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The Multiple Traveling Salesmen Problem with Moving
Targets

Anke Stieber · Armin Fügenschuh ·
Maria Epp · Matthias Knapp · Hendrik
Rothe

Abstract The multiple weapons to multiple targets assignment problem
(MWMTAP) can be seen as a multiple traveling salesmen problem with mov-
ing targets (MTSPMT), where the weapons play the role of the salesmen, and
the cities to be visited are the targets. Approaches in the literature for the
MTSPMT include complexity results and approximation algorithms, where
additional restrictions on the targets’ trajectories and velocities are imposed.
Our approach is based on a discretization of time, which leads to large-scale in-
teger linear programming (ILP) problems, that need to be solved in very short
time. Our computational studies on a set of test problems demonstrate, how
many moving targets and salesmen can be handled, and how much solutions
from a fast and simple first come, first served heuristic can be improved.
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1 Introduction

We consider the following multiple weapons to multiple targets assignment
problem (MWMTAP). An area (for example, a military base or an airport)
must be protected from hostile rocket, artillery, or mortar (RAM) fire. Simul-
taneous attacks from different firing positions can be considered. The flight
time for a mortar shell is approximately 30 seconds, whereas the first 5-10
seconds are needed to radar-detect the shell and estimate its trajectory. Based
on the estimated impact point the decision must be taken whether it needs
to be destroyed. We assume that a battery of laser guns is deployed, where
the guns are scattered over (or near) the protected area. Then it has to be
decided which of the available guns to select for the countermeasure. The se-
lected laser then aims at the target for a certain period of time to destroy it.
The further away a target is, the longer a laser has to fire at the target to
safely destroy it. For reasons of simplification we assume that all targets can
be destroyed with the same amount of energy (each laser fires the same period
of time) and we set it to one unit. Here it needs to be taken into account that
a single laser gun cannot fire arbitrarily often without recharging the electric
fuel cells. In our problem, the laser guns are electrified in a decentralized way,
and the energy surplus at one laser gun cannot be shifted to another laser
gun without a temporary shortage. Besides power issues, one tries to assign
the closest laser gun to a target, where “close” does not refer to the physical
distance, but to the angle the laser gun needs to traverse for aiming at the
flying mortar shell. Furthermore, due to safety requirements, a laser should
not shoot across the protected area. However, this rule will be neglected, if
the destruction of the shell is impossible otherwise. The goal is to destroy all
incoming shells, preferably as early as possible (i.e., in minimum time). For
more details on the application we refer to Knapp and Rothe [10].

From a mathematical point, the MWMTAP is an online optimization prob-
lem, meaning that the complete data of the problem instance is not given in
advance. A decision has to be made immediately in an absence of coming
events. In our study we initially solve it as an offline problem. Having devel-
oped a solution algorithm for the offline problem, it can be adapted to solve
the online problem by a moving horizon approach, that is, the data is intro-
duced to the (offline) algorithm at runtime, and the algorithm now needs to
decide how to insert the new data to the already constructed solution, which
means that this solution can be partially reverted.

In literature only special cases of the MWMTAP are addressed and often
restrictions on the movement of the targets are imposed as stated in Sec-
tion 2. Our approach presented here does not impose such restrictions. We
use a discretization of time by introducing a (small) time step. Then we are
able to formulate the problem as a mixed-integer linear programming problem
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on a time-expanded graph. This formulation is of enormous size (in terms of
number of variables and constraints), but still modern standard integer lin-
ear programming (ILP) solvers (such as IBM ILOG CPLEX or Gurobi) can
deal with them to some extent. Furthermore we give heuristic solutions to the
problem describing two variants of a first come, first served assignment strat-
egy and a third parametrized version combining both variants. Computational
results on a test set of problems show how much an ILP solver can improve
the heuristic solutions within a real-time setting. Here we impose a time limit
of 3 seconds, and report the ILP gap of the best available solution compared
to the respective lower bound. As a more theoretical approach, we further let
the solver run until a proven global optimal solution is computed. For larger
instances, this would take up to several hours. Although not practically mean-
ingful today, it reveals the potential of faster computers and more advanced
solution techniques on this problem.

2 Literatur

The offline variant of the MWMTAP belongs to the class of NP hard problems,
since it contains other well-known NP complete problems as subproblems. For
instance, the case of a single laser gun and multiple shells that do not move in
the sky can be seen as an instance of the classical traveling salesman problem
(TSP), which is known to be theoretically difficult, see Garey and Johnson [3].
For a survey on the TSP we refer to Lawler et al. [11] or Reinelt [14].

