
Angewandte Mathematik und Optimierung Schriftenreihe
Applied Mathematics and Optimization Series

AMOS # 27(2015)

György Dósa, Armin Fügenschuh, Zhiyi Tan, Zsolt Tuza,
and Krzysztof Węsek

Semi-Online Scheduling on Two Uniform
Machines with Known Optimum
Part I: Tight Lower Bounds

Herausgegeben von der
Professur für Angewandte Mathematik
Professor Dr. rer. nat. Armin Fügenschuh

Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg
Fachbereich Maschinenbau
Holstenhofweg 85
D-22043 Hamburg

Telefon: +49 (0)40 6541 3540
Fax: +49 (0)40 6541 3672

e-mail: appliedmath@hsu-hh.de
URL: http://www.hsu-hh.de/am

Angewandte Mathematik und Optimierung Schriftenreihe (AMOS), ISSN-Print 2199-1928
Angewandte Mathematik und Optimierung Schriftenreihe (AMOS), ISSN-Internet 2199-1936

Semi-Online Scheduling on Two Uniform

Machines with Known Optimum, Part I: Tight

Lower Bounds

György Dósa ∗ Armin Fügenschuh † Zhiyi Tan ‡

Zsolt Tuza §¶ Krzysztof W ↪esek ‖∗∗

Abstract
This problem is about to schedule a number of jobs of different lengths

on two uniform machines with given speeds 1 and s ≥ 1, so that the overall
completion time, i.e., the makespan, is earliest possible. We consider a
semi-online variant (introduced for equal speeds) by Azar and Regev,
where the jobs arrive one after the other, while the scheduling algorithm
knows the optimum value of the corresponding offline problem.

One can ask how close any possible algorithm could get to the op-
timum value, that is, to give a lower bound on the competitive ratio:
the supremum over ratios between the value of the solution given by the
algorithm and the optimal offline solution. We contribute to this ques-
tion by constructing tight lower bounds for all values of s in the intervals

[1+
√

21
4

, 3+
√

73
8

] ≈ [1.3956, 1.443] and [5
3
, 4+
√
133

9
] ≈ [5

3
, 1.7258], except a

very narrow interval, approximately [1.6934, 1.6963], where our new lower
bound is “almost tight”.

A novel feature of the (rather complicated) construction of malicious
input sequences is that our method goes several levels deeper than the
earlier ones in the literature.

Keywords: Semi-online scheduling, makespan minimization, machine
scheduling, lower bound.

∗Department of Mathematics, University of Pannonia, Veszprém, Hungary,
dosagy@almos.vein.hu, corresponding author
†Helmut Schmidt University / University of the Federal Armed Forces Hamburg, Holstenhofweg
85, 22043 Hamburg, Germany, fuegenschuh@hsu-hh.de
‡Department of Mathematics, Zhejiang University, Hangzhou, Peoples Republic of China,
tanzy@zju.edu.cn
§Department of Computer Science and Systems Technology, University of Pannonia, Veszprém,
Hungary, tuza@dcs.uni-pannon.hu
¶Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary
‖Helmut Schmidt University / University of the Federal Armed Forces Hamburg, Holstenhofweg
85, 22043 Hamburg, Germany, wesekk@hsu-hh.de

∗∗Faculty of Mathematics and Information Science, Warsaw University of Technology, ul.
Koszykowa 75, 00-662 Warszawa, Poland, wesekk@mini.pw.edu.pl

1

1 Introduction

We deal with the problem of scheduling on two uniform machines: Given are
two machines, denoted by M1 and M2, that are both capable to process incoming
jobs. They only differ in the processing speed. We assume that machine M1 is
working at unit speed 1, and machine M2 is s times faster, with s ≥ 1. Hence
when machine M1 processes a job of length L, then machine M2 can handle this
job in L/s time. There is a (finite) number of incoming jobs of various (finite)
lengths. The task is to assign the jobs to the two machines. It is desired to
finish all incoming jobs as early as possible, that is, to minimize the makespan.
In the offline variant of this problem, all jobs to be assigned are fully known
in advance. If nothing is known about the jobs beforehand, we are faced with
an online problem. We deal here with a semi-online problem, that means,
the jobs are still not known individually, but we assume to have some further
overall knowledge. In particular, we assume that the value of the solution to the
corresponding offline problem, which we denote by OPT, is known in advance.

Let A be an algorithm that solves the semi-online variant of the problem.
This algorithm receives, besides the value of OPT, one job after the other in
an unknown order and must immediately decide to which of the two machines
this job should go to (later changes are not possible). This algorithm A finally
arrives at a makespan value M greater than or equal to OPT. Still, M can
be compared to OPT by considering the ratio M

OPT . Of course, it is preferred
to have an algorithm where this ratio is close to 1 for any given input data.
Thus the question arises, how close to 1 can we get? Is it possible to construct
an algorithm that reaches this value, or is there a theoretical lower bound well
above 1, that no algorithm will ever undercut, no matter how hard it tries?

The paradigm that the instance of a problem is revealed in parts, and the
decision has to be made as the part is revealed, is naturally motivated by many
real-world applications. As it was mentioned before, if no information is given
in advance, then we call such a problem online, and if some partial information
about the instance is known beforehand, then the scheme is called semi-online.

The most common way of measuring the quality of an online or semi-online
algorithm uses the notion of the mentioned competitive ratio. Assume that we
are dealing with a minimization problem and the (offline) optimal value for an
instance I is equal to OPT(I). Formally, an online algorithm is said to be r-
competitive if for any instance I the value A(I) of the result of the algorithm

satisfies A(I)
OPT(I) ≤ r. The competitive ratio of an algorithm is defined as the

supremum of such ratios. The question is: what is the best possible ratio for
our (online or semi-online) problem? Formally, we would ask for the optimal
competitive ratio, that is the infimum over all numbers r for which there exists
an r-competitive algorithm. An algorithm is said to be optimal if its competitive
ratio matches the best possible lower bound (largest value for which provably
no algorithm can have a better competitive ratio).

2

1.1 Survey of the Literature

The on-line and various semi-online variations of the problem with a set of jobs
to be scheduled on m (not necessarily uniform) machines with an objective to
minimize the maximum completion time have been studied for decades. Here
we will describe some results concerning deterministic algorithms working on
uniformly related machines, that is, each machine has its speed s and processing
a job of length p takes p

s time on it. We assume (except where noted) that any
job has to be done on one machine, and jobs arrive in a list one after another
(list-online scheme). For information beyond those given below, we refer to the
survey of Tan and Zhang [21].

We will first deal with the basic case of identical machines (i.e. with the same
speed) in the pure online scheme. A classic work by Graham [15] is probably
the first step in this direction. It gives a (2 − 1

m)-competitive algorithm, by
using a heuristic of assigning each task to the currently least loaded machine.
It was proved by Faigle et al. [12] that for m = 2 and m = 3 this algorithm
is in fact optimal. In the case of arbitrary m, many papers appeared in order
to decrease the gaps between lower and upper bounds. For the lower bound,
Gormley et al. [14] showed that no online algorithm can have competitive ratio
better than 1.852 generally (when m can be arbitrarily large). For the upper
bound, Albers [1] proposed a 1.923-competitive algorithm for any m, moreover
Fleischer and Wahl [13] gave an algorithm with competitive ratio tending to a
limit near 1.9201 as m gets large.

In the more general case of machines with arbitrary speeds, the best general
bounds are the following. Berman et al. [5] provided an 5.828-competitive algo-
rithm, and Ebenlendr and Sgall [9] proved a lower bound of 2.564. If m = 2 (and
the speeds are 1 and s), then the greedy strategy due to Graham — choosing
in every step the machine which will finish the actual job as soon as possible
— is again useful. Epstein [11] showed that this algorithm is optimal and has
competitive ratio min{1 + s

1+s , 1 + 1
s}. We will later see that in semi-online

variants the situation is much more complex.
How much can we gain if some information is known in advance? In this

paper we are interested in the semi-online scheme when only the optimal offline
value is known (OPT version, for short), although we want to mention a strong
relation with other semi-online version of the described scheduling problem, in
which only the sum of jobs is known (SUM version) [3, 2, 8, 17, 18, 20]. Namely,
for a given number m of uniform (possibly non-identical) machines the optimal
competitive ratio for the OPT version is at most the competitive ratio of the
SUM version (see Dósa et al. [8]; for equal speeds it was first implicitly stated
by Cheng et al. [6]).

