
Angewandte Mathematik und Optimierung Schriftenreihe
Applied Mathematics and Optimization Series

AMOS # 16(2014)

Armin Fügenschuh, Konstanty Junosza-Szaniawski, Torsten Klug,
Sławomir Kwasiborski, and Thomas Schlechte

Fastest, Average, and Quantile Schedule

Herausgegeben von der
Professur für Angewandte Mathematik
Professor Dr. rer. nat. Armin Fügenschuh

Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg
Fachbereich Maschinenbau
Holstenhofweg 85
D-22043 Hamburg

Telefon: +49 (0)40 6541 3540
Fax: +49 (0)40 6541 3672

e-mail: appliedmath@hsu-hh.de
URL: http://www.hsu-hh.de/am

Angewandte Mathematik und Optimierung Schriftenreihe (AMOS), ISSN-Print 2199-1928
Angewandte Mathematik und Optimierung Schriftenreihe (AMOS), ISSN-Internet 2199-1936

Fastest, average and quantile schedule

Armin Fügenschuh1, Konstanty Junosza-Szaniawski2, Torsten Klug3, S lawomir
Kwasiborski2, and Thomas Schlechte3

1 Helmut Schmidt University / University of the Federal Armed Forces Hamburg,
Holstenhofweg 85, 22043 Hamburg, Germany, http://am.hsu-hh.de

2 Politechnika Warszawska, Matematyki
ul. Koszykowa 75, 00-662 Warszawa, http://mini.pw.edu.pl

3 Department of Optimization, Zuse Institute Berlin,
Takustraße 7, 14195 Berlin, Germany, http://www.zib.de/

Abstract. We consider problems concerning the scheduling of a set of trains on a single
track. For every pair of trains there is a minimum headway, which every train must wait
before it enters the track after another train. The speed of each train is also given. Hence
for every schedule - a sequence of trains - we may compute the time that is at least
needed for all trains to travel along the track in the given order. We give the solution to
three problems: the fastest schedule, the average schedule, and the problem of quantile
schedules. The last problem is a question about the smallest upper bound on the time of
a given fraction of all possible schedules. We show how these problems are related to the
travelling salesman problem. We prove NP-completeness of the fastest schedule problem,
NP-hardness of quantile of schedules problem, and polynomiality of the average schedule
problem. We also describe some algorithms for all three problems. In the solution of the
quantile problem we give an algorithm, based on a reverse search method, generating with
polynomial delay all Eulerian multigraphs with the given degree sequence and a bound on
the number of such multigraphs. A better bound is left as an open question.
Keywords: Schedule, generating permutations with repetitions, Eulerian multigraphs.

1 Introduction

In the theory of combinatorial algorithms typically the following problems are considered:
find any feasible solution, find one feasible solution, find an optimal solution, enumerate
all solutions (with minimum weight), count all solutions (with a given weight). We ask a
natural follow-up question: what is a quantile of the given fraction of feasible solutions
i.e., what is the minimum number a such that the weights of all feasible solutions of a
given fraction are not exceeding a. For example for the travelling salesman problem the
question about the 0.8-quantile is: what is the smallest number a such that 80% of all
travelling salesman tours for a set of given cities have a weight of at most a.

Problems considered in this paper originate from railway track allocation in a real
world application [6]. We consider a single railway track (from station A to B) and a set
of trains, with their speeds and minimal headway between every pair of trains. For any
given sequence of trains we can compute the least time that is needed for all trains of
the sequence to arrive at B.

Fig. 1: Example for schedules of two slow and two fast trains and their times.

Example 1 Let us consider the following trivial example. We are given two train types

with running time 3 and 5 and the headways are given in the matrix
(

1 1
3 1

)
. Figure 1

shows three potential orderings of 4 trains (2 of each type).

A natural question is which sequence gives the minimal time. Under some natural
conditions with respect to the speeds of the trains and the minimal headways we prove
that a sequence of trains ordered with non-increasing speed is fastest. However in the
general case the problem of the fastest schedule is NP-complete. For the general case
we give an algorithm for finding the fastest schedule, based on dynamic programming.
Moreover we give an explicit formula for the average time taken over all possible sched-
ules. This problem is equivalent to the problem of determining the average weight of all
Hamilton cycles.

The last question and most interesting from both a practical and theoretical point
of view is the question about the quantile of the schedule, i.e., what is the minimum
number a such that the weights of all schedules of a given fraction are not exceeding
a. For example, if a 0.8-quantile is equal to a, then 80% of all schedules can be real-
ized in time not exceeding a. To solve the problem we take advantage of the fact that
the speeds of trains and the minimal headways depend only on the type of trains. In
addition, there is only a small number of types compared to the number of trains. The
simplest way is to generate all sequences of trains or sequences of types of trains, and to
compute the quantile directly. We solve the problem in a more sophisticated way. First
we define an equivalence relation on the set of schedules such that any two schedules in
the relation have the same time for finishing. Then we generate all equivalence classes
and compute the time for finishing for every class. The equivalence classes of our relation
directly correspond to Eulerian multigraphs with a given degree sequence. To generate
the multigraphs we use the reverse search method introduced by Avis and Fukada [2].
We prove that there are O(nk

2−1) Eulerian multigraphs on k vertices with n edges. This

bound is not tight. Any better bound on this number would give a better complexity
bound of our algorithm since we generate Eulerian multigraphs with polynomial delay.