The case of a single laser gun and multiple moving shells corresponds to a
problem that was more recently described in the literature as the “traveling
salesman problem with moving targets” (TSPMT). Several variants of this
problem are addressed in Helvig et al. [5,6]. The authors only consider targets
moving with constant velocity. An approximate algorithm is given in case the
number of targets is sufficiently small and for the one dimensional TSPMT.
For the TSPMT with resupply, where salesmen must return to the origin
for resupply after intercepting each target an exact algorithm is proposed
assuming the targets move to the origin and are far away from the origin or
move slowly. The authors also describe a variant with multiple salesmen at
the same maximum speed. An exact algorithm is given for the case when all
targets have the same speed. However, these algorithms are not applicable to
the general case of TSPMT.

Jiang et al. [8] present a solution approach based on genetic algorithms
for the TSPMT with a fixed number of targets (cities), that means all targets
are visible during the whole considered time horizon. Further assumptions are
made to the movement of the targets, such as constant velocities and a restric-
tion to the two dimensional space. The authors develop a genetic algorithm
and compare two different crossover operators on a randomly generated test
set.

Jindal et al. [9] also address a special case of the TSPMT. They impose the
following assumptions. All targets start from their starting position and move
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away from an origin, they traverse on a straight line (one dimension) and with
constant velocity. The authors propose an algorithm for this one dimensional
case of TSPMT and consider two distinct objective functions, minimum total
time and minimum total distance. The algorithm is evaluated with test sets
of two and three targets.

The TSPMT with resupply, where salesmen must return to the origin af-
ter intercepting each target, is also a common application in the literature.
Liu [12] discusses this case of the TSPMT with the restriction, that all targets
move towards the origin with constant velocities. Additionally, an algorithm
is proposed, where one target traverses away from the origin and has positive
acceleration.

To solve the offline version of the MWMTAP we present a computational
approach that does not impose restrictions on the movement of the targets.
The moving targets can move in three dimensions, and also with varying accel-
eration and on arbitrary trajectories (although parabola-shaped trajectories
would be sufficient for our application). The targets also do not necessarily
need to travel from or to the same origin or destination, as in some of the
existing approaches. Furthermore, we can handle the case of one as well as
several salesmen (i.e., laser guns).

3 A Mathematical Model

We introduce some notation to formulate the MTSPMT as an optimization
problem. We assume a finite time horizon [0, T ]. Let V = {1, . . . , n} be a set of
nodes (cities in the MTSPMT, targets in the MWMTAP) and A ⊆ V × V be
a set of arcs (roads in the MTSPMT, gun movements in the MWMTAP). Let
W = {1, . . . , w} be a set of salesmen (weapons in the MWMTAP). The time
(or distance) for traveling from node i to node j for salesman k at time t is
given by the function ci,j,k : [0, T ]→ R+ ∪ {∞}. That is, ci,j,k(t) denotes the
travel time (distance) between i and j when salesman k arrives in j at time t.
In the MWMTAP the targets are only visible within a certain time window,
and thus we have ci,j,k(t) = ∞ for all t outside this window. The goal is to
assign exactly one salesman fromW to each node from V such that the sum of
all traveled distances of all salesmen (that is, the movements of the weapons
for aiming at the targets) is minimal.

To give a time-continuous formulation of the MTSPMT we introduce bi-
nary tour assignment variables xi,j,k ∈ {0, 1} and tour flow variables ti,j,k ∈
[0, T ] as used by Gavish and Graves [4]. Here xi,j,k = 1 describes the decision
of sending salesman k from i to j within the considered time horizon, while
ti,j,k represents the arrival time of k traveling from i to j. In addition continu-
ous variables ti,k ∈ [0, T ] are introduced to model the time, at which salesman
k ends his tour. Then this problem is formulated as a bi-level flow problem,
with a flow of the salesmen and a flow of the arrival times. Both flows are
combined using a capacity constraint.
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The objective function is to minimize the total distances of all salesmen
(total movements of all lasers):

∑

k∈W

∑

(i,j)∈A
ci,j,k(ti,j,k)xi,j,k → min . (1)

The following constraints are derived from the application. Each node must
be visited exactly once by exactly one salesman. Therefore we formulate the
constraint that each node must be entered once:

∑

k∈W

∑

i:(i,j)∈A
xi,j,k = 1, ∀ j ∈ V. (2)

Each salesman can do at most one tour:
∑

j∈V
xi,j,k ≤ 1, ∀ i ∈ V, k ∈ W. (3)

The following constraint ensures the flow conservation of the salesmen flow.
Each salesman continues his tour after arriving at a node or he ends his tour,
then the node can be regarded as the sink of the salesman flow:

∑

i∈V
xi,j,k ≥

∑

i∈V
xj,i,k ∀ j ∈ V, k ∈ W. (4)