Azar and Regev [4] were the first to investigate the OPT version for identical
machines (under the name of bin stretching), although the observation about
the relation with the SUM version implies that the first upper bound of 4

3 for
the case of two identical machines follows from the work of Kellerer et al. [17]
(now it is known to be optimal). Cheng et al. [6] and Lee and Lim [18] made
further progress for the case of more than two identical machines.

3

Since we are interested in the OPT version with non-identical speeds on two
uniform machines, we will state the previous results in terms of s (recall that
the speeds are 1 and s). Epstein [11] was first to investigate this problem. She
proved the following bounds for the optimal competitive ratio r∗(s):

r∗(s) :





r∗(s) ∈
[
3s+1
3s , 2s+2

2s+1

]
for s ∈ [1, qE ≈ 1.1243]

r∗(s) ∈
[
s
(
3
4 +

√
65
20), 2s+2

2s+1

]
for s ∈

[
qE ,

1+
√
65

8 ≈ 1.1328
]

r∗(s) = 2s+2
2s+1 for s ∈

[
1+
√
65

8 , 1+
√
17

4 ≈ 1.2808
]

r∗(s) = s for s ∈
[
1+
√
17

4 , 1+
√
3

2 ≈ 1.3660
]

r∗(s) ∈
[
2s+1
2s , s

]
for s ∈

[
1+
√
3

2 ,
√

2 ≈ 1.4142
]

r∗(s) ∈
[
2s+1
2s , s+2

s+1

]
for s ∈

[√
2, 1+

√
5

2 ≈ 1.6180
]

r∗(s) ∈
[
s+1
2 , s+2

s+1

]
for s ∈

[
1+
√
5

2 ,
√

3 ≈ 1.7321
]

r∗(s) = s+2
s+1 for s ≥

√
3

where qE is the solution of 36x4−135x3+45x2+60x+10 = 0. It means that her
bounds are proven optimal on some intervals, where the upper and lower bounds
coincide. It will turn out, however, that some of her bounds are also optimal,
where she finds a lower bound (but her upper bound needs to be decreased),
or she finds an upper bound (but her lower bound needs to be increased). On
two intervals the question about the tight bound remained open after the work

of Epstein. These are
[
1, 1+

√
17

4 ≈ 1.2808
]

and
[
1+
√
3

2 ≈ 1.3660,
√

3
]
, which will

be called left interval and right interval, respectively.

Ng et al. [20] considered the right interval. They presented algorithms giving
the upper bounds

r∗(s) ≤





2s+1
2s for s ∈

[
1+
√
3

2 , 1+
√
21

4 ≈ 1.3956
]

6s+6
4s+5 for s ∈

[
1+
√
21

4 , 1+
√
13

3 ≈ 1.5352
]

12s+10
9s+7 for s ∈

[
1+
√
13

3 , 5+
√
241

12 ≈ 1.7104
]

2s+3
s+3 for s ∈

[
5+
√
241

12 ,
√

3
]

and provided the following lower bounds:

r∗(s) ≥





3s+5
2s+4 for s ∈

[√
2,
√
21
3 ≈ 1.5275

]

3s+3
3s+1 for s ∈

[√
21
3 , 5+

√
193

12 ≈ 1.5744
]

4s+2
2s+3 for s ∈

[
5+
√
193

12 , 7+
√
145

12 ≈ 1.5868
]

5s+2
4s+1 for s ∈

[
7+
√
145

19 , 9+
√
193

14 ≈ 1.6352
]

7s+4
7s for s ∈

[
9+
√
193

14 , 5
3

]

7s+4
4s+5 for s ∈

[
5
3 ,

5+
√
73

8 ≈ 1.6930
]

4

Hence from the work of Ng et al. it turned out that Epstein’s lower bound
is in fact tight on the very left end of the right interval.

Finally, Dósa et al. [8] considered the left interval and solved the problem
there almost completely, by providing the following bounds:

r∗(s) ≥
{

8s+5
5s+5 for s ∈

[
5+
√
205

18 , 1+
√
31

6 ≈ 1.0946
]

2s+2
2s+1 for s ∈

[
1+
√
31

6 , 1+
√
17

4 ≈ 1.2808
]

r∗(s) ≤
{

3s+1
3s for s ∈

[
1, qD ≈ 1.071

]

7s+6
4s+6 for s ∈

[
qD, 1+

√
145

12 ≈ 1.0868
]

where qD is the unique root of equation 3s2(9s2−s−5) = (3s+1)(5s+5−6s2).
Altogether it means that Epstein’s lower bound is tight on the left end of

the left interval, and her upper bound is tight on the right end of the left
interval, but the problem about the optimal value remained open in the middle
for a small interval. For a visual summary (with our contribution included), see
Figures 1–4. Whenever the dotted line (that represents an upper bound) is on
an unbroken line (that represents a lower bound), the optimal competitive ratio
is known.

As the problem is almost completely solved on the left interval, we revisit the
right interval. As a consequence of earlier results, before this publication the op-

timality question was unsettled on the interval (1+
√
21

4 ,
√

3) ≈ (1.3956, 1.7321).
There are also two variations of the aforementioned problems we find worth

mentioning, as they have been studied also in the case of OPT version. In
the scheduling with preemption model it is allowed to split a job into multiple
parts and assign them to different machines, as long as those parts will be pro-
cessed in disjoint time intervals. Ebenlendr and Sgall [10] presented one optimal
preemptive algorithm working for various semi-online conditions and their com-
binations, including OPT version, SUM version, known longest job, jobs sorted
in decreasing order; this many-sided optimality seems to be much different from
the situation in models without preemption. In the second variation, called
under a grade of service provision (GoS), not every job can be processed by
every machine: there is a level function for the jobs, and a job with level i can
be processed only by machines with index at most i. The GoS-OPT version
for two (nonidentical) machines is also solved: Lu and Liu [19] proved that the
optimal competitive ratio is min{ 1+2s

1+s ,
1+s
s }. This is again equal to the optimal

competitive ratio of the GoS-SUM version.

1.2 Our Contribution

Expressing in general terms, we present a rather complicated construction of
malicious input sequences for a scheduling problem, which provides the best pos-
sible lower bound on the competitive ratio of a class of semi-online algorithms.
The novelty of our method compared to earlier approaches in the literature is
that it goes several levels deeper. This idea may turn out to be useful towards
the solution of further open problems in the area.

5

More explicitly, we deal with the semi-online two uniform machines schedul-
ing problem with a “known opt” condition, that is, Q2|OPT|Cmax according to
three-field notation introduced by Graham et al. [16]. This problem is stud-

ied on two parts of the right interval, [1+
√
21

4 , 3+
√
73

8] ≈ [1.3956, 1.443] and

[53 ,
4+
√
133

9] ≈ [53 , 1.7258], for which we give new lower-bound constructions.
(Note that these numbers are solutions of certain equations, and will be for-
mally introduced in the following section.) We apply an adversary strategy,
that is, depending on the current assignment of a given job the adversary de-
fines the next job that makes life complicated for the algorithm. We show that
the input can always be continued in such a malicious way that any kind of
algorithm will exceed the lower bound on the makespan at some step.

“Marry, and you will regret it; don’t marry, you will also regret it; marry
or don’t marry, you will regret it either way” — says the Danish philosopher
Søren Kierkegaard. He describes a decision situation from which two different
possible choices will lead into the future. But no matter how the person decides,
the continuation will not lead to a happy end. Both can be seen as “unhappy
situations” (from the person’s point of view who has to make the decision).
This in our scheduling setting will correspond to the three “Final Cases” that
are described in Section 2.3. The scheduler (the algorithm) can make a decision,
similar to the person deciding for or against a marriage. No matter how the
algorithm decides, it will lead to an “unhappy situation”, since it is possible to
generate further jobs, based on its decision, in such a way that the competitive
ratio of the algorithm is relatively high. It will not be obvious at first sight that
the algorithm is always trapped in a situation that leads to an unhappy ending;
it evolves over several rounds of further jobs that are determined in what we call
“intermediate cases” or “final cases”. At most, eight jobs need to be generated
to close the trap.