2 Preliminaries and Problem Formulation

For n ∈ N we denote {1 . . . n} by [n] and by [n]∗ the set of all finite sequences of elements
of the set [n]. Let X = {x1, x2, . . . , xn} be the set of trains. Let the function t : X → [k]
assign every train its type. We assume that the set X and the function t are fixed in the
following. Let l : [k]→ N be a function defined by l(i) = |t−1(i)|. Thus li = l(i) denotes
the number of trains of the i-th type. Let r : [k]→ R+ assign the running time to every
train type and let m : [k]× [k]→ R+ be the function determining the minimal headway
between the trains of certain types.
Let S(X) denote a set of all permutations of the set X. We will call the permutations
of X schedules. The minimal running time of the schedule y ∈ S(X) is computed as

RT (y) =
n−1∑

i=1

m(t(yi), t(yi+1)) + r(t(yn)).

We define the following three problems:

Problem 1 Fastest-schedule
Input: (X, t, r,m, k).
Output: YES if and only if there exists a schedule s ∈ S(X) such that RT (s) ≤ k.

Problem 2 Average-schedule
Input: (X, t, r,m).
Output: τ̄ ∈ R - average running time of a schedule, i.e.,

τ̄ =

∑
y∈S(X)RT (y)

|S(X)| .

Problem 3 α-quantile schedule
Input: (X, t, r,m, α1).
Output: τ - time needed to realize α|S(X)| schedules, i.e.,

τ = min{rt :
|{s ∈ S(X) : RT (s) ≤ rt}|

|S(X)| ≥ α}.

3 Fastest schedule problem

Theorem 2 Fastest-schedule is NP-complete regarding to number of train types.
1 with α - a given fraction of the schedules that have to be realizable (1 means that all schedules must

be realizable, 0.5 means that half of the potential schedules must be realizable)

We can solve the fastest schedule problem by interpreting it as a slight modification of
the TSP. The modification will state that a city from the TSP setting must be visited
a given number of times. It is allowed to visit the same city multiple times in a row
but there is a non zero ”distance” assigned to such operation. As cities we will denote
members of set [k] ∪ 0. Distances are given by following function:

d(x, y) =

m(x, y), x 6= 0 ∧ y 6= 0,
r(x), x 6= 0 ∧ y = 0,
0, x = 0 ∧ y 6= 0.

The number of times that the city denoted by x ∈ [k] must be visited is given by the
function l(x) as defined in the preliminaries. The city with number 0 must be visited
exactly once. Notice that every tour in this graph corresponds to a number of schedules
(the tour determines the order of train types so actual trains of the same type can be
permuted). The tour length is equal to the running time of the corresponding schedules.
Such modification of the TSP can be solved using a modification of the classic dynamic
programming algorithm given by Bellman [3]. Let µ : N × [k] → N be a function. By
µ(t, (x1 . . . xk)) we will denote the minimal length of tour from 0 to t passing through
each city i ∈ [k] exactly xi times (starting and ending visits are not counted). We can
define µ recursively as:

µ(t, (x1, . . . , xk)) = min
i∈[k]∧xi 6=0

{µ(i, (x1, . . . xi − 1, . . . , xk)) + w(i, t)}.

The iterative procedure can be initiated for all i by:

µ(i, (0, . . . , 0)) = w(0, i),

from which we can obtain the respective next values using the recursive formula. Value of
µ(0, (l(1), . . . , l(k))) gives a solution to the Fastest-schedule problem. The computational
complexity of this algorithm can be calculated by estimating the number of different
parameter sets of function µ that must be calculated and the time for computing a
single value. The first parameter can be picked in k ways and the second parameter is
the number of solutions of the inequality: x1 + . . .+ xk ≤ n. The number of solutions of
this inequality can be estimated by nk. Each value of the function µ can be computed
in linear time. From above we conclude that the algorithm runs in time O(nk+1).
The most natural candidate for an optimal solution is a schedule with trains that are
ordered non-decreasing by their running time. This simple solution seems to work in real
world scenario, but it can be shown that it is not correct in the general case. A question
rises what conditions have to be fulfilled for this simple solution to be correct.

