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Abstract. Scales for measuring systems are either based on incremental or absolute measuring
methods. Incremental scales need to initialize a measurement cycle at a reference point. From
there, the position is computed by counting increments of a periodic graduation. Absolute
methods do not need reference points, since the position can be read directly from the scale.
The positions on the complete scales are encoded using two incremental tracks with different
graduation. We present a new method for absolute measuring using only one track for position
encoding up to micrometre range. Instead of the common perpendicular magnetic areas, we use
a pattern of trapezoidal magnetic areas, to store more complex information. For positioning,
we use the magnetic field where very position is characterized by a set of values measured by
a hall sensor array. We implement a method for reconstruction of absolute positions from the
set of unique measured values. We compare two patterns with respect to uniqueness, accuracy,
stability and robustness of positioning. We discuss how stability and robustness are influenced
by different errors during the measurement in real applications and how those errors can be
compensated.

1. Introduction
In many areas of industrial processing, length measurement systems are important. To determine
the distance between two objects along a linear distance, these systems consist of a sensor device,
a measurement scale and a processing unit. Possible applications are positioning control of the
milling head in CNC machines or position control of industrial robots.

In length measurement two methods are common. In incremental measuring, the sensor
reads increments of periodic graduation from the scale. The measured distance is computed by
counting the read increments, so only relative distances are measurable. Absolute measuring
methods allow the sensor to be placed at any point on a scale. The absolute position is
computed directly from a uniquely encoded scale. Both measurement methods are used in
several modalities of systems, e.g., magnetic and optical systems.

The unique encoding in absolute positioning is realized using properties such as patterns of
light wavelength for optical scales or magnetic field information for magnetic scales [1, 2]. To
ensure uniqueness more than one pattern track may be necessary. The different magnetic poles
induce magnetic fields according to the pattern. This allows reading the information using hall
sensor devices, which convert magnetic field information into signals. Measuring values with a



Figure 1. Illustration of the measurement setup. Figure 2. Schematic of a pattern
with related magnetic signals.

hall cell along a magnetic pattern results in a function of magnetic signals with zeros at the
boundaries between two poles [3].

We present a method to be used in magnetic systems which requires only one magnetic track
for unique encoding and resolution up to micrometer range. This saves overall production costs
and allows for smaller, less energy consuming systems to be used in applications where size is
important.

2. Experimental setup
We define a three-dimensional, right-handed coordinate system with the x-axis parallel and the
y-axis orthogonal to the measuring direction of the magnetic scale and the h-axis pointing away
from the scale. See also Figure 1.

The sensor containing the hall sensors is placed above the scale and moved in x-direction.
For our experiments, we consider a hall cell array with a 2× 6 sensor placement (see Figure 1).
The distance between two adjacent cells is 1.5mm in x- and 5mm in y-direction.

The measurement stripe with its scale is described as an area of width m ∈ R+ and length
n ∈ R+ divided into k ∈ N consecutive trapezoidal magnetic poles. The initial value n = 0 is
equal to the left pole boundary of the first magnet. Considering the distance between two hall
sensors in y-direction, m ≥ 5mm is required for our setup; usually 10mm in practice.

In order to encode for an absolute position, each measurement on the scale must be described
by a set of unique values of orthogonal magnetic field components as measured by the hall cell
array. Following, the magnetic field information from the hall sensor is denoted as magnetic
signal. Our sensor is build to read two different tracks of magnetic signals at once. The measured
values of magnetic signals are influenced by the length li of magnetic pole i, i = 1, . . . , k.
Constructing a magnetic pattern with different lengths between the pole boundaries on each
track results in trapezoidal magnets along the scale. By αi ∈ (−90◦, 90◦), i = 1, . . . , k, we
denote the angle of the pole boundary between two magnets i and i+ 1.

We used two different magnetic patterns A and B for computations. For pattern A, the
pole boundaries in the middle of the reading lines have a constant length dAi and continuously
increased angles αA

i from αA
min to αA

max in steps of αA
step. For Pattern B we define a set of

lengths dBi from dBmin ≤ dBi ≤ dBmax with steps of dBstep for available trapezoids. The difference

for total lengths on the boundaries of the trapezoids is limited to dBε . The construction of
pattern B is based on a mixed-integer linear method programming model, where the constraints
of the pattern construction were formulated by algebraic inequalities. The resulting optimization
problem is solved by a linear programming based branch-and-bound procedure. An example of
a pattern and its schematic magnetic signals are presented in Figure 2. The scales A and B
were produced by our project partner Bogen Electronic GmbH, Berlin