The moves of the algorithm and the generation of jobs can be seen as a two-
player game, such as chess. One player is the algorithm, and the other player
is the adversary that constructs malicious jobs. What our result then shows is
that the player of the algorithm is “checkmate” after at most eight moves. Our
purpose was not to give a difficult construction, however, we were not able to
get the tight bounds with less than eight jobs.

Together with the upper-bound result of Ng et al. [20] we obtain that our new
lower bound is tight (that is, the algorithms presented by Ng et al. are optimal)

for any value of s in one of these intervals: [1+
√
21

4 , 3+
√
73

8] ≈ [1.3956, 1.443],

[53 ,
13+
√
1429

30] ≈ [53 , 1.6934], and [31+
√
8305

72 , 5+
√
241

12] ≈ [1.6963, 1.7103], see also
Figure 1.

Between 5
3 and

√
3 there remain two intervals where the question for an

optimal algorithm remains open: the first interval between approximately 1.6934
and 1.6963, see Figure 4, that we call narrow interval, and the second interval
between approximately 1.7103 and

√
3 that we call wide interval. In case of

the narrow interval, the new lower bound is very close to the existing upper
bound, so here we do not try to eliminate the small gap (which is smaller than
0.000209). But in case of the wide interval the situation is different: In our

6

subsequent paper [7] we prove that our new lower bound is optimal in the left
part of the wide interval. Furthermore, it turns out that Epstein’s previous lower
bound is optimal in the right side of the wide interval, see Figure 3. Therefore,
together with the result proven in [7], with the exception of the narrow interval
we completely solve the case of any speed in [53 ,

√
3].

Figure 1: Our new lower bound in comparison with existing lower and upper
bounds from Epstein [11], Ng et al. [20], and Dósa et al. [8].

7

Figure 2: Zooming into the left part of Figure 1.

Figure 3: Zooming into the right part of Figure 1.

8

Figure 4: Zooming into the middle part of Figure 3.

9

2 Preliminaries and Notations

Let OPT and SUM mean, respectively, the known optimum value (given by
some oracle), and the total size of the jobs. By Jt we denote the family of
all sets of jobs with optimum value equal to t. In other words, if the oracle
returns a value of OPT, then there is a guarantee that the set of jobs belongs
to JOPT. We denote the prescribed competitive ratio (that we do not want
to violate) by r. The load of a machine means the sum of processing times of
jobs being assigned there during the scheduling procedure so far. The loads of
the machines will sometimes be mentioned in the text as M1-load and M2-load,
respectively.

Lemma 1 Given a set of jobs, assume that it is possible to assign them to the
two machines in such way that M1 receives a load of t and M2 a load of s · t.
Then this set of jobs belongs to Jt.

Proof. The assignment of jobs given in the formulation of the lemma is a
feasible solution with a makespan of t. It remains to show that there is no
better solution. The sum of jobs (the total load) is (s+1) · t. Assume that there
is a better assignment with makespan t′ < t. Then the load on machine M1 can
be at most t′. Hence the load on machine M2 is the remaining load, which is
at least st + (t − t′) > st > st′. This contradicts the assumption that t′ is the
makespan.

As a consequence of Lemma 1, we remark that SUM ≤ (s + 1) ·OPT, and that
the size of any job is at most s ·OPT. We denote SUM := (s + 1) ·OPT.

2.1 Definitions

Let q1 :=
√
21+1
4 ≈ 1.3956, which is the positive solution of 2s+1

2s = 6s+6
4s+5 .

Let q2 :=
√
73+3
8 ≈ 1.443, which is the positive solution of 6s+6

4s+5 = 5s+2
4s+1 .

Let q3 := 13+
√
1429

30 ≈ 1.6934, which is the positive solution of 12s+10
9s+7 = 18s+16

16s+7 .

Let q4 := 30+7
√
186

74 ≈ 1.6955, which is the positive solution of 18s+16
16s+7 = 8s+7

3s+10 .

Let q5 := 31+
√
8305

72 ≈ 1.6963, which is the positive solution of 8s+7
3s+10 = 12s+10

9s+7 .

Let q6 := 5+
√
241

12 ≈ 1.7103, which is the positive solution of 12s+10
9s+7 = 2s+3

s+3 .

Let q7 := 4+
√
133

9 ≈ 1.7258, which is the positive solution of 12s+10
9s+7 = s+1

2 .

We note that in this paper we do not consider speeds between q2 and 5
3 .

Now we define the ratio for our new lower bound. It differs on several intervals,
where the speed is called small, regular, or medium. The latter two are further
divided as smaller or bigger medium, and smaller or bigger regular, as follows.

10

M2

M1

S3

D3
B3 T3

S1

D1
B1 T1

S4

D4
B4 T4

S2

D2
B2 T2

Figure 5: Safe sets. The horizontal axis is reflecting the time.

Let

r(s) =





r1(s) := 6s+6
4s+5 if q1 ≤ s ≤ q2 ≈ 1.443 i.e. s is small

r2(s) := 12s+10
9s+7 if 5

3 ≤ s ≤ q3 ≈ 1.6934 i.e. s is smaller regular

r3(s) := 18s+16
16s+7 , if q3 ≤ s ≤ q4 ≈ 1.6955 i.e. s is smaller medium

r4(s) := 8s+7
3s+10 , if q4 ≤ s ≤ q5 ≈ 1.6963 i.e. s is bigger medium

r2(s) := 12s+10
9s+7 if q5 ≤ s ≤ q7 ≈ 1.7258 i.e. s is bigger regular

As we will show in the very end (cf. Theorem 16), this function will be our lower
bound on the optimal competitive ratio.

As abbreviations, we call s regular if s is smaller regular or bigger regular,
and we call s medium if s is smaller medium or bigger medium.

Now we define the so called “safe sets”. A safe set is a time interval on some
of the machines, and it is safe in the sense that if the load of the machine is
in this interval, this enables a “smart” algorithm to finish the schedule by not
violating the desired competitive ratio. In other words, from the point of view of
a lower-bound construction (the adversary), we should avoid that an algorithm
can assign the actual job in a way that the increased load of some machine will
be inside a safe set.

Safe sets S1 and S3 are defined on the second machine, while safe sets S2

and S4 are defined on the first machine. We introduce notations for the top,
bottom, and length of the safe sets. Thus let Si = [Bi, Ti], and Di = Ti − Bi,
for any 1 ≤ i ≤ 4, see Figure 5. We will show in Section 2.2 that these intervals
are well-defined.

Recall that the optimum value is known. For the sake of simplicity let

11

us assume without loss of generality that OPT = 1. (This can be done by
normalization: If OPT differs from unit, one can divide all job sizes by the
value of OPT.)

Then the boundaries of safe sets Si are defined as follows.

1. B1 = s + 1− r, and T1 = rs, thus D1 = (s + 1)(r − 1);

2. B2 = s + 1− sr, and T2 = r, thus D2 = (s + 1)(r − 1);

3. B3 = 2s− 2r − rs + 2, and T3 = s(r − 1), thus D3 = 2r − 3s + 2rs− 2;

4. B4 = 4s− 2r − 3rs + 3, and T4 = r − 1, thus D4 = (3r − 4)(s + 1).

We introduce as abbreviations some expressions that are used in the sequel.

a := T4 −B3,

b := T3 −B2,

c := 1−D1,

and, if s ≥ 5
3 , let

d := b− c−B4.

For bigger regular speeds, we will also need the next notations:

e :=
1

2
(b− 2c− a−B4),

f :=
1

2
(a + b−B4),

g :=
1

2
(b− a−B4).

By easy calculations we get the following expressions:

a = rs + 3r − 2s− 3,

b = 2rs− 2s− 1,

c = −rs− r + s + 2,

d = 6rs + 3r − 7s− 6.

Note that

a + b = D4,

e + f = d,

f + g = b−B4,

f − g = a,

c + e = g.

12

Moreover, for the values of e, f , and g, we get the following equalities:

e =
1

2
r − 3s + 3rs− 5

2
,

f =
5

2
r − 4s + 3rs− 7

2
,

g = 2rs− 2s− 1

2
r − 1

2
.