Theorem 3 Let (X, t, r,m) be an instance of the fastest-schedule problem. If we assume
that:

∀x1,x2,x3,x4∈X r(t(x1)) ≤ r(t(x2)) ∧ r(t(x1)) ≤ r(t(x3)) ∧ r(t(x1)) ≤ r(t(x4))
⇒ m(t(x1), t(x2)) +m(t(x3), t(x4)) ≤ m(t(x3), t(x1)) +m(t(x1), t(x4))

(1)

and
∀x1,x2,x3,x4,x5∈X r(t(x1)) ≤ r(t(x2)) ≤ r(t(x3)) ∧ r(t(x2)) ≤ r(t(x4)) ∧ r(t(x2)) ≤ r(t(x5))

⇒ m(t(x1), t(x2)) +m(t(x2), t(x3)) +m(t(x4), t(x5))
≤ m(t(x1), t(x3)) +m(t(x4), t(x2)) +m(t(x2), t(x5)) (2)

then the schedule consisting of trains ordered not-decreasing by running time, is the
solution to fastest schedule problem.

4 Average schedule problem

Besides the question for an optimal solution, let it be minimum or maximum, finding
the running time of an average schedule could be of interest. This problem can be
solved in polynomial time. First we reduce the problem of the average schedule to the
problem of the average Hamilton cycle length in a complete graph. Let X = {1, . . . , n}
be a set of trains. For each pair of trains i, j ∈ V with i 6= j,m(t(i), t(j)) determines
minimal headway between i and j. Let V = X ∪ {0} be the vertex set of the graph,
A = [n]× [n] \ {(i, i) : i ∈ [n]} be the arc set and let weight function be given by:

w(i, j) =

m(t(i), t(j)), i 6= 0 ∧ j 6= 0
r(t(i)), i 6= 0 ∧ j = 0
0, i = 0 ∧ j 6= 0.

Observe that the tour in this graph corresponds to exactly one schedule and that the
tour length is equal to this schedule running time. Hence the average time of all schedules
is equal to the average Hamilton cycle length.

Theorem 4 Let G = (V,E,w) be a weighted undirected complete graph. Then the av-
erage tour length for a Hamiltonian cycle in G is 2

n−1

∑
e∈E we.

Proof. Since G is a complete graph, each edge is contained in exactly (n−2)! Hamiltonian
cycles. There are in total n!

2n Hamiltonian cycles in a complete graph. Therefore the
average weight of all Hamiltonian cycles is

2n
n!
·
∑

e∈E
(n− 2)! · we =

2
n− 1

∑

e∈E
we. (3)

ut

Corollary 5 Let D = (V,A,w) be a weighted directed complete graph. Then the average
tour length for a Hamiltonian cycle in D is 1

n−1

∑
a∈Awa.

Proof. There are in total n!
n Hamiltonian cycles in a complete directed graph. ut

Corollary 6 Let G = (V,E,w) be a weighted undirected complete graph. Then the av-
erage length of a Hamiltonian path in G is 2

n

∑
e∈E we.

Corollary 7 Let D = (V,A,w) be a weighted directed complete graph. Then the average
length of a Hamiltonian path in D is 1

n

∑
(i,j)∈Aw(i, j).

Proof. Let V ′ := V ∪ {0} as above and A′ := A ∪ {(0, i) : i ∈ V } ∪ {(i, 0) : i ∈ V }.
Let w′a := wa for (i, j) ∈ A, w′a := 0 for a ∈ A′\A. Again, there is a bijection between
Hamiltonian cycles in D′ := (V ′, A′, w′) and Hamiltonian paths in D, from which the
formula follows. ut

We can conclude that average running time of a schedule for given (X, t, r,m) equals
to 1

n

∑
(i,j)∈Aw(i, j), where A and w(i, j) are defined as above.

5 Schedules Quantiles

The problem “quantile schedule” is at least as hard as the fastest schedule. For α = 1
n! ,

where n is the number of trains, a solution of α-quantile is also a solution of the problem
Fastest-schedule.

We need some more notations. For b, k ∈ N, s = (s1, . . . , sb) ∈ [k]∗, p, q ∈ [k], by
∆(s, p, q) we will denote {i ∈ [b − 1] : p = t(si), q = t(si+1)} which is a set of all the
indices on which a train type changes from p to q in the sequence s. By δ(s, p, q) we will
denote |∆(s, p, q)|.

Let ∼⊂ S(X)× S(X) be a relation defined on permutations of the set of the trains.
We say that:

y ∼ z :⇔ ∀p,q∈[k] δ(y, p, q) = δ(z, p, q).

Lemma 8 For any y, z ∈ S(X) if y ∼ z then t(yn) = t(zn) and t(y1) = t(z1).

Proof. Notice that the sum
∑

q∈[k] δ(y, t(yn), q) is equal to the number of occurrences of
a train of the type t(yn) in the schedule y on positions from 1 to n− 1. Hence

∑

q∈[k]

δ(y, t(yn), q) = lt(yn) − 1.

By the definition of the relation ∼ we get:
∑

q∈[k]

δ(z, t(yn), q) =
∑

q∈[k]

δ(y, t(yn), q) = lt(yn) − 1.

