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Aspects of Time in Mixed-Integer (Non-) Linear Optimization

Armin Fügenschuh

George Dantzig [6] reported that his linear programming algorithm was criti-
cized right after his inaugural presentation in 1948 [4] for not being able to deal
with nonlinear problems that are ubiquitous in real-world applications. However,
by using linear inequalities and piecewise linear approximations, most nonlinear
functions that are encountered in such applications can be sufficiently approxi-
mated. Over the past six decades, several researchers published model formula-
tions to model a piecewise linear function (that approximates a given nonlinear
function) in one or several dimensions, for example [22, 5, 2, 1, 28, 24, 21, 23, 29,
30]. These formulations differ in the way they use binary variables and the number
of binary variables. All these approaches have in common that the piecewise-linear
function has to be defined before the model is formulated, and does not change
during the MILP solution process. A more modern approach that avoids this
disadvantage was described by Smith and Pantelides [25] and Tawarmalani and
Sahinides [27]. Here the approximation of the nonlinear function is created during
the branch-and-cut solution process by adding further cutting planes and carrying
out spatial branching. A direct comparison on a nonlinear network flow model in-
dicates that this method is actually much faster [13]. For certain types of nonlinear

functions, such as second order cone constraints of the form
√

x2
1 + . . . + x2

n ≤ t,
there exist very accurate linear approximations that embed this cone in a higher
dimensional space by introducing auxiliary variables [3, 19]. These reformulations
can be used to solve practical nonlinear mixed-integer problems with MILP solvers,
such as soft rectangle packing problems [17], or car routing problems in railway
freight transportation [16].

Despite the initial critics about the “limited scope” of linear programming (LP),
it turned out to become a huge success, and is considered as one of the most impor-
tant mathematical discoveries (or inventions) of the 20th century. LP is the work-
ing horse for solving (mixed-) integer and thus many combinatorial optimization
problems, starting from the traveling salesman problem by Dantzig, Fulkerson,
and Johnson in 1954 [7]. Soon after, more complex logistic and transportation
problems were addressed, such as the truck-use problem by Dantzig and Ramser
in 1959 [8]. The transport of goods often requires time synchronization of different
work steps. Shipments can be picked up or delivered only in certain time windows,
a handover of goods between two players can only take place when both are at the
same time in the same place. A useful optimization model for such applications
must consider this aspect. While this is evident from a practical side, the integra-
tion of the time aspect in MILP models leads to algorithmically difficult problems.
Most frequently encountered in the literature is one of the following two ways to
include the time aspect in an optimization model.

In the continuous time modeling, time is described by real-valued variables,
indicating the time relative to a specified start time in a defined unit (e.g., seconds).
For each incident i (for example, an object being at a certain location, or a machine
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working on a certain job), a continuous time variable ti describes when this incident
is going to happen. For example, in bus or train scheduling application [11, 15], a
tour of length di is started at time ti. If tours i and j are connected (i.e., served
by the same bus or train directly after another), then tj − (ti + di) ≥ 0. The
connection is modeled by the binary variable xi,j . Hence the precedence relation
is formulated by the nonlinear constraint (tj − (ti +di))xi,j ≥ 0. In order to apply
mixed-integer linear solvers, one has to linearize this constraint. To this end, in
the (in-) famous “big-M -method”, a parameter M is introduced, which allows to
linearize the constraint to tj − (ti + di) ≥ M(xi,j − 1). Although one achieves a
mixed-integer linear formulation, it usually has a weak LP-relaxation, which leads
to less pruned nodes, thus large branch-and-bound trees, and thus large solution
times.

An alternative to the big-M continuous time formulation is provided by a dis-
crete modeling of time. The available finite time horizon is sliced into intervals of
fixed unit length (e.g., 5 minutes). Then for each incident i and each time step t
a binary variable xi,t is introduced, which indicates, if incident i happens in time
step t. In this purely discrete setting, often better LP relaxations are achieved.
However, there is a trade-off between accuracy and solution time: If the time is
sliced into too many pieces, then the resulting models are of enormous size, which
are impractical for a numerical solution process. When carefully used, small to
medium size real-world optimization problems can be solved in reasonably short
time [26].

A new way of dealing with time called “time-free relaxation” was introduced in
[18]. Here the time index of all variables xi,t is projected away, so that variables
xi remain. Then all constraints have to be adapted accordingly. This results
in very small, but still mixed-integer models, that usually can be solved very
easily. In general, they do not yield feasible solutions to the original problem
“with time”, and it is in fact a difficult problem to decide if a projected solution
has a feasible counterpart with proper times attached to it. When embedded in a
branch-and-bound search, where a time-free master problem interacts with time-
indexed subproblems to solve this inverse problem, the overall solution process can
be faster, compared to a solution over the full time-indexed problem. A refinement
of this method is a promising direction of further research.

The individual challenges imposed by mixed-integer optimization over time and
mixed-integer optimization with nonlinear constraints are coupled when they are
blended with differential equation constraints (ODEs or PDEs). These constraints
usually arise in the description of technical systems to model physical properties.
Even a simple PDE, such as the transport equation, leads to numerically difficult
optimization problems when handed over to a standard MILP solver [20, 12]. One
way to include PDEs into a MIP is by a finite difference discretization in time and
space of the PDE. Even moderate discretization step sizes lead to instances with a
huge number of variables and constraints. Although one can obtain a linear model
(for the transport PDE, for instance), the solver tend to have numerical problems
on these instances, so certain steps of the classical MILP solution process have
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to be revisited, for example, the bounds strengthening routines in the presolve
phase [9]. Amazingly, putting one of the most simple problems from the area of
combinatorial optimization, namely the shortest path problem, together with one
of the most simple PDE, namely the heat equation, leads due to their combination
to a new and challenging problem, which we call the coolest path problem [10].

ODEs and PDEs describe the physics to a very high degree of accuracy. How-
ever, in order to obtain the “right” combinatorial decisions, it can be beneficial not
to work with the full complexity of the DE, but with some simpler approximation.
To start with, a hierarchy of models must be derived, from fine to coarse, and af-
terwards the right level to formulate the mixed-integer optimization problem can
be chosen among that hierarchy. In [14] this approach was demonstrated using
traffic flows in networks.

Clearly, mixed-integer nonlinear dynamic optimization with differential equa-
tion constraints is full of challenging problems and has many practical applications,
so that it is worth to devote more research on this emerging problem class.
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