In order to couple both flows the following capacity restriction is given. If
salesman k does not travel from i to j, the corresponding arrival time cannot
take a positive value:

ti,j,k ≤ T · xi,j,k ∀ (i, j) ∈ A, k ∈ W. (5)

The flow conservation of the arrival time flow ensures that for each salesman
the arrival time at a node j of the tour and the travel time from j to the next
node i cannot be greater than the real arrival time at i. In fact it may be less
since waiting is permitted for all j ∈ V. If salesman k finishes the tour at j
the inequality reduces to the fact, that the arrival time in j cannot be greater
than the finishing time tj,k of the tour. tj,k takes positive values if and only if
k ends the tour in j. These constraints are formulated as follows:

∑

i∈V
ti,j,k +

∑

i∈V
cj,i,k(tj,i,k)xj,i,k ≤

∑

i∈V
tj,i,k + tj,k ∀ j ∈ V, k ∈ W. (6)

tj,k ≤ T ·
(

1−
∑

i∈V
xj,i,k

)
∀ j ∈ V, k ∈ W (7)

Summing up, we aim to solve the following optimization problem:

min{(1) | (2), (3), (4), (5), (6), (7), (8)
x ∈ {0, 1}A×W , t ∈ [0, T ]A×W , t ∈ [0, T ]V×W}.
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The presented time-continuous formulation of the MTSPMT is complex
and no appropriate solver is available. In order to apply a standard ILP solver
we give an ILP formulation of the MTSPMT. Therefore we introduce a time
discretization. To this end, let m be an integer number. Then the step size
is defined by ∆ := T/m. The set of all time steps is T := {0, . . . ,m}. The
distance function c is only evaluated at the discrete points in time defined
by t` := ` · ∆. As abbreviation we set c`i,j,k := ci,j,k(t`). The travel time is
aligned to discrete time steps by δ`i,j,k := dc`i,j,k/∆e. To refer to the energy
consumption restriction denote by Lk the number of nodes that can be visited
within each hk consecutive time steps by k ∈ W.

We introduce a family of binary decision variables x`i,j,k ∈ {0, 1}. Here
x`i,j,k = 1 shall represent the decision of sending traveling salesman k from i
to j, arriving in j at time step ` (i.e., at time t`).

The objective is to minimize the total distance for all movements of all
salesmen: ∑

k∈W

∑

(i,j)∈A

∑

`∈T
c`i,j,kx

`
i,j,k → min . (9)

As in the formulation above, each node must be visited exactly once by exactly
one salesman: ∑

k∈W

∑

i:(i,j)∈A

∑

`∈T
x`i,j,k = 1, ∀ j ∈ V. (10)

The following flow conservation constraints ensure the compatibility of the
time flow, where each node at which a salesman ends his tour can be regarded
as the sink of the flow:

∑

i:(i,j)∈A
x`i,j,k ≥

∑

i:(j,i)∈A
x
`+δ`

j,i,k

j,i,k , ∀ j ∈ V, k ∈ W, ` ∈ T . (11)

At each point in time, each salesman can do at most one trip:
∑

(i,j)∈A
x`i,j,k ≤ 1, ∀ k ∈ W, ` ∈ T . (12)

If energy consumption is crucial, then we can limit the number of visits per
salesman within a certain time period:

∑

(i,j)∈A

t+hk∑

`=t

x`i,j,k ≤ Lk, ∀ k ∈ W, t ∈ T , t ≤ |T | − hk. (13)

Summing up, we aim to solve the following optimization problem:

min{(9) | (10), (11), (12), (13), x ∈ {0, 1}A×W×T }. (14)

This problem is NP-hard, since it is a generalization of the classical TSP,
which is NP-hard. NP-hardness means that the corresponding decision prob-
lem is NP-complete. It is unlikely that a polynomial-time exact algorithm can
be developed to solve (14).
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4 Heuristic Solutions to the Model

We solve model (14) by addressing it from two sides. First, we develop a primal
heuristic that assigns targets to salesmen on a first come, first served basis.
Then we compute a dual bound by solving the linear programming relaxation
of (14). The dual bound is further improved by adding cutting planes and a
branch-and-bound procedure. The primal solution here serves as a first initial
upper bound, which is replaced, in case further integer feasible solutions with
better objective values are found. For more details on the general solution
process we refer to Nemhauser and Wolsey [13] or to the survey of Fügenschuh
and Martin [2]. Our heuristic assigns targets to the salesmen on a first come,
first served (or first-in, first-out, FIFO) strategy. We implemented this basic
strategy in three variants.