So the trains of the type t(yn) occur lt(yn) − 1 times on positions from 1 to n− 1 in the
sequence z, but trains of the type t(yn) occur lt(yn) times (on positions from 1 to n) in
the sequence z, hence t(zn) = t(yn). The proof of t(y1) = t(z1) is analogue. ut

Theorem 9 For any y, z ∈ S(X) if y ∼ z, then RT (y) = RT (z).

Proof. We can observe that

RT (y) =

(
n−1∑

i=1

m(t(yi), t(yi+1))

)
+ r(t(yn)) =

 ∑

p,q∈[k]

m(p, q)δ(y, p, q)

+ r(t(yn))

From Lemma 8 and y ∼ z, t(yn) = t(zn), we obtain r(t(yn)) = r(t(zn)). From the
definition of ∼ we have that

∀p,q∈[k] δ(y, p, q) = δ(z, p, q)

from above:

RT (y) =

 ∑

p,q∈[k]

m(p, q)δ(y, p, q)

+ r(t(yn))

=

 ∑

p,q∈[k]

m(p, q)δ(z, p, q)

+ r(t(zn)) = RT (z).

ut

Theorem 10 There exist functions m, r such that if y, z ∈ S(X) and y 6∼ z, then
RT (y) 6= RT (z).

Let us denote the equivalence classes of the relation ∼ by [s]∼. By δ([s]∼, p, q) we will
denote the value of δ(y, p, q) for any y ∈ [s]∼. This notation is well-defined since from
the definition of relation ∼ for any y ∈ [s]∼ it holds that ∀p, q ∈ [k] δ(s, p, q) = δ(y, p, q).

By a block of the trains of the type i we denote a sequence of consecutive trains of
type i such that a train directly before and after the block are of any type not equal to
i. Given s ∈ S(X), by bs(i) we denote number of blocks of the trains of the type i.
We define a function R : S(X) → [k]∗ as follows: for s ∈ S(X), R(s) is a sequence
obtained from s by replacing every block of trains of type i by single appearance of i.
Notice that R(s) is a sequence of length

∑
i∈[k] bs(i). Moreover notice that:

δ(R(s), p, q) =

{
δ(s, p, q), p 6= q,

0, p = q.

It is easy to observe that if R(y) = R(z) then y ∼ z. Let R([s]∼) = {R(y) : y ∈ [s]∼}
and R−1(R(s)) = {y ∈ S(X) : R(y) = R(s)}.

Lemma 11 For any s ∈ S(X)

|R−1(R(s))| =
k∏

i=1

l(i)!
(
l(i)− 1
bs(i)− 1

)
.

From above lemma directly follows:

Corollary 12 For any s ∈ S(X)

|[s]∼| = |R([s]∼)| ·
k∏

i=1

l(i)!
(
l(i)− 1
bs(i)− 1

)
.

Hence to count the number of schedules in [s]∼, it is enough to count the number of
sequences in R([s]∼).
Let G[s]∼ = (V[s]∼ , µ[s]∼) be a directed multigraph where µ[s]∼ : V 2

[s]∼
→ N is func-

tion assigning to vertices p, q the number of arcs from p to q. The multigraph is con-
structed as follows: V[s]∼ = [k]∪{0}, for all p, q ∈ [k], µ[s]∼(p, q) = δ([s]∼, p, q), moreover
µ[s]∼(t(sn), 0) = 1 and µ[s]∼(0, t(s1)) = 1. By Eulerian cycle in G[s]∼ we mean a ver-
tex sequence in G[s]∼ containing every pair (p, q) ∈ V 2

[s]∼
as consecutive pair pq exactly

µ[s]∼(p, q) times. By Ĝ[s]∼ = (V[s]∼ , µ̂[s]∼) we denote the multigraph obtained from G[s]∼
by deleting all loops (for each vertex v ∈ V[s]∼ µ̂[s]∼(v, v) = 0).
Let G = (V, µ) be a multigraph, by deg−G(i) =

∑
v∈V µ(v, i) we denote the indegree of

vertex i in graph G, and by deg+
G(i) =

∑
v∈V µ(i, v) we denote out degree of vertex i in

graph G. It can be noted that for all i ∈ [k] it holds that deg−G(i) = deg+
G(i). Moreover

it can by shown that deg−G(i) = bi for i ∈ [k].
The following observation is the key to our algorithm.

Remark 13 Every sequence r ∈ R([s]∼) corresponds to one Euler vertex sequence in
Ĝ[s]∼.

Remark 14 Graph Ĝ[s]∼ is connected for any s ∈ S(X).

For a multigraph G = (V, µ) we define the Kirchhoff matrix K(G) as follows :

K(G)ij =

{
deg−G(i), if i = j,

−µG(i, j), if i 6= j.

For i ∈ [n] we denote by Ki the matrix obtained from K by deleting the i-th row and
the i-th column. By det(K) we denote determinant of matrix K. By ec(G) we denote
number of Euler cycles in G.

