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Variable Speed in Vertical Flight Planning

Zhi Yuan, Armin Fügenschuh, Anton Kaier, and Swen Schlobach

Abstract Vertical flight planning concerns assigning cruise speed and altitude to
segments that compose a trajectory, such that the fuel consumption is minimized and
the time constraints are satisfied. The fuel consumption over each segment is usually
given as a black-box function depending on aircraft speed, weight, and altitude.
Without time consideration, it is known that it is fuel-optimal to fly at a constant
speed. If an aircraft is under time pressure to speed up, the industrial standard of cost
index cannot handle it explicitly, while research literature suggest using a constant
speed. In this work, we formulate the vertical flight planning with variable cruise
speed into a mixed integer linear programming (MILP) model, and experimentally
investigate the fuel saving potential over a constant speed.

1 Introduction and Motivation

Planning a fuel-efficient flight trajectory connecting a departure and an arrival air-
port is a hard optimization problem. The solution space of a flight trajectory is four-
dimensional: a 2D horizontal space on the earth surface, a vertical dimension con-
sisting of discrete altitude levels, and a time dimension controlled by aircraft speed.
In practice, the flight planning problem is solved in two separate phases: a horizontal
phase that finds an optimal 2D trajectory consisting of a series of segments; followed
by a vertical phase that assigns optimal flight altitude and speed to each segment.
The altitude and speed can be changed only at the beginning of each segment. This
work focuses on the vertical phase. A vertical flight profile consists of five stages:
take-off, climb, cruise, descend, and landing. Here we focus on the cruise stage,
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since it consumes most of the fuel and time during a flight, while the other stages
are relatively short and have relatively fixed procedures due to safety considerations.
Lovegren and Hansman [5] considered assigning optimal speed and altitude for the
cruise stage, and comparing the optimal vertical profile to the real operating vertical
profiles in USA. A potential fuel saving of up to 3.6% was reported by the verti-
cal profile optimization. However, no time constraint is taken into account in their
computation as in real life. Note that in such case, it is known that the fuel-optimal
speed assignment is to use a constant optimal cruise speed throughout the flight.

A practical challenge in airline operations is to handle delays due to disruptions
such as undesirable weather conditions and unexpected maintenance requirements.
Such delays are typically recovered by increasing the cruise speed, such that the
next connection for passengers as well as for the aircraft can be caught. Speeding
up an aircraft may also be useful, for example, to enter a time-dependent restricted
airspace before it is closed, or when an aircraft is reassigned to a flight which used
to be served by a faster aircraft. The industrial standard cost index was introduced
by aircraft manufacturers to input a value (e.g., between 0 to 999) that reflects the
importance between time-related cost and fuel-related cost, such that optimal flight
speed is controlled. However, this approach cannot handle explicitly hard time con-
straints such as the about-to-close airspace. Aktürk et al. [1] considered increasing
cruise speed in the context of aircraft rescheduling, and handled time constraint ex-
plicitly for scheduling purpose. However, their mathematical model only considered
assigning a constant speed for the whole flight. It leaves an open research questions:
given a flight to be accelerated from its optimal speed, is it more fuel-efficient to
allow variable speed on each segment? We formulate this problem as a mixed in-
teger nonlinear programming (MINLP) model, and present linearization techniques
in Section 2, examine its computational scalability in Section 3 and empirically in-
vestigate the question above using data for various aircrafts.

2 Mathematical Model

The unit distance fuel consumption of an aircraft depends on its speed, altitude, and
weight. Each aircraft’s unit distance fuel consumption data is measured at discrete
levels of each of the three factors. Given speed and weight, the optimal altitude can
be precomputed by enumerating all possible altitudes. Thus the unit distance fuel
consumption Fv,w defined for a speed level v ∈ V between optimal and maximal
speed, and a weight level w ∈W can be illustrated in Figure 1. Other input pa-
rameters include a set of n segments S := {1, . . . ,n} with length Li for all i ∈ S; the
minimum and maximum trip duration T and T ; and the dry aircraft weight W dry, i.e.
the weight of a loaded aircraft without trip fuel (reserve fuel for safety is included in
the dry weight). The variables include the time vector ti for i ∈ S∪{0}, where ti−1
and ti denote the start and end time of segment i; the travel time ∆ ti spent on a seg-
ment i ∈ S; the weight vector wi for i ∈ S∪{0} and wmid

i for i ∈ S where wi−1, wmid
i ,

and wi denote the start, middle, and end weight at a segment i; the speed vi on a
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Fig. 1 The unit distance fuel
consumption (kg per nautical
mile) by aircraft speed (mach
number, from optimal speed
to maximal speed) and weight
(kg) for Airbus 320

segment i ∈ S; and the fuel fi consumed on a segment i ∈ S. A general mathematical
model for the vertical flight planning problem can be stated as follows:

min w0−wn (1)

s.t. t0 = 0, T ≤ tn ≤ T (2)
∆ ti = ti− ti−1 ∀i ∈ S (3)
Li = vi ·∆ ti ∀i ∈ S (4)

wn = W dry (5)
wi−1 = wi + fi ∀i ∈ S (6)

wi−1 +wi = 2 ·wmid
i ∀i ∈ S (7)

fi = Li · F̃(vi,wmid
i ) ∀i ∈ S. (8)