Least time. Each target is defined by a lower and an upper bound in time.
It has to be visited by exactly one of the salesmen in that time period.
From the list of unassigned targets we select the one that emerges first.
Then we compute the distances and travel times from all salesmen to that
target. We assign the target to that particular salesman that is able to
be at the target at the earliest possible point in time, even if he needs to
travel a longer distance compared to other salesmen nearby. Additionally,
this particular salesman is not allowed to violate the energy consumption
restriction. If this regularization is fulfilled the target is assigned to this
salesman. As long as the salesman has not reached his destination target
he is prohibited from further assignments.

Least distance. In this variant, we select the target that emerges earliest
in each step of the heuristic. We then check for each salesmen if he can
intercept the target at all, and at what point in time he would have to
travel the least distance to meet the target. We then assign the target to
that particular salesman that has to travel the least distance and fulfills
the energy consumption restriction. In this case the salesmen are allowed
to wait to use the least distance to catch the target rather than intercept
it as early as possible.

Since both heuristics are very fast, we can allow to run them both. It
turns out that the first strategy (least time) is more robust in terms that it
more often finds a feasible solution. The second strategy (least distance) in
several cases is not able to find a feasible solution. It focuses on the traveled
distances too much, so that the salesmen wait too long to travel to a target
with least distance and, as a result, are not able to catch targets, that emerges
only slightly later. However, if it does find a feasible solution, it in principle
is better (objective function value) than the one found by the ’least time’
strategy. The objective function values of both heuristic variants are computed
as the sum of traveled distances of all salesmen. Obviously, the distance variant
is advantageous and hence results in better starting solutions.

To overcome the drawbacks of both heuristics we combine both variants to
generate a third heuristic, which is robust and yields good starting solutions.
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We applied a parametrized heuristic described by Fügenschuh [1]. This method
is based on a parametrized scoring function, that is linear in the parameters.

Parametrized heuristic. In each iteration we select the unassigned target, that
emerges first. Then for each available salesman it is checked if the target
can be reached and for which time steps. The parametrized scoring function
si,j is a mapping si,j : Q2 → Q, where i ∈ W is a salesman and j ∈ V is the
selected target. In each step of the heuristic the salesman, who fulfills the
energy consumption restriction and minimizes the parametrized scoring
function

si,j(λ1, λ2) := λ1d
tl
i,j + λ2tl, (15)

where dtli,j denotes the distance from the current position of salesman i to
the location of target j at time tl, is assigned to the selected target. The
first part of the scoring function stems from the heuristic variant based on
least distances while the second part is taken from the least time heuristic.

Since the local selection of variables and hence the entire heuristic solution
depends on the choice of λ ∈ Q2, we have to find an appropriate vector λ to
yield a reasonable good heuristic. As we are looking for a robust and good
heuristic λ describes a compromise between the first two variants. Let z(λ) be
the objective function value for the heuristic solution with parameter vector λ.
Now we are faced with the problem to find a λ with z(λ) ≤ z(µ) for all µ ∈ Q2.
In [1] it is shown that the parameter domain is bounded to the surface of the
unit sphere (in our case to the circumference of the unit circle) in the euclidean
space. Since a straightforward or randomized sampling over the surface turns
out to be inefficient the author used an algorithm called improving hit-and-
run (IHR for short), to find the λ vector. IHR was introduced by Zabinsky
et al. [15] and is a randomized Monte-Carlo algorithm for global optimization
problems. It is proven that for the class of positive definite quadratic programs
the expected number of function evaluations is polynomial (O(n5/2)).

We also applied this algorithm to determine the weights λ controlling the
parametrized scoring function. Within this procedure the third heuristic is
called to obtain the corresponding objective function value z(λ). The basic
steps executed by the IHR are the following: In the first iteration k := 0
an initial λ0 is chosen and the corresponding z(λ0) is computed. The next
step is to generate a new candidate point wk+1 on the boundary of the unit
circle. Therefore we randomly choose a direction dk on the circle surface, which
means ”go right” or ”go left”. With a random selection of a distance tk > 0
we obtain the candidate point wk+1 := λk + tk · dk so that wk+1 lies on the
part of the circle boundary chosen by dk. If the candidate point is improving,
i.e. z(wk+1) < z(λk) then λk+1 := wk+1, otherwise λk+1 := λk. The steps are
repeated until a stopping criterion is met.

The best solution (objective function) of the first two described heuristic
variants and the parametrized one with IHR is then used as the starting so-
lution in the branch-and-bound procedure. Having a feasible solution early in
the branch-and-bound search helps to reduce the overall solution time. Any
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such feasible solution is an upper bound on the optimal value of (14). When
the objective function at some node of the branching tree is already greater or
equal than an available feasible solution, the tree can be pruned at that node,
see [13] or [2].