Theorem 15 (de Bruijn, van Aardenne-Ehrenfest, Smith, Tutte [1]) Given a multigraph
G = (V, µ) then the number of Eulerian cycles ec(G) is given by:

ec(G) =
t1(G)

∏
v∈V

(
deg−G(v)− 1

)
!∏

i,j∈[k],i 6=j (µ(i, j))!
,

where tv(G) denotes number of trees rooted at vertex v.

Theorem 16 (Tutte Matrix Tree Theorem [5]) Given a multigraph G = (V, µ) with
Kirchhoff matrix K(G), then the number of trees rooted at vertex v is equal to det(Kv(G)).

Theorem 17 For any s ∈ S(X) it holds that

|[s]∼| =
det
(
K1(Ĝ[s]∼)

)∏k
i=1

(
deq−

Ĝ[s]∼
(i)− 1

)
!

∏
i,j∈[k],i 6=j (δ(s, i, j))!

·
k∏

i=1

l(i)!
(

l(i)− 1
deg−

Ĝ[s]∼
(i)− 1

)
.

Proof. Follows directly from the Lemma 11 and the Theorems 15 and 16. ut

6 Algorithm

Instead of enumerating all equivalence classes of relation ∼, we can enumerate all con-
nected Eulerian multigraphs with given vertex degree sequence. To generate only con-
nected graphs with desired properties, we use the reverse search method described in
the next part of the paper. Every graph identifies one ∼ equivalence class therefore cor-
responding schedules have equal running times.
The algorithm generates all graphs. Then sorts them by running time of corresponding
schedules. Then it finds a first equivalence class such that number of schedules in this
class and in proceeding classes is at least α fraction of all schedules and returns its run-
ning time. The following algorithm solves the running time problem:

Algorithm 1 RunningTime(X, t, r, m, α)
1: Generate all graphs for X into S using reverse search.
2: Order the schedules in S by running time in ascending order
3: allSchedulesNumber =

∑
s∈S |[s]∼|

4: τ = 0
5: currentNumberOfSchedules = 0
6: while currentNumberOfSchedules < α · allSchedulesNumber do
7: s = S.Pop
8: currentNumberOfSchedules+ = |[s]∼|
9: τ = RT (s)

10: end while
11: return τ

Functions RT and l are defined in terms of t, r,m as in former part of the paper.

Theorem 18 The RunningTime algorithm returns a valid result.

Proof. The validity of result follows from Theorem 17. ut

Theorem 19 There are at most O(nk
2−1) connected multigraphs with given vertex de-

gree sequence.

From Theorem 19 we know that there are at most O(nk
2−1) connected multigraphs with

given vertex degree sequence. All operations conducted on single graphs take polynomial
time Therefore the complexity of the whole algorithm is at most O(nk

2−1).

7 Algorithm for generating connected graphs

To generate connected graphs efficiently, we can use a method of Avis and Fukuda called
Reverse Search [2]. The main idea of this technique is to define the graph on the set
of objects to generate and perform a search (e.g. breadth-first-search) on its spanning
tree generating one object by visiting each vertex. To be precise: a triple (Γ, Ŝ, f), where
Γ = (V, E), Ŝ ∈ V, f is a mapping V \ {Ŝ} → V, is called local search if
(L1) {v, f(v)} ∈ E for each v ∈ V \ {Ŝ}.
Local search (Γ, Ŝ, f) is called finite local search if
(L2) for each v ∈ V \ {Ŝ} there exists a positive integer i such that f i(v) = Ŝ.
The trace of local search (Γ, Ŝ, f) is a directed sub-graph T = (V, E(f)) where E(f) =
{(v, f(v)) : v ∈ V\{Ŝ}}. T is simply the directed spanning tree of Γ , rooted in Ŝ, defined
by f .

Let (Γ, Ŝ, f) be a finite local search with trace T . As “abstract reverse search” we call
a routine of traversing T and outputting all its vertices. The traversal can be implemented
in any way. In this paper we will conduct the traversal by breadth first search starting
from the sink and traversing all edges in a way opposite to their direction.

By Nµ(v) = {u ∈ V : µ(v, u) > 0} we denote the neighbourhood of vertex v.
By C(V, µ) we denote the number of connected components of graph G = (V, µ). For
µ : V × V → N such that µ(u, v) > 0 we define µ− (u, v) = µ′ by

µ′(p, q) =

{
µ(u, v)− 1, for (p, q) = (u, v),
µ(p, q), for (p, q) 6= (u, v).

For a graph G = (V, µ) a traversal from u to v we call a “bridge traversal” if and
only if C(V, µ) < C(V, µ − (u, v)). By non-bridge neighbours of v we denote the set
NNµ(v) = {u ∈ Nµ(v) : (v, u) is not a bridge traversal}.