Equation (1) minimizes the total fuel consumption; (2) enforces the flight duration
within a given interval; (3) ensures the time consistency; the basic equation of mo-
tion on each segment is given in (4); the weight vector is initialized in (5) by assum-
ing all trip fuel is burnt during the flight; weight consistency is ensured in (6), and
the middle weight of each segment calculated in (7) will be used in the calculation
of fuel consumption in (8), where F̃(v,w) is a piecewise linear function interpolat-
ing F for all the continuous values of v and w within the given grid of V ×W . F̃ can
be formulated as a MILP submodel using Danzig’s convex combination method [3].
Here we present one of its variants, and drop the index i hereafter for simplification.
The grids of V ×W are first partitioned by a set of triangles K. The grid indices of
the three vertices of each triangle k ∈ K is stored in Nk. Each triangle is assigned
a binary variable yk, yk equals 1 if (v,w) is inside triangle k. We further introduce
three continuous variables for each triangle λk,n ∈ R+ for k ∈ K,n ∈ Nk such that
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∑
k∈K

yk = 1 (9a)

∑
n∈Nk

λk,n = yk ∀k ∈ K (9b)

∑
k∈K,n∈Nk

λk,n ·Vk,n = v (9c)

∑
k∈K,n∈Nk

λk,n ·Wk,n = w (9d)

∑
k∈K,n∈Nk

λk,n ·F(Vn,Wn) = F̃(v,w) (9e)

where (9a) ensures only one triangle is selected, (9b) sums λ of each triangle to 1
only if the triangle is selected, together with (9c) and (9d), the value of non-zero
lambda is determined, such that the fuel estimation at a (v,w) is given by (9e) as a
convex combination of λ and the grid value.

Another difficulty in the model is to handle the quadratic constraint in Equa-
tion (4). It can be linearized by quadratic cone approximations. First we can rewrite
the equality (4) into an equivalent inequality L ≤ v ·∆ t, since neither increasing v
nor ∆ t leads to fuel saving. Applying the variable transformation α = 1

2 (v−∆ t),
τ = 1

2 (v + ∆ t), β =
√

L yields
√

α2 +β 2 ≤ τ , which defines a second-order cone,
and thus can be approximated by linear inequality system as introduced by Ben-Tal
and Nemirovski [2] and refined by Glineur [4]. We introduce continuous variables
α j,β j ∈R for j = 0,1, . . . ,J, and initialize by setting α0 = 1

2 (v−∆ t) and β0 =
√

L.
The approximation level parameter J controls the approximation accuracy. Then the
following constraints can be added:

α j+1 = cos
( π

2 j

)
·α j + sin

( π
2 j

)
·β j, j = 0,1, . . . ,J−1, (10a)

β j+1 ≥−sin
( π

2 j

)
·α j + cos

( π
2 j

)
·β j, j = 0,1, . . . ,J−1, (10b)

β j+1 ≥ sin
( π

2 j

)
·α j− cos

( π
2 j

)
·β j, j = 0,1, . . . ,J−1, (10c)

1
2
(v+∆ t) = cos

( π
2J

)
·αJ + sin

( π
2J

)
·βJ . (10d)

3 Experiments and Results

Four different aircrafts are used for our study: Airbus 320, 380 and Boeing 737
and 777. The characteristics of these aircrafts are listed in Table 1. Our preliminary
experiments for fuel estimation accuracy test confirmed that when dividing a longest
possible 7500 nautical miles (NM) trip into equidistance segments of 100 NM, the
total fuel estimation error is under 1 kg in 200 tons consumption (i.e. a relative error
of under 5 ·10−6). With the same 1 kg error threshold, we experimentally determine
J = 10 for A320 and B737, J = 11 for B777 and J = 12 for A380.
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Table 1 Four aircraft types, Airbus 320, 380, Boeing 737, 777, and their characteristics, such
as optimal and maximal speed (in Mach number), dry weight and maximal weight (in kg), and
maximal distance (in NM). The number of speed grids |V | (between optimal and maximal speed)
and weight grids |W |, and the empirically determined conic approximation level J are also listed.