5 Computational Results

We applied our method described above to a set of randomly generated test
problems. We created a total of 36 instances of different sizes, which can
be found in Table 1. An instance is generated by specifying the number of
lasers/salesmen (column ’ns’ in Table 1) and the number of targets (column
’nt’). Motivated by our application, we chose values between 1 and 3 for the
salesmen and 6 to 24 for the moving targets. The targets are assumed to have
a constant traveling speed (column ’st’). The salesmen have a maximum trav-
eling speed (column ’ss’), and their actual traveling speed can be any value
less or equal to the maximum speed. In particular, waiting is also permit-
ted for the salesmen. We tested three different combinations of target and
salesmen speed: 20-200 (slow targets, fast salesmen), 40-100 (slightly faster
targets, slightly slower salesmen), and 60-60 (targets and salesmen traveling
at the same speed). The values refer to the number of length units that are
traversed per time unit. In all instances, the salesmen start their tours in an
initial “home” location, based at the center of the operating space, which is
a square of size 500 length units. Due to visualization reasons the trajectories
of the targets are straight lines in a two dimensional space of random lengths
between 100 and 400 length units. The method, however, is capable to handle
also non-linear trajectories in a three dimensional space.

The size of the resulting ILP models is shown in the next three columns
of Table 1: ’var’ refers to the number of (binary) decision variables, ’cons’
shows the number of linear constraints, and ’nz’ gives the number of nonzero
entries in the constraint matrix of the problem. We apply the three variants
of the first come, first served heuristic assignment strategy to all of our test
instances. If we get more than one feasible solution for an instance, we will
take the one with the lowest objective function value. For the parametrized
heuristic, we applied the IHR algorithm, which evaluates the parametrized
scoring function in each iteration. As stopping criterion we set a time limit of
one second. Depending on the selected problem instance from our test set the
number of IHR iterations ranges from a size of 3 · 105 to 4 · 106. To find the
best incumbent solution of this heuristic, by far less iterations are needed. For
half of the 36 instances the solution was found within the first 100 iterations.
The highest iteration number has a size of 104, that means the number of
iterations can be reduced at least to this size. The resulting components of the
vector λ for all test instances are visualized in Figure 1. Most of the values
concentrate in the top center of the picture, where λ1 ≈ 0.05 and λ2 ≈ 1.0.
Nevertheless, several instances have their best values significantly deviating
from this point. We apply all three heuristic variants to the test set of 36
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Fig. 2 Instance 27. First: Least time heuristic solution, second: Least distance heuristic
solution, third: Parametrized heuristic solution.

problem instances. It turns out that the parametrized heuristic yields the best
incumbent solutions with respect to the objective function for all test instances.
To directly contrast all three variants, we use instance 27 as one example
MTSPMT instance to compare the three solutions. Figure 2 visualizes the
heuristic solutions for this instance consisting of 3 salesmen (maximum speed:
60) and 6 targets (speed: 60). The trajectories are presented as straight lines
with points for each time step (the corresponding time values are given in
grey numbers). All salesmen start their tours in the center and the different
tours are visualized by a solid, dashed and dash-dotted green line respectively.
The corresponding objective function values are 1288.86 (least time), 726.18
(least distance) and 718.91 (parametrized). The sum of traveled distances in
the solution of the parametrized heuristic is only slightly better than in the
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least distance solution. It can be seen, that the salesman, who intercepts only
one target (dashed line) travels a shorter distance in the second figure, but the
salesman, who intercepts three targets (solid line) moves a shorter distance in
the third graphic. The decision of the latter salesman was more influenced by
the least time variant and results in a better objective function value.

The values of all three heuristics are given in the columns ’fcfsT’ (least
time), ’fcfsD’ (least distance) and ’fcfsP’ (parametrized) of Table 1. The re-
sulting value used as the starting MIP value is shown in column ’fcfs’ of Table 2.
In all of our 36 instances the IHR algorithm with the parametrized heuristic
variant provides the minimum objective function values.

There are no CPU times reported for the heuristic runs, because the least
time and least distance heuristics solve each problem in virtually no time
and for the Parametrized variant we set the time limit to one second. Our
computational experiments were carried out on a Mac mini computer running
the MacOS operating system with an Intel Core i7 running at 2.6 GHz on 4
cores, 6 MB L3 cache, and 16 GB 1600 MHz DDR3 RAM. As solver for the
ILPs we used CPLEX 12.5.1 ([7]). The relative duality gap (i.e., the difference
between upper and lower bound divided by the primal bound) was set to 0.0%.
Other than that we used the solver’s default settings.