For a G = (V, µ) ∈ Gl by
−→
G we will denote a minimal Euler cycle for graph G - a

cycle generated by the following algorithm:

Algorithm 2 MinimalEulerCycle(V, µ)
1: µF = µ, v = 0, u = 0
2: mec = ”empty sequence” {minimal Euler cycle}
3: repeat
4: mec += u {append to the end of the sequence}
5: if NNµF (v) 6= ∅ then u = min (NNµF (v))
6: else u = min (NµF (v)) end if
7: µF = µF − (v, u)
8: v = u,
9: until v = 0

10: return mec

Assuming that we use Tarjan’s [7] algorithm for finding bridges then the time com-
plexity of above algorithm is O(|E|2) where |E| = ∑v∈V deg

+
G(v) is the number of edges

in the graph G.

The algorithm is a realization of Fleury’s algorithm [4] for finding Euler cycle deter-
mining the order in which non-bridge and then bridge edges are traversed. The correct-
ness of the algorithm follows directly from the correctness of Fleury’s algorithm.

Let w, x, y, z ∈ V such that µ(w, x), µ(x, y), µ(y, z) > 0. By t(G, (w, x, y, z)) = (V, µt)
we will denote a multigraph obtained from G by following modification of µ:

µt(p, q) =

µ(p, q)− 1, for (p, q) ∈ {(w, x), (x, y), (y, z)},
µ(p, q) + 1, for (p, q) ∈ {(w, y), (y, x), (y, z)},
µ(p, q), otherwise.

It can be noted that the transformation t preserves the vertex degree sequence and the
connectivity of the graph. It should be noted that we did not assume that vertexes
w, x, y, z are not equal, so it is possible that two, three, or all are equal. It can also
be noted that for every G ∈ Gl and w, x, y, z there exist w′, x′, y′, z′, such that if G′ =
t(G, (w, x−, y, z)), then t(G′, (w′, x′, y′, z′)) = G.

Let ŝ ∈ {0, . . . , k}n and ŝ = (s0, . . . , sn) be a sequence where s0 ≤ . . . ≤ sn. By (s)i
we denote the i-th element of s, by (s)≤i = (s1, . . . , si) we denote the sequence contain-
ing the first i elements of s. By (s)≥i = (si, . . . , sn) we denote the sequence containing
elements of s starting from the i-th element.
Let P (G) = max{i ∈ {0, . . . , n} : (

−→
G)≤i = (ŝ)≤i}.

Let Pv(G) = min{(−→G)P (G)+1, . . . , (
−→
G)n}.

Let PP (G) = min{i > P (G) : (
−→
G)i = Pv(G)}.

Lemma 20 Let G = (V, µ) ∈ Gl. It holds that: PP (G) > P (G) + 1.

Corollary 21 Let G = (V, µ) ∈ Gl. It holds that: PP (G) ≥ 2.

Let f : Gl \ {G[ŝ]∼} → Gl be a function declared as follows:

let h = ((
−→
G)PP (G)−2, (

−→
G)PP (G)−1, (

−→
G)PP (G), (

−→
G)PP (G)+1) then f(G) equals to t(G, h).

Notice that the function f is well defined because of Corollary 21.

Remark 22 It can be noted that function f preserves the first PP (G) − 2 elements of−→
G , i.e.,

−→
G≤PP (G)−2 =

−−−→
f(G)≤PP (G)−2.

By f−1(G) = {H ∈ Gl : f(H) = G} we will denote the inverse function of f .

Lemma 23 Let G ∈ Gl then P (G) ≤ P (f(G)).

Lemma 24 Let G = (V, µ) ∈ Gl. If P (G) = P (f(G)) then PP (f(G)) < PP (G).

Theorem 25 For each G ∈ Gl there exists i ∈ N such that f i(G) = G[ŝ]∼.

Let Γ = (Gl, E) be a graph. {G1, G2} ∈ E if and only if G1 can be obtained from G2

by applying the transformation t to G1 or vice-versa. Let Ŝ = G[ŝ]∼ , it is clear that for
every G ∈ Gl \ {Ŝ} it holds that {G, f(G)} ∈ E .
From above and from Theorem 25 it follows that (Γ, Ŝ, f) is a finite local search and a
reverse search method can be applied to generate all graphs in Gl.

Lemma 26 The time complexity of f(G) is O(n2).

Lemma 27 The time complexity of f−1(G) is O(n6).

Theorem 28 Traversing Γ by the reverse search method outputs elements with maximal
headway of O(n6).

Theorem 29 The computation complexity of the RunningTime algorithm is at most
O(nk

2−1).

References

1. Aardenne-Ehrenfest, van T., and de NG Bruijn. “Circuits and trees in oriented linear graphs.” Simon
Stevin: Wis-en Natuurkundig Tijdschrift 28 (1951): 203.

2. Avis, David, and Komei Fukuda. “Reverse search for enumeration.” Discrete Applied Mathematics
65, no. 1 (1996): 21-46.