2.2 General Properties

In Figure 6 we show plots of the functions r2, r3, and r4. If s is medium,
then both r3(s) and r4(s) are below r2(s). Moreover r3(s) ≥ r4(s) if s is small
medium, and the opposite inequality holds if s is bigger medium. Note that s
is medium sized only on the narrow interval.

Figure 6: Comparing r2(s) (red), r3(s) (green), and r4(s) (blue).

Lemma 2 1. r1(s) ≤ r2(s) if s ≤ q2,

2. r2(s) ≤ r1(s) if s ≥ 5
3 ,

3. r3(s) ≤ r2(s) if s ≥ q3,

4. r4(s) ≤ r2(s) if s ≤ q5.

Proof.

13

1. This estimation was already proven in [20]. We repeat it here for the
sake of completeness. The inequality r1(s) ≤ r2(s) is equivalent to (12s+
10)(4s+ 5)− (6s+ 6)(9s+ 7) = −6s2 + 4s+ 8 ≥ 0, which holds if and only

if 1−
√
13

3 ≤ s ≤ 1+
√
13

3 ≈ 1.5352. Hence it holds for all s ≤ q2.

2. This follows from the previous computations.

3. The inequality r3(s) ≤ r2(s) is equivalent to (12s + 10)(16s + 7)− (18s +

16)(9s+ 7) = 30s2− 26s− 42 ≥ 0, which holds if and only if s ≤ 13−
√
1429

30

or s ≥ 13+
√
1429

30 = q3.

4. The inequality r4(s) ≤ r2(s) is equivalent to (12s + 10)(3s + 10) − (8s +

7)(9s + 7) = −36s2 + 31s + 51 ≥ 0, which holds if and only if 31−
√
8305

72 ≤
s ≤ 31+

√
8305

72 = q5.

In the next lemma we prove lower and upper bounds on r(s). These bounds are
needed to show that the safe sets are well-defined.

Lemma 3 1. 3s+2
2s+2 < 4

3 < 1.35 < r(s) < min
{

4s+3
3s+2 ,

s+2
s+1

}
< 2s+2

s+2 < 2s+1
s+1

hold in the entire considered domain of the function r, i.e., for all s ∈
[q1, q2] ∪ [53 , q7] =: Dom(r).

2. If s ≥ 5
3 , we have r(s) ≥ 8s+7

6s+5 .

Proof.

1. The leftmost lower bound holds as 3s+2
2s+2 < 4

3 is equivalent to 4(2s + 2) −
3(3s + 2) > 0, i.e. s < 2.

Now we show that r(s) > 1.35.

• For q1 ≤ s ≤ q2 where r(s) = r1(s), we get 0 < 6s+6
4s+5 − 135

100 = 12s−15
80s+100 ,

which is true since s > 5
4 .

• For 5
3 ≤ s ≤ q3 or q5 ≤ s ≤ q6, where r(s) = r2(s), we similarly

obtain 0 < 12s+10
9s+7 − 135

100 = 11−3s
20(9s+7) , which is true since s < 11

3 .

• For q3 ≤ s ≤ q4 where r(s) = r3(s), we get 0 < 18s+16
16s+7 − 135

100 =
131−72s
20(16s+7) , which is true since s < 131

72 ≈ 1.8194.

• For q4 ≤ s ≤ q5 where r(s) = r4(s), we get 0 < 8s+7
3s+10 − 135

100 =
79s−130
20(3s+10) , which is true since s > 130

79 ≈ 1.6456.

Hence r(s) > 1.35.

Regarding the rightmost upper bound, 2s+2
s+2 < 2s+1

s+1 holds since 2s+1
s+1 −

2s+2
s+2 = s

(s+2)(s+1) > 0.

14

Moreover, 2s+2
s+2 − 4s+3

3s+2 = 2s2−s−2
(s+2)(3s+2) > 0, which holds since 2s2 − s −

2 > 0 for all s < 1−
√
17

4 or s > 1+
√
17

4 ≈ 1.2808. Thus, it holds that

min
{

4s+3
3s+2 ,

s+2
s+1

}
< 2s+2

s+2 .

It remains to show that r < min
{

s+2
s+1 ,

4s+3
3s+2

}
. Note that 4s+3

3s+2 ≤ s+2
s+1

holds for all s ∈ Dom(r), if and only if (4s + 3)(s + 1)− (s + 2)(3s + 2) =

s2 − s − 1 ≤ 0, i.e., 1−
√
5

2 ≤ s ≤ 1+
√
5

2 ≈ 1.618. Thus, if s ≤ q2, then we
need to verify that r < 4s+3

3s+2 ; otherwise, if s ≥ 5
3 , we need to verify that

r < s+2
s+1 .

For q1 ≤ s ≤ q2 where r(s) = r1(s), we get 4s+3
3s+2− 6s+6

4s+5 = 2s+3−2s2
(4s+5)(3s+2) > 0,

which holds since 2s + 3− 2s2 > 0 for all 1−
√
7

2 < s < 1+
√
7

2 ≈ 1.8229.

Now let us consider the range 5
3 ≤ s ≤ q6. For the two cases where

r(s) = r2(s) we have that 12s+10
9s+7 < s+2

s+1 holds since s+2
s+1 − 12s+10

9s+7 =
−3s2+3s+4
(s+1)(9s+7) > 0, which is valid since −3s2 + 3s + 4 > 0 for all 1

2 −
√
57
6 <

s < 1
2 +

√
57
6 ≈ 1.7583.

In Lemma 2 we showed that r3(s) ≤ r2(s) for all s ≥ q3 and that r4(s) ≤
r2(s) for all s ≤ q5. From this the claimed upper bound on r(s) follows.

2. For r(s) = r2(s) we get 12s+10
9s+7 − 8s+7

6s+5 = s+1
(6s+5)(9s+7) > 0.

For r(s) = r3(s) we get 18s+16
16s+7 − 8s+7

6s+5 = 31+18s−20s2
(6s+5)(16s+7) > 0 for all s <

9+
√
701

20 ≈ 1.7738.

For r(s) = r4(s) we get 8s+7
3s+10 − 8s+7

6s+5 = (8s+7)(3s−5)
(3s+10)(6s+5) ≥ 0, because s ≥ 5

3 .

Now we derive several properties regarding the boundaries of the safe sets.
Note that the safe sets could have been defined in an alternative way as sets
satisfying the next properties.

Lemma 4 1. D1 = D2,

2. T1 − T3 = s and T2 − T4 = 1,

3. B3 = B1 −D1,

4. B4 = B2 −D3,

5. B2 + T3 = 1,

6. T1 + B2 = T2 + B1 = SUM.

Proof. All properties are checked using the definition of the safe sets.

1. D1 = D2 holds by definition.

15

2. T1 − T3 = rs− s(r − 1) = s and T2 − T4 = r − (r − 1) = 1.

3. B3 + D1 = (2s− 2r − rs + 2) + (s + 1)(r − 1) = s− r + 1 = B1.

4. B4 + D3 = (4s− 2r − 3rs + 3) + (2r − 3s + 2rs− 2) = s + 1− rs = B2.

5. B2 + T3 = (s + 1− sr) + s(r − 1) = 1.

6. T1 + B2 = rs + (s + 1 − sr) = s + 1 = SUM. Moreover T2 + B1 =
r + (s + 1− r) = s + 1 = SUM.

Now we show that the definition of the safe sets is of sense, these sets do not
intersect each other, and they follow each other on the machines.

Lemma 5 1. 0 < B3 < T3 < B1 < T1.

2. 0 < B4 < T4 < B2 < T2.

Proof. In the calculations we generally use Lemma 3, unless stated otherwise.

1. From r < 2s+2
s+2 it follows that 0 < 2s− 2r − rs + 2 = B3. From r > 3s+2

2s+2

it follows that 0 < 2r + 2rs − 3s − 2 = D3 = T3 − B3. From r < 2s+1
s+1 it

follows that 0 < (s + 1− r)− s(r − 1) = B1 − T3. From the definition we
have that 0 < (s + 1)(r − 1) = D1 = T1 −B1.