We use the heuristics’ results as starter for the ILP branch-and-cut process.
We solve each model twice, once with a three seconds time limit and once
with unlimited time. The objective function value of the best solution found
after three seconds is given in column ’sol3s’ of Table 2, and the remaining
ILP gap can be found in column ’gap3s’; its value is computed as gap3s =
(sol3s − lb3s)/sol3s · 100%, where lb3s is the dual (lower) bound value after
three seconds. The exact time in seconds used to solve the instances with a
limit of three seconds is given in column ’et3s’. As one can see, in 33 of the 36
instances, the ILP solver was able to find a better solution that requires less
movements from the salesmen. In 30 out of 36 instances, the solver was even
able to prove that its solutions were indeed global optimal. Often the solver
finds the global optimal solution relatively fast, but it takes a long time to
prove optimality.

For curiosity reasons, we raised the time limit to infinity and solved each
instance to proven optimality. The objective function values of the global op-
timal solutions are shown in column ’opt’ of Table 2, and the corresponding
computation times can be found in column ’time’. It turns out that those
instances where the targets are slow and the salesmen are fast are particu-
larly difficult for the ILP solver. These instances have the longest total time
horizon, and due to the potential speed of the salesmen the largest amount of
possible tours for the salesmen. This results in problem instances with a high
number of binary variables, and leaves a higher burden in finding an optimal
combination to the ILP solver.

As far as energy consumption is concerned all salesmen act identically. To
test the behavior of our instances according to the restriction we applied dif-
ferent energy consumption parameters Lk and hk (limit of nodes Lk, that can
be visited by each salesman in time period hk). According to our application
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Table 1 Instances, problem sizes and heuristic solutions.

inst ns nt st ss var cons nz fcfsT fcfsD fcfsP
1 1 6 20 200 1481 98 12677 1430.23 failed 1319.33
2 1 6 40 100 809 97 9599 1398.48 1045.43 970.90
3 1 6 60 60 299 128 4474 1462.78 1198.78 1198.78
4 1 12 20 200 8546 212 137751 3171.25 failed 2189.07
5 1 12 40 100 2285 209 39649 3645.92 2744.64 2712.51
6 1 12 60 60 1673 294 35572 3368.57 failed 2985.78
7 1 18 20 200 16331 309 347228 5411.92 failed 4314.78
8 1 18 40 100 6759 346 140895 6493.76 3702.97 3689.38
9 1 18 60 60 3280 421 70909 5260.21 3923.58 3765.81
10 1 24 20 200 27731 419 575744 7693.21 failed 6516.21
11 1 24 40 100 9508 421 203828 7321.97 5547.79 5407.57
12 1 24 60 60 6057 598 139795 7254.23 failed 5018.45
13 2 6 20 200 2878 168 11394 1257.68 675.75 618.14
14 2 6 40 100 1382 136 5444 1509.01 702.78 702.78
15 2 6 60 60 510 130 4602 1573.27 797.56 720.60
16 2 12 20 200 16226 364 184782 3428.24 failed 1825.18
17 2 12 40 100 4172 262 58888 3704.98 1504.72 1425.74
18 2 12 60 60 3104 352 61810 3101.40 failed 1907.65
19 2 18 20 200 31670 508 507976 3923.79 2778.70 2679.61
20 2 18 40 100 12940 482 265290 5031.06 2270.65 2236.21
21 2 18 60 60 6232 504 130058 4271.83 2240.77 2240.77
22 2 24 20 200 53952 662 926338 6195.71 failed 4118.06
23 2 24 40 100 18364 550 363994 7045.67 4001.87 3587.76
24 2 24 60 60 11648 692 254872 6184.46 3927.99 3532.10
25 3 6 20 200 4323 249 17115 902.98 599.16 599.16
26 3 6 40 100 1551 180 6087 967.57 614.81 575.34
27 3 6 60 60 537 144 2070 1288.86 726.18 718.91
28 3 12 20 200 23808 504 142068 2764.59 failed 1408.41
29 3 12 40 100 6033 357 84285 2666.85 1455.93 1186.11
30 3 12 60 60 4455 414 76065 2632.83 1236.92 1236.92
31 3 18 20 200 45963 693 505197 3471.88 2279.59 1872.53
32 3 18 40 100 18591 618 367719 4964.80 1830.64 1784.35
33 3 18 60 60 8877 591 180324 4274.46 2419.63 2323.75
34 3 24 20 200 78555 903 1187280 6006.59 failed 3549.14
35 3 24 40 100 26727 705 507111 6653.59 2369.77 2359.37
36 3 24 60 60 17166 840 358611 6080.76 2478.73 2277.00

this means, that a laser gun k can destroy at most Lk targets in each time
period hk, the free time is used to recharge the battery. Table 3 shows the ob-
jective function values and the corresponding computing times for two selected
instances. It can be seen, that for small values of Lk and high values of hk in
most cases the instances are getting more difficult and their computing times
rise. In the case Lk = 6 and hk = 6 the energy consumption restriction is re-
dundant. The corresponding objective function value is equal to the objective
function value of the problem without consideration of energy consumption.
For our computations we set the limit of nodes Lk = 5 and the time period
hk = 9. For laser guns, that are currently used in the described application a
15 minutes recharging time is needed after 60 seconds of firing.