3. Bellman, Richard. “Dynamic programming treatment of the travelling salesman problem.” Journal
of the ACM (JACM) 9, no. 1 (1962): 61-63.

4. Lucas, Édouard. Récréations mathématiques. Vol. 1. Gauthier-Villars, 1882.
5. Kirchhoff, Gustav Robert “Über die Auflösung der Gleichungen, auf welche man bei der Unter-

suchung der linearen Verteilung galvanischer Ströme geführt wird” Ann. Phys. Chem, 72 (1847):
497–508

6. Schlechte, Thomas, Ralf Borndörfer, Berkan Erol, Thomas Graffagnino, and Elmar Swarat. “Mi-
cro–macro transformation of railway networks.” Journal of Rail Transport Planning & Management
1, no. 1 (2011): 38-48.

7. Tarjan, R. Endre. “A note on finding the bridges of a graph.” Information Processing Letters 2, no.
6 (1974): 160-161.

8 Appendix

Proof (Theorem 2). First we will show that Fastest-schedule is NP-hard. Let (C, d,B)
be a travelling salesman problem (TSP) instance where C is the set of cities, d : C2 → N
is the distance function and B is the maximal searched tour length. For c ∈ C by i(c)
we will denote index of c in an arbitrarily chosen ordering of C, and by ci we will denote
i-th city in the ordering. We define Fastest-schedule instance as follows: X = C for all
c ∈ X, t(c) = i(c), m(i, j) = d(ci, cj), r = 0, k = B. Every schedule of a given instance
contains every train from X exactly once. Therefore it contains each train of every type
exactly once. From above every schedule corresponds to a travelling salesman tour (a
sequence of types of trains induce travelling salesman tour (TS-tour)). The running
time of a schedule of this instance is equal to the length of the corresponding travelling
salesman tour. Therefore the fastest schedule corresponds to the shortest TS-tour, so
the answer to a given TSP problem is YES, if and only if the answer to the constructed
Fastest-schedule problem is YES.
Moreover we will show that the Fastest-schedule problem is in NP. Given an instance
of the Fastest-schedule problem (X, t, r,m, k) and a certificate C which is a sequence of
trains, we can determine the running time of C by applying the running time formula
in polynomial time. The answer to a given problem is YES, if and only if the running
time of given certificate is less or equal to k. From the above it follows that the Fastest-
schedule problem is NP-complete. ut

Proof (Theorem 3). Without loss of generality we can assume that t(i) ≤ t(j) ⇔
r(t(i)) ≤ r(t(j)) - we relabel train types so trains of types with lower indices are faster.
Let us assume that s is the solution to the Fastest-schedule problem and that s does not
consist of trains ordered by train type. By si we will denote the i-th element of s. By
s′ we will denote the schedule consisting of trains ordered by train types thus ordered
not-decreasing by running time. Let i be the fastest train such that t(si) 6= t(s′i). Let j
be the index of the last appearance of a train of type t(si) − 1. If such train does not
exist, i.e., si is the fastest train, let j = 0. Let us move train si to position j+1 in s. The
conditions from the theorem guarantee that such operation will not increase running
time of the schedule - the condition (1) guarantees that moving the fastest train to the
beginning will not increase the time, and the condition (2) guarantees that moving trains
to positions grater than 1 will not increase running time. After applying this operation
repeatedly, we will obtain s′, with a running time that is not larger than the running
time of s. ut

Proof (Theorem 6). Let 0 be a vertex not in V . Let V ′ := V ∪{0}, E′ := E∪{{0, i} : i ∈
V }, and w′e := we for {i, j} ∈ E and w′e := 0 for e ∈ E′\E. Then each Hamiltonian cycle
in G′ := (V ′, E′, w′) corresponds to exactly one Hamiltonian path in G and vice versa.
Therefore the average weight of all Hamiltonian paths in G equals the average weight of
all Hamiltonian cycles in G′, which is

2
(n+ 1)− 1

∑

e∈E′
we =

2
n

∑

e∈E
we. (4)

ut

Proof (Theorem 10). Let us define r such that ∀i∈S(X) r(i) = 0. Let H be the sequence
of all pairs of train types. Let m(Hi) denote the value of m for the i-th pair from the
sequence H. Let Hi = (a, b). By l(Hi) we will denote max{l(t(a)), l(t(b))}. We define m
as follows: m(H1) = 1 and m(Hi) = 2dlog2

∑i−1
j=1 l(Hj)e+1. The function m is constructed

in such way that when we analyse RT expressed in a binary number system, we can
observe that particular places correspond to a specific pair from H. For a given i values
of RT at indices 2dlog2

∑i−1
j=1 l(Hi)e+1 - 2dlog2

∑i
j=1 l(Hj)e+1 depend only on the value of pair

Hi. So if y, z ∈ S(X) and y 6∼ z, there exist p, q ∈ [k] such that δ(y, p, q) 6= δ(z, p, q). Let
us assume that pair (p, q) has index i in H. Binary notations of RT (y) and RT (z) differ
on one of the following indices: 2dlog2

∑i−1
j=1 l(Hi)e+1 - 2dlog2

∑i
j=1 l(Hj)e+1. ut

Proof (Lemma 11). In order to calculate the total number of schedules in R−1(R(s)) we
have to arrange the trains of every type into certain number of blocks. Type i has to be
arranged into bs(i) blocks. This can be done in l(i)!

