ∪ {(S ∪ {v}, T )}
10: end for

11: else

12: for all v ∈ V x \ T do

13: B = B ∪ {(S, T ∪ {v})}
14: end for

15: end if

16: B = B \ {(S, T )}
17: end while

18: return ∅

∑
v∈S0

rv (the other case follows from symmetry). Let i ∈ S0 and j ∈ T0. The
pair ({i}, {j}) is added to B in Line 1. In Line 9 and Line 13 we always extend
one of the sets S or T (selected as a pair (S, T ) in Line 2) by some node v.
Hence at some iteration we obtain sets (S∗, T0) or (S0, T

∗), where S∗ ⊂ S0 and
T ∗ ⊂ T0. Let us assume that we obtained (S∗, T0). Since (S0, T0) is a relevant
pair, the check in Line 7 is �true�. Hence further elements v are added to S∗ only
in Line 9. Finally, we will obtain (S0, T0). (The other case is symmetric.)

Since we add new elements in Line 9 and Line 13 only to those respective
side that is responsible for the minimum, the algorithm never constructs a pair
of sets (S, T ) that is not relevant.

Theorem 3. For any G = (V e, V i, V x, A, u) and for any reservation r there
are at least 2min(|V e|,|V x|)−1−1 irrelevant pairs and there are networks with such
number of pairs.

Proof. Let (S1, T1) be a pair such that |S1| = |T1| = 1 let us assume that
min

(∑
v∈S1

rv,
∑

v∈T1
rv

)
=
∑

v∈S1
rv. Every pair (S1, T ), such that T1 ( T is

an irrelevant pair. Number of di�erent pairs (S1, T ) is equal to 2|V
x|−1−1. From

the above it follows that in general case number of irrelevant pairs is not smaller
than 2min(|V e|,|V x|)−1 − 1.
Now we will show that there exist networks with such number of pairs. Let G be a
network in which V x = {t} and ∀S ⊆ V e min

(∑
v∈S rv,

∑
v∈V x rv

)
=
∑

v∈S rv.
Network G contains no irrelevant pairs because all irrelevant pairs are of the
form (S, T ), where t ( T but since V x is one element set such T does not exist.

In the sequel we consider the case of entry-bounded, exit-unbounded, which
is symmetric to the case of entry-unbounded, exit-bounded. We show that in
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this case it is su�cient to run Algorithm I for all S ⊆ V e and all t ∈ V x (instead
of all subsets T of V x).

Lemma 2. The output of Algorithm I is the same if step (2) is replaced by �For
all t ∈ V x� if we consider the entry-bounded, exit-unbounded case.

Proof. Assume that for subsets S ⊆ V e and T ⊆ V x we have max�ow(GS,T ) <
min

{∑
i∈S ri,

∑
i∈T ri

}
=
∑

i∈S ri. For any t ∈ T we then have the estimation
max�ow(GS,{t}) ≤ max�ow(GS,T ), since the �rst problem is a restriction of the
second one (in other words: fewer exits lead to less �ow). So both algorithms
would return the infeasibility of the reservations. On the other, if Algorithm I
returns feasible, then checking only T = {t} would also return feasible.

5 Conclusions and open problems

The subset �ow problem is coNP-problem. For a given S ⊆ V e and T ⊆ V x

we can verify in polynomial time if max�ow(Gr
S,T ) ≥ min(

∑
v∈S rv,

∑
v∈T rv).

It remains an open question if it is an coNP-complete.
Another open question is an e�cient algorithm for Reservation Value Opti-

mization.
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