2. From r < 4s+3
3s+2 it follows that 0 < 4s + 3 − 3rs − 2r = B4. From r > 4

3
and the definition we have that 0 < (3r−4)(s+ 1) = D4 = T4−B4. From
r < s+2

s+1 it follows that 0 < (s + 1 − sr) − (r − 1) = B2 − T4. From the
definition we have that 0 < (s + 1)(r − 1) = D2 = T2 −B2.

Now we have seen that the safe sets are properly defined. We will need some
further bounds on r. With their help, we shall be able to prove several properties
of the expressions we introduced.

Lemma 6 The following bounds on r are valid:

1. 2s+1
2s ≤ r < s.

2. If s ≥ 5
3 , then 7s+6

6s+3 ≤ r ≤ 3s+5
2s+4 .

3. If s is regular, then we have 6s+5
6s+1 ≤ r.

Proof.

16

1. This bound was already proven in [20] (cf. Figure 1 in [20]). We give
it here for the sake of completeness. Regarding the lower bound, if s
is small (i.e., q1 ≤ s ≤ q2), then 2s+1

2s ≤ r = r1(s) = 6s+6
4s+5 holds, since

2s(6s+6)−(2s+1)(4s+5) = 4s2−2s−5 ≥ 0, if s ≥ 1+
√
21

4 = q1. For s ≥ 5
3 ,

we know from Lemma 3 that 4
3 < r, and thus get 4

3 − 2s+1
2s = 2s−3

6s > 0.
Now let us consider the upper bound. For a small speed ratio s, we get

s − 6s+6
4s+5 = 4s2−s−6

4s+5 > 0 if s > 1+
√
97

8 ≈ 1.3561, in particular for s ≥ q1.

For s ≥ 5
3 , the statement follows from Lemma 2, since r1(s) ≥ r2(s) for

these speeds.

2. Let us consider the lower bound. In the case r = r2(s), we get 12s+10
9s+7 −

7s+6
6s+3 = 9s2−7s−12

3(9s+7)(2s+1) ≥ 0 if s ≥ 7+
√
481

18 ≈ 1.6073. In the case r = r3(s), we

get 18s+16
16s+7 − 7s+6

6s+3 = (4s+3)(2−s)
3(2s+1)(16s+7) > 0. Finally, in the case r = r4(s), we

get 8s+7
3s+10 − 7s+6

6s+3 = 27s2−22s−39
3(3s+10)(2s+1) ≥ 0 if s ≥ 11+

√
1174

27 ≈ 1.6764, which in

particular holds for s ≥ q4. To prove the upper bound, it suffices to show
that r2(s) ≤ 3s+5

2s+4 , since r ≤ r2(s) by Lemma 2. We get 3s+5
2s+4 − 12s+10

9s+7 =
(s+1)(3s−5)
2(s+2)(9s+7) ≥ 0.

3. If s is regular, we get 12s+10
9s+7 − 6s+5

6s+1 = (6s+5)(3s−5)
(9s+7)(6s+1) ≥ 0.

In the next lemma we prove several properties. Note that d is defined only if
s ≥ 5

3 , and e, f, g are defined only if s is bigger regular.

Lemma 7 1. b, c, d, e, f, g ≥ 0,

2. If s ≥ 5
3 , then a ≤ c,

3. s > T2,

4. B1 > 1.

Proof.

1. In the proof we use Lemma 3 and Lemma 6.

• b ≥ 0, since r ≥ 2s+1
2s .

• c > 0, since r < s+2
s+1 .

• d ≥ 0, since r ≥ 7s+6
6s+3 .

• e > 0, since r > 6s+5
6s+1 . The strict inequality follows from the proof of

Lemma 6, because e = 0 can only occur for s = 5
3 , which means that

s would be smaller regular.

• f > 0, since r > 8s+7
6s+5 . The strict inequality can also be seen in the

proof of Lemma 3, since f is defined only for bigger regular speeds.

17

• g > 0, since g = c + e > 0.

2. If s ≥ 5
3 , then a ≤ c, since c− a = (s− r − rs + 2)− (3r − 2s + rs− 3) =

3s− 4r − 2rs + 5 ≥ 0, where the last estimation uses r ≤ 3s+5
2s+4 .

3. We obtain s− T2 = s− r > 0, since r < s from Lemma 6.1.

4. B1 − 1 = (s + 1− r)− 1 = s− r > 0, since r < s by Lemma 6.1.

In fact, we did not “forget” to prove a ≥ 0, as the following remark shows.

Remark 8 If q6 < s ≤ q7, then a is negative.

Proof. Here s is bigger regular, hence r = r2(s) = 12s+10
9s+7 . Substituting this

expression, we thus get a = 3r − 2s + rs− 3 = −6s2+5s+9
9s+7 < 0.

2.3 General Subcases

The general idea to show that no semi-online algorithm knowing s and OPT
can in general be better than the ratio r(s) is to construct a malicious sequence
of jobs that is in JOPT but forces any algorithm to schedule them in such way
that they have a makespan of at least r. We construct this sequence iteratively,
depending on the previous assignment choices of the algorithm. This leads to a
number of cases that need to be considered separately. Some cases are “final”
in the next sense (as endgame in chess): When entering the case, the algorithm
is trapped, because we can then construct one or a few more jobs, which make
the algorithm to overshoot the desired makespan.

In this sense, the following three “G”-cases, G1, G2, and G3, are general,
because most of the other cases, independent of the particular interval of s, will
lead to them.

We will denote by L1 and L2 the current load of machine M1 and M2, respec-
tively. Moreover let L′1 and L′2 denote the increased load of that machine, if the
actual job is assigned there.

Final Case G1. Suppose T3 ≤ L2 and L1 + L2 ≤ 1.

Note that 1 = B2 + T3 > T3 holds by Lemma 4.5. In this situation, let
the next job be A = s and B = 1− (L1 + L2) ≥ 0. If A is assigned to M2,
we get L′2 ≥ T3 + s = T1 by Lemma 4.2, thus we are done. Otherwise A is
assigned to M1. Then L′1 ≥ s > T2, by Lemma 7.3, and we are done again.

The set of all jobs that were initially on M1 and M2, plus jobs A and B
belong to JOPT by Lemma 1, if we assign A to M2 and all other jobs to
M1.

18

Final Case G2. Suppose L1 = B2 and 0 ≤ L2 ≤ B3, and there exists an
already assigned job with size c (where c as defined above).

The next and last jobs are B = D1 and

C = SUM− (L1 + L2 + B) ≥ (T2 + B1)− (B2 + D2)−B3

= B1 −B3 = D1 = B

using SUM = T2 + B1, D1 = D2, and B1 − B3 = D1 from Lemmas 4.1,
4.3, and 4.6. If any of B and C is assigned to M1, the lower bound holds
since L′1 ≥ B2 + D1 = B2 + D2 = T2. Otherwise both jobs go to M2 and
we are done again as L′2 = SUM−B2 = T1 by Lemma 4.6.

The set of jobs belong to JOPT by Lemma 1. Indeed, assign jobs c and
B = D1 to machine M1, then L′1 = c + D1 = 1 by the definition of c. All
remaining jobs go to machine M2; then L′2 = B2 + L2 − c + SUM− (L1 +
L2 + B) = B2 − c + SUM− L1 −B = −c + SUM−B = SUM− 1 = s.

Final Case G3. Suppose L1 = T4 and L2 = 0.

The next and last two jobs are B = 1 and C = SUM−(T4+1) = (T2+B1)−
T4−1 = B1 > 1, by Lemmas 4.6, 4.2, and 7.4. If any of B or C is assigned
to M1, then L′1 ≥ T4 + 1 = T2 by Lemma 4.2. Thus the lower bound holds.
Otherwise both go to M2 and L′2 = SUM − T4 > SUM − B2 = T1 by
Lemmas 5.2 and 4.6, and we are done again.

The jobs belong to JOPT by Lemma 1, because we can assign B = 1 to
machine M1 and all other jobs to machine M2, which have a total sum of
T4 + C = T4 + SUM− (T4 + 1) = SUM− 1 = (s + 1)− 1 = s.

3 Lower Bound for Small s

At the end of this section we will prove that r1(s) is a lower bound on the
competitive ratio for small s. Before giving this construction, we consider a
number of cases, from which the lower bound can be achieved soon. We start
with some further estimations.

3.1 Properties

Lemma 9 If s is small, then 2s−1
s ≤ r ≤ 5s+2

4s+1 ≤ 2
s .