3. Method
In order to do absolute positioning, the actual scale needs to be known. Hence we measure the
function f of the magnetic signal from the manufactured tape. Computing the absolute position
is done by finding the best fit between the set of measured values and functions fi : [0, li]→ R of
approximatives to the magnetic signals on each reading track. Here the fi are piecewise functions
of f . For each pole i, i = 1, . . . k with length li we use a linear combination gi : [0, 1] → R,
gi(x) = λi,1p1(x) + λi,2p2(x) + . . . + λi,5p5(x) of 5 polynomials p1, p2, . . . , p5 of 5th degree and
coefficients λi,1, λi,2, . . . , λi,5 to construct fi(x) ≈ gi (x/li). For every pole i, we save the 5
coefficients of the linear combination on the processing unit. Due to memory limitations on the
processing unit, we did not implement higher polynomial approximation methods.

To find the best fit of measured data on f , we use a two-step algorithm. The first step
evaluates the sequence of signs of values measured to find all sets of possible subsequences of
magnets from the scale. In the second step the set of measured values are fitted to f for all
found subsequences from the first step by calculating the best fit according to the smallest
residual εf = min (‖fi − v‖) for the measured values v = v1, . . . , v6 each reading line where εf
is assumed to give the correct position on the scale. Our method of reconstructing the correct
position from measured data was implemented on a DSP and on a FPGA by our project partners
at the Technical University Berlin.

We evaluate our results with respect to accuracy and stability. Let the error of a measurement
εp = |Pa − Pr| be the distance between actual position Pa ∈ [0, n] and reconstructed position
Pr ∈ [0, n]. As a score for the accuracy we define the length la of the longest interval with an
error below a threshold tε. Due to the way our algorithm works, we have additional potential
positions for every reconstructed one. For small differences between the potential positions
it becomes more likely, that the position chosen by our algorithm may be wrong. Hence, we
measure stability as the mean distance ls between the two best candidates.The larger ls, the
better the scale, because it is more robust against small measuring errors.

4. Results
For testing we constructed scales for patterns A and B with lengths of 675mm(A) and 672mm
(B). For Pattern A we used dAi = 2mm and increased the angles from αA

min = 0◦ to αA
max = 32◦

in steps of αA
step = 0.095◦. In pattern B we used dBmin = 2mm and dBmax = 6.5mm with stepsize

dBstep = 0.35mm and dBε = 3.4mm.
We recorded f with 1.5kHz sampling rate at a movement speed of 20mm/s using a 2× 6 hall

cell array device. The polynomials and coefficients for f are stored on the processing unit. The
same scale is measured again with same sampling rate and speed and to recover the positions
for each set of measured values from the approximated functions stored on the processing unit.
The results in figure3 and 4 show the error for each position. A value of less than 0.1mm is

Figure 3. Error εp of computed
positions for magnetic pattern A.

Figure 4. Error εp of computed
positions for magnetic pattern B.



Table 1. Accuracy la of A and B.

tε [mm] 0.01 0.04 0.06 4.00 4.02 8.01 12.01

A [mm] 2.02 6.26 6.26 8.67 130.20 436.70 675.00
B [mm] 1.89 64.10 671,10 671,10 . . . . . . 671,10

acceptable. For our scales we measured stabilities ls = 14 for A and ls = 305 for B.

5. Discussion
Our results show huge differences in both accuracy and stability as defined between both scales,
with scale B delivering far better results than scale A. Good accuracy for scale A is only
achievable at very small intervals with the error being in the range of several centimeters for
most reconstructions while a value of 0.1mm would be acceptable. The main reason for this is
the high regularity in the construction of the pattern leading to overall many candidates after the
first step of our algorithm. Additionally, the small changes in the angles between the magnetic
poles result in locally very similar magnetic signals and pole lengths. This corresponds to the
low stability of the scale. Hence, for most of the positions the candidates for reconstruction have
similar high errors and therefore only small changes in the signal (e.g., due to noise) can lead to
different results in the reconstruction. Such effects do not occur regularly on scale B, leading to
a far better accuracy which also corresponds to the better stability. Still due to similar magnetic
areas that occur in the construction of B, we observed some spikes which are also the result of
too small changes in pole lengths.

6. Conclusions
We were able to show that for appropriate scales our algorithm delivers precise results, sufficient
for practical applications. Still, local but high errors arise and should be corrected by manually
adjusting the scale or introducing additional rules in construction to avoid these patterns.

For real world industrial applications, we have to take into account additional errors like
waves on the stripe, shaking of the machines, shifts in the track, turns and twists. Additionally
the distance between sensor and stripe, either in h- or y-direction influences the amplitude.
Hence, the stability decreases. We are currently working on data from different sensor-stripe
shifts to improve stability. Further misplacements of the sensor like twists and turns will need
to be addressed in the future, too.
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