(l(i)−1
bs(i)−1

)
ways - first we choose one

of l(i)! permutations and then divide it into the desired number of blocks. To obtain the
final number of the schedules we have to take the product over all train types. ut

Proof (Theorem 19). Given a number of trains n, a number of types k and a vertex
degree sequence l, then every multigraph G with vertex sequence l can be represented as
Kirchhoff matrixK(G). All values in matrixK(G) sum up to n, i.e.,

∑
i,j∈[k]K(G)i,j = n.

From the former we know that the number of unique Kirchhoff matrices is at most the
number of solutions of the following equation: x1 + . . . + xk2 = n (every variable in
the equation corresponds to one value in K(G)). This equation has at most

(
n+k2−1
k2−1

)
=

O(nk
2−1) solutions. ut

Proof (Lemma 20). From the definition of PP (G) we know that PP (G) > P (G), so let
us suppose on the contrary that PP (G) = P (G) + 1. This means that (

−→
G)P (G)+1 =

min{(−→G)P (G)+1, . . . , (
−→
G)n} = ŝP (G)+1, which contradicts the definition of P (G). ut

Proof (Lemma 23). Since from Lemma 20 we know that PP (G) ≥ P (G) + 2, it follows
from Remark 22 that

−→
G≤P (G) =

−−−→
f(G)≤P (G) and thus P (G) ≤ P (f(G)). ut

Proof (Lemma 24). From Remark 22 we know that the first PP (G) − 2 steps of the
MinimalEulerCycle algorithm will be in f(G) the same as in G. Let h = (w, x, y, z) be
the sequence selected in the definition of f . After PP (G)− 2 steps of the MinimalEuler-
Cycle algorithm in f(G) we are visiting vertex w. By µGF we will denote function µF

maintained by algorithm applied to G while visiting w and by µ
f(G)
F when applied to

f(G). There are two cases:
(1) the traversal from w to x is not a bridge traversal in (V, µGF), then the traversal from
w to y is not a bridge in (V, µf(G)

F).
(2) the traversal from w to x is a bridge traversal in (V, µGF), which means thatNNµGF

(w) =

∅. From above it can be shown that NN
µ
f(G)
F

(w) = ∅.
By definition of f , y is vertex with smallest value in (

−→
G)≥P (G)+1. From the definition of

Fleury’s algorithm we also know that NNµGF
(w) is a subset of the set of vertices occur-

ring in (
−→
G)≥P (G)+1. From above and the case analysis in the former part of the proof

we know that the algorithm will traverse from w to y. From the definition of f we know
that (

−→
G)PP (G) = y. From the fact that algorithm traverses from w to y instead of x

we know that (
−−−→
f(G))PP (G)−1 = y. From the definition of f , it follows that Pv(G) = y.

Because P (G) = P (f(G)), we know that also Pv(G) = Pv(f(G)), so Pv(f(G)) = y.
From above it imminently follows that PP (f(G)) = PP (G)− 1 < PP (G). ut

Proof (Thorem 25). From Lemma 23 we know that P (G) ≤ P (f(G)). Let us assume
that P (G) = P (f(G)), then from Lemma 24 we know that PP (f(G)) < PP (G). Because
PP (G) > P (G), there exists a finite j such that P (G) < P (f j(G)). From the former
observation it is clear that there exists a finite i such that P (f i(G)) = n. If P (f i(G)) = n,
then f i(G) = G[ŝ]∼ . ut

Proof (Lemma 26). The evaluation of function f(G) requires to compute
−→
G and func-

tions P, Pv, PP . Former can be done in O(n2) and latter in O(n), which gives final
complexity of O(n2). ut

Proof (Lemma 27). To compute f−1(G), we can enumerate the entire graph H such that
there exist w, x, y, z ∈ V such that t(H, (w, x, y, z)) = G. There are O(n4) sequences
w, x, y, z ∈ V thus we have to enumerate at most O(n4). For each graph H we have to
check if f(H) = G which can be done in a time proportional to O(n2). From the above
we get that the time complexity of f−1 is O(n6). ut

Proof (Theorem 28). When performing a traversal of trace of Γ between outputting
consecutive elements, we have to calculate f−1. Aside from computing f−1, the reverse
search routine has to push computed vertices to a queue which can be done in O(n).
From the above it follows that dominating operation during reverse search is computing
f−1 which from Lemma 27 can be done in O(n6). ut