Proof.

• For the first estimation, we see that 6s+6
4s+5 − 2s−1

s = 5−2s2
(4s+5)s ≥ 0 holds for

all s ≤
√
10
2 ≈ 1.5811, in particular, for small s.

• For the second estimation, we obtain that 5s+2
4s+1 − 6s+6

4s+5 = −4s2+3s+4
(4s+1)(4s+5) ≥ 0

for s ≤ 3+
√
73

8 = q2, in particular, for small s.

19

• For the third estimation, we compute that 2
s − 5s+2

4s+1 = −5s2+6s+2
s(4s+1) ≥ 0 for

all s ≤ 3+
√
19

5 ≈ 1.4717, in particular, for small s.

Lemma 10 1. (T3 −B2) + c = b + c ≤ B4,

2. c ≤ B4,

3. 2c ≥ B4,

4. 2c ≥ B3,

5. B3 = D4,

6. c < B3,

7. B2 + B4 < 1.

Proof.

1. B4 − b − c = (4s − 2r − 3rs + 3) − (2rs − 2s − 1) − (s − r − rs + 2) =
5s− r − 4rs + 2 ≥ 0, since r ≤ 5s+2

4s+1 by Lemma 9.

2. This follows from Lemma 10.1, together with b ≥ 0 from Lemma 7.1.

3. 2c − B4 = 2(s − r − rs + 2) − (4s − 2r − 3rs + 3) = rs − 2s + 1 ≥ 0, as
r ≥ 2s−1

s from Lemma 9.

4. 2c − B3 = 2(s − r − rs + 2) − (2s − 2r − rs + 2) = 2 − rs ≥ 0, as r ≤ 2
s

from Lemma 9.

5. B3 −D4 = (2s− 2r − rs + 2)− (3r − 4)(s + 1) = 6s + 6− r(4s + 5) = 0,
since r = r1(s) for small s.

6. B3 − c = (2s − 2r − rs + 2) − (s − r − rs + 2) = s − r > 0, as r < s by
Lemma 6.1.

7. Since 1 = B2 + T3 by Lemma 4.5, we have to show that B4 < T3. From
Lemma 5.2 and the definitions of T3 and T4 it follows that B4 < T4 =
r − 1 < s(r − 1) = T3.

20

3.2 Subcases

The adversary constructs a sequence of jobs in such way that any assignment
strategy of an arbitrary algorithm will lead to one of the “S”-cases described
below, which make use of the fact that s is small. When the assumptions of
these cases are fulfilled, the adversary knows how to define the next jobs, so
that the algorithm is trapped and must return a solution having a ratio worse
than or equal to r = r1(s).

Case S1. Assume that L1 = B2 and L2 = B4 − c.

Then the next jobs are B = 1− (B4− c) ≥ c− (B4− c) = 2c−B4 ≥ 0 (by
Lemma 10.3) and C = SUM−(L′1+L′2+B) = (B2+T1)−(B2+1) = T1−
1 = (T1−D1)− c = B1− c ≥ D2, since B1 ≥ D2 + c = 1 holds by Lemma
7.4. Note that B = 1−(B4−c) = (D2+c)−(B4−c) = D2+2c−B4 ≥ D2

also holds by Lemma 10.3. If any of B or C is assigned to M1, we are done.
Indeed, if B is assigned to M1, then L′1 = L1 + B ≥ B2 + D2 = T2, and
similarly for C. Otherwise both B and C are assigned to M2, and we are
done again: L′2 = B4−c+B+C = B4−c+(1− (B4−c))+(T1−1) = T1.

The set of jobs A,B,C and the previous load of M2 belong to JOPT (by
Lemma 1): assign the previous load of machine M2 and B to machine M1,
then its load is L2+B = (B4−c)+(1−(B4−c)) = 1. The remaining jobs A
and C go to machine M2, which then has a load of A+C = B2+(B1−c) =
(s + 1− r) + (s + 1 + sr)− (s− r − rs + 2) = s.

Case S2. Suppose L1 = 0 and L2 = B4 − c ≥ 0 (by Lemma 10.2).

Let the next job be A = B2. Suppose A is assigned to M2. Then L′1 +
L′2 = B2 + B4 − c ≤ B2 + T4 ≤ B2 + T3 = 1 holds (applying c ≥ 0,
T4 = r−1 ≤ s(r−1) = T3, and Lemma 4.3). Moreover by Lemma 10.1 we
get L′2 = B2 + B4 − c ≥ T3, thus case G1 holds for the new loads L′1, L

′
2,

and hence we are done. Otherwise A is assigned to M1. At this moment
L′1 = B2 and L′2 = B4 − c. Then we are in case S1.

Case S3. Suppose L1 = B4 − c and L2 = c.

Let the next job be A = B2−(B4−c) = D3 +c by Lemma 4.4. Suppose A
is assigned to M2. Then L′1 +L′2 = (B4− c) + c+B2− (B4− c) = B2 + c ≤
B2 + B4 ≤ 1 by Lemma 10.7. Moreover L′2 = D3 + 2c ≥ D3 + B3 = T3,
since 2c ≥ B3 holds by Lemma 10.4. Thus case G1 holds for L′1 and L′2,
and we are done. Otherwise A is assigned to M1. Then the loads are
L′1 = B2 and L′2 = c ≤ B3 by Lemma 10.6. Hence, case G2 holds for the
loads L′1 and L′2, and we are done again.

3.3 The Construction

Consider an arbitrary algorithm to solve the semi-online scheduling problem,
where the values s and OPT are known. In the following construction, we take
the point of view of an adversary, and try to make the algorithm’s life as hard

21

as possible. More formally, we will show that the algorithm shall provide a
schedule whose competitive ratio is at least r1(s). Although the whole family of
jobs belongs to JOPT (and the jobs have a total size of (s+1)OPT), the adversary
still has enough freedom to force the algorithm to construct an assignment where
it ends up with a load L1 on machine M1 with L1 ≥ T2 = r or a load L2 on
machine M2 with L2 ≥ T1 = rs.

The adversary decides that the first job is J1 = B4 − c. This job has a
non-negative size by Lemma 10.2. If J1 goes to M2, then case S2 is satisfied, and
we are done (i.e., we trapped the algorithm as explained above). We conclude
that J1 goes to M1.

The second job is J2 = c. If J2 goes to M2, then case S3 is satisfied, and
we are done. We conclude that J2 goes to M1. At this moment the loads are
L1 = B4 and L2 = 0.

The third job is J3 = B3. Suppose J3 goes to M1. Since L′1 = B4 + B3 = T4

holds by Lemma 10.5, we are in case G3, and thus we are done. We conclude
that J3 goes to M2. At this moment the loads are L1 = B4 and L2 = B3.

Then the next (and final) job is J4 = D3. If J4 goes to M2, then L′1 = B4

and L′2 = T3. We estimate that L′1 + L′2 = T3 + B4 < T3 + B2 = OPT, where
we applied first Lemma 5.2 and then Lemma 4.5. Thus we showed that we are
in case G1, and we are done. We conclude that J4 goes to M1. At this moment
L1 = B4 + D3 = B2 by Lemma 4.4, and L2 = B3. Now we are in case G2, and
we are done.

We remark that the sequence of jobs can be drawn as a decision tree, with
the first job at its root node, and all other jobs at the subsequent nodes. A
left branch means that the job at a node is assigned to machine M1, and a right
branch means that it is assigned to machine M2. Note that this tree has a depth
of 6 jobs.

4 Lower bounds for regular and medium s

Here we consider the four cases of s being small regular, small medium, bigger
medium, or bigger regular, respectively. We need several further properties
regarding the lower bounds.

4.1 Properties

Lemma 11 If s ≥ 5
3 , then

1. max
{

2
s ,

5s+6
4s+4 ,

6s+5
6s+1

}
≤ r ≤ 7s+5

6s+2 ,

2. if s is small medium, then 11s+8
8s+6 ≤ r also holds.

Proof.