For one of the instances in our test set, we graphically compare the solutions
found by the best heuristic and the exact method. The upper image in Figure 3
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Table 2 Instances, start heuristic and exact solutions.

inst ns nt st ss fcfs sol3s gap3s et3s opt time
1 1 6 20 200 1319.32 905.60 0.00 0.15 905.60 0.14
2 1 6 40 100 970.90 962.86 0.00 0.02 962.86 0.02
3 1 6 60 60 1198.77 1142.19 0.00 0.01 1142.19 0.01
4 1 12 20 200 2189.06 1828.25 0.00 2.66 1828.25 2.92
5 1 12 40 100 2712.50 2664.37 0.00 0.07 2664.37 0.08
6 1 12 60 60 2985.78 2729.20 0.00 0.06 2729.20 0.06
7 1 18 20 200 4314.77 3185.62 23.02 3.02 3004.44 13.93
8 1 18 40 100 3689.38 3503.40 0.00 0.26 3503.40 0.27
9 1 18 60 60 3765.81 3652.00 0.00 0.12 3652.00 0.12
10 1 24 20 200 6516.21 6516.21 41.81 3.03 4403.24 16.96
11 1 24 40 100 5407.57 5174.88 0.00 0.45 5174.88 0.49
12 1 24 60 60 5018.44 4703.86 0.00 0.22 4703.86 0.22
13 2 6 20 200 618.13 576.63 0.00 0.07 576.63 0.07
14 2 6 40 100 702.77 697.70 0.00 0.03 697.70 0.03
15 2 6 60 60 720.59 634.96 0.00 0.02 634.96 0.02
16 2 12 20 200 1825.18 1100.37 0.00 2.34 1100.37 2.35
17 2 12 40 100 1425.73 1315.64 0.00 0.08 1315.64 0.08
18 2 12 60 60 1907.65 1307.79 0.00 0.04 1307.79 0.04
19 2 18 20 200 2679.60 1997.15 32.02 3.03 1578.16 20.41
20 2 18 40 100 2236.20 1584.84 0.00 0.34 1584.84 0.44
21 2 18 60 60 2240.76 2108.52 0.00 0.14 2108.52 0.14
22 2 24 20 200 4118.05 4118.05 47.68 3.03 2615.41 255.30
23 2 24 40 100 3587.76 2890.91 0.00 1.88 2890.91 1.86
24 2 24 60 60 3532.10 3147.53 0.00 0.71 3147.53 0.66
25 3 6 20 200 599.16 516.44 0.00 0.07 516.44 0.07
26 3 6 40 100 575.33 570.61 0.00 0.03 570.61 0.02
27 3 6 60 60 718.91 668.74 0.00 0.02 668.74 0.01
28 3 12 20 200 1408.40 1099.27 0.00 2.17 1099.27 2.14
29 3 12 40 100 1186.10 1111.46 0.00 0.19 1111.46 0.18
30 3 12 60 60 1236.92 1058.12 0.00 0.06 1058.12 0.06
31 3 18 20 200 1872.52 1425.85 10.15 3.01 1372.44 6.97
32 3 18 40 100 1784.35 1392.47 0.00 0.78 1392.47 0.74
33 3 18 60 60 2323.75 1963.98 0.00 0.44 1963.98 0.45
34 3 24 20 200 3549.14 3549.14 99.99 3.08 1963.97 4714.07
35 3 24 40 100 2359.36 1968.44 0.00 2.46 1968.44 2.47
36 3 24 60 60 2276.99 1785.85 0.00 0.48 1785.85 0.47

Table 3 Objective function values (ofv) and computing times (ct) for the energy consump-
tion restriction with different parameters.

hk = 6 hk = 9 hk = 12
inst4 ofv ct ofv ct ofv ct
Lk = 3 1971.44 (12.49) 2431.70 (1.73) failed (1.33)
Lk = 4 1808.49 (3.30) 1961.42 (9.31) 2209.87 (2.26)
Lk = 5 1788.88 (2.59) 1828.25 (2.74) 1861.00 (2.26)
Lk = 6 1788.88 (2.48) 1805.90 (2.07) 1828.25 (3.11)
inst19 ofv ct ofv ct ofv ct
Lk = 3 1805.80 (578.87) 2056.18 (2786.67) 3278.73 (29.47)
Lk = 4 1667.97 (31.19) 1744.93 (170.18) 2002.52 (4374.31)
Lk = 5 1563.21 (7.12) 1578.16 (19.39) 1781.50 (1320.31)
Lk = 6 1531.42 (11.92) 1554.58 (15.98) 1735.18 (618.54)
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Fig. 3 Instance 16. Top: heuristic solution, bottom: exact solution.