Type Opt. Speed Max. Speed Dry Weight Max. Weight Max. Distance |V | |W | J

A320 0.76 0.82 56614 76990 3500 7 15 10
A380 0.83 0.89 349750 569000 7500 7 24 12
B737 0.70 0.76 43190 54000 1800 7 12 10
B777 0.82 0.89 183240 294835 7500 8 16 11

We set up instances for each of the four aircraft types by considering different
levels of speed-up and different travel distances. Two levels of speed-up are used:
2.5% and 5%, since the maximum possible speed-up is around 7.2% to 8.5% as
shown in Table 1, higher speed-up settings also do not leave much room for speed
variation. For each aircraft, different typical travel distances are tested, ranging from
800 NM for B737, which is around the distance from Frankfurt to Madrid, to 7500
NM for A380 and B777, which is around the distance from Frankfurt to west coast
of Australia. Each trip is divided into equidistance segments of 100 NM each.

These instances were first tried to be solved without conic reformulation, and
SCIP 3.1 was used as a MINLP solver. Each run was performed on a computing
node with 12-core Intel Xeon X5675 at 3.07 GHz and 48 GB RAM. Only single
thread was used for SCIP. These realistic instances cannot be solved by SCIP within
24 hours. We reduced the number of segments and coarsened the weight grid, and
found the largest instance solved is with 10 segments and 4 weight levels (|W |= 4).

With the conic reformulation, the MINLP model becomes MILP model, so com-
mercial MILP solver such as CPLEX can be applied. We applied CPLEX 12.6,
and each run was performed on the same computing node, with 12 threads per run.
The computational results including the computation time and the gap (if cut off at
24 hours) was shown in Table 2. All the real-world instances are solved to prov-
able optimality or near-optimality (less than 0.05%). Instances with no more than
25 segments can typically be solved within one minute. Increasing the number of
segments seems to increase the computational difficulty noticeably.

We compared also the optimal value of using variable speed as computed above
with an optimal constant speed. Since the fuel consumption is a monotone func-
tion of speed, the optimal constant speed can be computed as 2.5% or 5% over the
optimal speed, respectively. As shown in Table 2, the potential fuel savings of us-
ing variable speed compared to a constant speed are rather small for the relatively
mature aircrafts A320, B737, and B777. The rather new A380 shows the highest
potential fuel savings of up to 0.18%. Although this number seems small, it means
a lot in the highly competitive market of the airline industry. It also shows that there
is room for Airbus to improve the performance of their new flagship airplane.

Our current experiments do not consider the influence of the weather, in par-
ticular, the wind. As also suggested in [5], a strong head wind may favor higher
speed, while flying slower may be advantageous in a strong tail wind. The current
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Table 2 Instances and their computational results on four aircraft types, with two speed-up factors
2.5% or 5%, and various numbers of segments |S|. Each segment is 100 NM, so the total distance
is 100×|S|. Computation time (seconds), gap from optimality, and potential fuel saving are listed.

Aircraft |S| 2.5% Speed Up 5% Speed Up
Comp. Time Gap Fuel Saving Comp. Time Gap Fuel Saving

A320

15 16 0 0.009% 21 0 0.007%
20 28 0 0.009% 32 0 0.009%
25 57 0 0.009% 43 0 0.009%
30 191 0 0.009% 23901 0 0.009%
35 735 0 0.005% 34631 0 0.010%

A380

30 525 0 0.008% 276 0 0.053%
40 1691 0 0.005% 360 0 0.093%
50 524 0 0.012% 14043 0 0.117%
60 86400 0.02% 0.013% 86400 0.02% 0.121%
70 86400 0.02% 0.013% 86400 0.03% 0.180%
75 86400 0.03% 0.017% 86400 0.03% 0.177%

B737

8 2 0 0.013% 4 0 0.020%
12 9 0 0.015% 11 0 0.014%
15 15 0 0.011% 22 0 0.016%
18 17 0 0.013% 31 0 0.023%

B777

25 275 0 0.011% 69 0 0.007%
35 4759 0 0.001% 425 0 0.005%
45 86400 0.02% 0.004% 86400 0.03% 0.015%
55 13552 0 0.001% 86400 0.02% 0.013%
65 86400 0.04% 0.005% 86400 0.05% 0.020%
75 86400 0.05% 0.023% 86400 0.03% 0.020%

MILP model can be easily extended to include wind influence. Practically, the cur-
rent MILP approach may require undesirable long computation time, but its optimal
solution may be used to assess the quality of further heuristic approaches.
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