22

1. Regarding the lower bounds, applying 4
3 < 1.35 < r from Lemma 3.1,

we get 4
3 − 2

s = 2(2s−3)
3s > 0 and 135

100 − 5s+6
4s+4 = 2s−3

20(s+1) > 0; both in-

equalities are true since s ≥ 5
3 . Let us see r ≥ 6s+5

6s+1 . We have already
seen this for regular speeds in Lemma 6.1. For smaller medium s we get
18s+16
16s+7 − 6s+5

6s+1 = 12s2−8s−19
(16s+7)(6s+1) ≥ 0, which is true for s ≥ 3+

√
73

8 ≈ 1.443, in

particular for s ≥ 5
3 . Considering bigger medium s, we get 8s+7

3s+10 − 6s+5
6s+1 =

30s2−25s−43
(3s+10)(6s+1) ≥ 0, which is true for s ≥ 25+

√
5785

60 ≈ 1.684, in particular for
s ≥ q4.

Regarding the upper bound, by Lemma 2 it is enough to show that r2(s)

does not exceed it. We get 7s+5
6s+2− 12s+10

9s+7 = −9s2+10s+15
54s2+60s+14 ≥ 0, which is true

since −9s2 +10s+15 ≥ 0 for 5−4
√
10

9 ≤ s ≤ 5+4
√
10

9 ≈ 1.961, in particular,
if s is regular or medium.

2. We get 18s+16
16s+7 − 11s+8

8s+6 = −32s2+31s+40
(16s+7)(8s+6) ≥ 0, which is true, since −32s2 +

31s + 40 ≥ 0 for 31−
√
6081

64 ≤ s ≤ 31+
√
6081

64 ≈ 1.703, in particular for
q3 ≤ s ≤ q4.

Lemma 12 1. s ≥ T2 + c.

2. B2 ≤ s− 1.

3. T4 + B2 − 2c > T3, i.e., T4 − 2c > T3 −B2 = b, i.e., T4 > b + 2c.

4. T4 ≥ d.

5. T4 + c ≤ B3 + d, i.e., c + (T4 −B3) ≤ d, i.e., c + a ≤ d.

6. c ≤ B3.

7. T4 + B2 + c− d < 1 = B2 + T3 (cf. Lemma 4.5), i.e., T4 + c < T3 + d.

8. 2T3 + 2B4 ≤ s.

9. If s is regular, then 3B4 = T4 < B2.

10. T4 ≤ 3B4 ≤ B2, if s is small medium.

11. B3 + B4 ≤ s− 1.

Proof. We apply Lemma 11, unless stated otherwise.

1. From the definitions of T2 and c we get s−T2−c = s−r−(s−r−rs+2) =
rs− 2 ≥ 0, which is true, because r ≥ 2

s .

2. As before, we obtain s− 1−B2 = s− 1− (s + 1− sr) = rs− 2 ≥ 0.

23

3. We have from the definitions: T4 − b − 2c = (r − 1) − (2rs − 2s − 1) −
2(s − r − rs + 2) = 3r − 4 > 0, where the last inequality was shown in
Lemma 3.1.

4. We get T4 − d = (r − 1) − (3r − 7s + 6rs − 6) = 7s + 5 − r(6s + 2) ≥ 0,
since r ≤ 7s+5

6s+2 .

5. We compute d−c−a = (3r−7s+6rs−6)−(s−r−rs+2)−(3r−2s+rs−3) =
r − 6s + 6rs− 5 ≥ 0, which follows from r ≥ 6s+5

6s+1 .

6. Applying Lemmas 12.4 and 12.5, we get c ≤ B3 + d− T4 ≤ B3.

7. This follows from Lemmas 12.5 and 5.1.

8. From the definitions we obtain s−2T3−2B4 = s−2s(r−1)−2(4s−2r−
3rs + 3) = 4r − 5s + 4rs− 6 ≥ 0, since r ≥ 5s+6

4s+4 .

9. From the definitions we have 3B4 − T4 = 3(4s− 2r− 3rs + 3)− (r− 1) =
12s+10−r(9s+7) = 0, since r = r2(s). Moreover, T4 < B2 by Lemma 5.2.

10. For small medium s, it holds that 3B4 − T4 = 12s + 10 − r(9s + 7) ≥ 0,
since r = r3(s) ≤ r2(s) by Lemma 2.3. Moreover, B2 − 3B4 = (s + 1 −
sr)− 3(4s− 2r − 3rs + 3) = 6r − 11s + 8rs− 8 ≥ 0, as r ≥ 11s+8

8s+6 .

11. We estimate s−1−B3−B4 = s−1−(2s−2r−rs+2)−(4s−2r−3rs+3) =
4r − 5s + 4rs− 6 ≥ 0, since r ≥ 5s+6

4s+4 .

In the next lemma we consider only the cases where s is smaller regular or smaller

medium. Let t =
√
4633+23

54 ≈ 1.6864. Recall that q3 = 13+
√
1429

30 ≈ 1.6934.

Lemma 13 1. T4+c ≥ b+2d holds if s is smaller regular and s ≤ t ≈ 1.6864,

2. 2B2 + c ≥ T3 + 2d holds if s is smaller regular and t ≤ s ≤ q3,

3. 2B2 + c = T3 + 2d holds if s is smaller medium,

4. c + B2 ≤ B3 + d holds if s is smaller regular and s ≥ t,

5. c + B2 ≤ B3 + d holds if s is smaller medium,

6. 2B2 + c − d ≤ 1 = B2 + T3, i.e. B2 + c ≤ T3 + d, if s is smaller regular
and s ≥ t, or if s is smaller medium.

Proof.

1. T4+c−(b+2d) = (r−1)+(s−r−rs+2)−(2rs−2s−1)−2(3r−7s+6rs−6) =

17s+14−r(6+15s) = 17s+14− 12s+10
9s+7 (6+15s) = 38+23s−27s2

9s+7 ≥ 0, which

holds because 38 + 23s− 27s2 ≥ 0 if and only if 23−
√
4633

54 ≤ s ≤ 23+
√
4633

54 .

24

2. 2B2 + c− 2d− T3 = 2(s + 1− sr) + (s− r − rs + 2)− 2(3r − 7s + 6rs−
6) − s(r − 1) = 18s + 16 − r(7 + 16s) = 18s + 16 − (7 + 16s) 12s+10)

9s+7 =
2(21+13s−15s2)

9s+7 ≥ 0, which holds because 21 + 13s− 15s2 ≥ 0 if and only if
13−
√
1429

30 ≤ s ≤ 13+
√
1429

30 .

3. 2B2 +c−2d−T3 = 18s+16− (7+16s)r = 18s+16− (7+16s) 18s+16
16s+7 = 0.

4. B3 +d−c−B2 = (2s−2r−rs+2)+(3r−7s+6rs−6)− (s−r−rs+2)−
(s+1−sr) = (7s+2)r−7s−7 = (7s+2) 12s+10

9s+7 −7s−7 = 21s2−18s−29
9s+7 ≥ 0,

since 21s2−18s−29 ≥ 0 if and only if s ≤ 9−
√
690

21 or s ≥ 9+
√
690

21 ≈ 1.6794.

5. B3+d−c−B2 = (7s+2)r−7s−7 = (7s+2)(18s+16)
16s+7 −7s−7 = 14s2−13s−17

16s+7 ≥
0, since 14s2− 13s− 17 ≥ 0 if and only if s ≤ 13−

√
1121

28 or s ≥ 13+
√
1121

28 ≈
1.660.

6. This follows from Lemmas 13.4 and 13.5 using Lemma 4.5.

In the next lemma we consider only bigger regular s.

Lemma 14 Let s be bigger regular. Then

1. c + B2 + T4 − 2e ≥ T3, i.e., c + T4 − 2e ≥ T3 −B2 = b.

2. c + T4 ≤ B3 + e, i.e., c + (T4 −B3) = c + a ≤ e.

3. c + B2 + T4 − e < 1 = B2 + T3, i.e., c + T4 < T3 + e.

4. B4 ≥ d.

Proof.

1. We derive that c+T4−2e−b = (s−r−rs+2)+(r−1)−2(1
2r−3s+3rs−

5
2)− (2rs− 2s− 1) = 9s+ 7− r(9s+ 1) ≥ 0. The last estimation is true if
9s+7
9s+1− 12s+10

9s+7 = 3(−9s2+8s+13)
(9s+1)(9s+7) ≥ 0, which holds since −9s2+8s+13 ≥ 0 if

and only if 4−
√
133

9 ≤ s ≤ 4+
√
133

9 = q7 ≈ 1.7258, in particular, for bigger
regular s.