shows the result of the third first come, first served assignment strategy. The
two salesmen are initially located at the center of the image, from where they
start their tours, visualized as solid and dashed lines. For the lasers in the
application that would mean that both lasers are located in the same position,
and initially point in the same direction. The tours of the salesmen in these
images correspond to angles of the lasers pointing in the sky. Note that our
methods can still be applied, if the lasers are installed in different positions
and point in different directions. According to Table 2 the heuristic has an
objective function value of 1825.18 units. In the lower image of this figure, the
global optimal solution is depicted. It was found after 2.34 seconds and has
an objective function value of only 1100.37 units. So the necessary movements
could be reduced in this particular case by almost 40%.

6 Conclusion

We gave an integer programming formulation for the multiple traveling sales-
men problem with moving targets that is based on a discretization of time.
It turns out that modern ILP solvers are able to solve instances of relevant
size for a weapon-to-target assignment problem in reasonable short time (less
than three seconds). The solutions often are already global optimal. In many
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cases, the best feasible solution that was found after three seconds improves
the one that was found by the parametrized first come, first served heuristic
with IHR. For future research the model can be extended to include additional
restrictions. In our application it could be very useful that more than one laser
gun aim at one target to save energy or to destroy the target faster. In addi-
tion, security restrictions should be considered, that means the lasers are not
allowed to fire across the protected area to prevent damage. In this case only
a part of the available lasers are permitted to aim at a target depending on
the direction from which the target comes from. This restriction would reduce
the number of possible solutions. As a third extension the energy consump-
tion restriction should be mentioned. Different firing times related to different
laser-target distances can be included into our model as well.
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2. Fügenschuh, A., Martin, A.: Computational integer programming and cutting planes.
In: R.W. K. Aardal G. Nemhauser (ed.) Handbook on Discrete Optimization, Series
Handbooks in Operations Research and Management Science, vol. 12, pp. 69 – 122.
Elsevier (2005)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, New York (1979)

4. Gavish, B., Graves, S.: The traveling salesman problem and related problems. Tech.
Rep. OR 078-78, Operations Research Center, Massachusetts Institute of Technology
(1978)

5. Helvig, C., Robins, G., Zelikovsky, A.: Moving-Target TSP and Related Problems. In:
A.P. G. Bilardi G. F. Italiano, G. Pucci (eds.) Proceedings of the European Symposium
on Algorithms, Lecture Notes in Computer Science, vol. 1461, pp. 453 – 464. Springer
Verlag, Berlin (1998)

6. Helvig, C., Robins, G., Zelikovsky, A.: The moving-target traveling salesman problem.
Journal of Algorithms 49(1), 153 – 174 (2003)

7. IBM ILOG CPLEX: Information available at http://www.ibm.com/software/

integration/optimization/cplex/ (2013)
8. Jiang, Q., Sarker, R., Abbass, H.: Tracking moving targets and the non-stationary trav-

eling salesman problem. Complexity International 11, 171 – 179 (2005)
9. Jindal, P., Kumar, A., Kumar, S.: Multiple Target Intercepting Traveling Salesman

Problem. International Journal on Computer Science and Technology 2(2), 327 – 331
(2011)

10. Knapp, M., Rothe, H.: Concept for Simulating Engagement Strategies for C-RAM Sys-
tems using Laser Weapons. In: Proceedings of the DMMS (2012)

11. Lawler, E., Lenstra, J., Rinnooy, A., Shmoys, D.: The Traveling Salesman Problem: a
Guided Tour of Combinatorial Optimization. John Wiley and Sons, Chichester, New
York (1985)

12. Liu, C.H.: The Moving-Target Traveling Salesman Problem with Re-
supply. Tech. rep., The National Chung Cheng University Library,
http://ccur.lib.ccu.edu.tw/handle/987654321/7877 (2013)

13. Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization. Wiley Inter-
science, New York (1988)

14. Reinelt, G.: The Traveling Salesman: Computational Solutions for TSP Applications.
Springer Verlag, Berlin (1994)

15. Zabinsky, Z.B., Smith, R.L., Mcdonald, J.F., Edwin, H., Kaufman, D.E.: Improving
hit-and-run for global optimization. Journal of Global Optimization 3, 171–192 (1993)