2. e− c− a = (1
2r − 3s + 3rs− 5

2)− (s− r − rs + 2)− (3r − 2s + rs− 3) =
3rs − 2s − 3

2r − 3
2 ≥ 0, which is true for r ≥ 4s+3

6s−3 . Hence we need

to verify that 12s+10
9s+7 − 4s+3

6s−3 = 36s2−31s−51
3(9s+7)(2s−1) ≥ 0, which holds for all

s ≥ 31+
√
8305

72 = q5 ≈ 1.6963 (and some negative values for s, which we
can ignore).

3. This follows from Lemmas 14.2 and 5.1: c + T4 ≤ B3 + e < T3 + e.

25

4. Using the definitions of B4 and d it is to show that 4s − 2r − 3rs + 3 ≥
3r − 7s + 6rs − 6, which is equivalent to −9rs − 5r + 11s + 9 ≥ 0 or in
other form r ≤ 11s+9

9s+5 . Taking into account that r = r2(s) = 12s+10
9s+7 , we

arrive at −9s2 + 8s+ 13 ≥ 0, which is in particular true for bigger regular
values of s (as we have seen in Lemma 14.1).

Now we consider the case of bigger medium speeds.

Lemma 15 If s is bigger medium, then

1. 4c + 4a = B4,

2. b ≤ 8c + 7a ≤ B3.

Proof.

1. B4

4 − c − a = 4s−2r−3rs+3
4 − (s − r − rs + 2) − (3r − 2s + rs − 3) =

− r(3s+10)−8s−7
4 = 0.

2. Left inequality: 8c+7a−b = 8(s−r−rs+2)+7(3r−2s+rs−3)− (2rs−
2s− 1) = r(13− 3s)− 4s− 4 = 8s+7

3s+10 (13− 3s)− 4s− 4 = 31s+51−36s2
3s+10 ≥ 0.

The inequality is satisfied since 31s + 51 − 36s2 ≥ 0 holds if and only if
31−
√
8305

72 ≤ s ≤ 31+
√
8305

72 = q5.

Right inequality: B3 − 8c− 7a = (2s− 2r − rs + 2)− 8(s− r − rs + 2)−
7(3r − 2s + rs− 3) = 8s− 15r + 7 = 15

(
8s+7
15 − r

)
= 15

(
8s+7
15 − 8s+7

3s+10

)
=

(8s+7)(3s−5)
15(3s+10) ≥ 0, which is true for s ≥ 5

3 .

4.2 Subcases

For s being regular or medium (“RM”), we consider several further situations,
from which the lower bound can be achieved directly, or that leads to other
general cases we dealt with before.

Case RM1. Suppose T4 ≤ L1 ≤ B2 and 0 ≤ L1 + L2 ≤ s− 1.

Note that we have s − 1 ≥ B2 by Lemma 12.2. The next and last two
jobs are B = 1 and C = SUM − (L1 + L2 + B) ≥ s + 1 − s = 1 = B. If
any of B and C is assigned to M1, then L′1 ≥ T4 + 1 = T2, thus the lower
bound holds; otherwise both go to M2 and L′2 ≥ SUM− B2 = T1, and we
are done again.

The set of jobs belongs to JOPT by Lemma 1: assign B to M1 and the
remaining jobs to M2, which has a load of L1 +L2 +C = L1 +L2 +SUM−
(L1 + L2 + B) = SUM−B = s + 1− 1 = s.

26

Case RM2. Suppose L1 = c and L2 = 0.

Let the next job be A = T4−c. This is nonnegative by Lemma 12.3, using
that b > 0 from Lemma 7.1. Suppose A is assigned to M1. At this time
L′1 = T4 and L2 = 0, thus case G3 holds and we are done. Now suppose
A goes to M2; then let the next job be B = B2− c. This is nonnegative, as
c ≤ T4 (which we already observed) and T4 ≤ B2. If B goes to M2, then
the load of M2 will be L′2 = A + B = T4 + B2 − 2c. This is at least T3 by
Lemma 12.3. Moreover, using T3 = sT4 > T4 (by the definitions of T3 and
T4) and c ≥ 0 (by Lemma 7.1), we have L′1+L′2 = T4+B2−c < T3+B2 = 1.
Thus we are in case G1, and we are done. Otherwise B goes to M1. At
this moment the loads are L′1 = B2 and L′2 = A = T4 − c ≤ B3, since
T4 − B3 = a ≤ c by the definition of a and Lemma 7.2. Hence we are in
case G2, and we are done.

Case RM3. Suppose L1 = T4 and L2 = c.

Applying T2 − T4 = 1 by Lemma 4.2, we get L1 + L2 + 1 = T4 + 1 + c =
T2 + c ≤ s, by Lemma 12.1, hence L1 + L2 ≤ s − 1. So we are in case
RM1, and thus we are done.

Case RM4. Suppose L1 = d and L2 = c, and s is smaller regular or smaller
medium.

1. Assume that 5
3 ≤ s ≤ t ≈ 1.6864.

Note that L1 = d > 0. Let the next job be A = T4 − d. This
is nonnegative by Lemma 12.4. If A is assigned to M1, we meet
the prerequisites of case RM3, and we are done. Thus suppose A
goes to M2. Let the next job be B = B2 − d. (This is positive
as B2 > T4.) If B goes to M2, then L′2 = c + A + B. Moreover,
L′1 +L′2 = d+ c+ (T4−d) + (B2−d) = T4 +B2 + c−d < 1, applying
Lemma 12.7. We state that L′2 = T4 +B2 + c− 2d ≥ T3 holds in the
considered interval. Indeed, since b = T3 −B2, it suffices to see that
T4 + c ≥ b + 2d, which holds by Lemma 13.1. Thus we are in case
G1, and we are done. Otherwise B goes to M1. At this moment the
loads are L′1 = B2 and L′2 = L2 + A = c + T4 − d ≤ B3 by Lemma
12.5. Thus this is case G2, and we are done.

2. Assume that t ≤ s ≤ q3 or s is smaller medium.

Note that 0 < L1 = d ≤ T4 by Lemma 12.4. Let the next job be
A = B2 − d, which is positive, since B2 > T4 by Lemma 5.2. If
A is assigned to M1, then the new load on this machine is L′1 =
d+B2− d = B2, while L′2 = L2 = c. By Lemma 12.6 we get c ≤ B3,
thus we are in case G2, and we are done. Thus suppose A goes to
M2. Then, let the next job be B = B2 − d. If B goes to M2, then
the load of M2 will be L′2 = c + A + B = c + 2(B2 − d). Then
L′1 +L′2 = 2B2 + c− d. This is at most 1 by Lemma 13.6. Moreover,
L′2 = 2B2+c−2d ≥ T3, by Lemmas 13.2 and 13.3. Thus we are in case

27

G1, and we are done. Otherwise, B goes to M1. In this moment, the
loads are L′1 = d+(B2−d) = B2 and L′2 = L2+A = c+B2−d ≤ B3,
by Lemmas 13.4 and 13.5. We are in case G2, and we are done.

Case RM5. Suppose L1 = B4, and L2 = b−B4, and s is small medium.

Let the next job be A = 2B4. Suppose A is assigned to M1. At this time
L′1 = 3B4 and L2 = b − B4. Note that T4 ≤ 3B4 ≤ B2 by Lemma 12.10.
Using Lemma 4.5, the definition of b, and Lemma 12.8, we get L′1+L′2+1 =
3B4 +(b−B4)+(T3 +B2) = 2B4 +(T3−B2)+(T3 +B2) = 2T3 +2B4 ≤ s.
Hence we are in case RM1, and we are done. We conclude that A is
assigned to M2. Let the next job be B = B2 − B4 (this is positive, since
B2 > B4). If B goes to M2, then

L′2 = L2 + A + B = (b−B4) + 2B4 + (B2 −B4) = (T3 −B2) + B2 = T3

by the definition of b. Therefore L′1 + L′2 = B4 + T3 < B2 + T3 = 1, by
Lemmas 5.2 and 4.5. Since L′2 equals T3, we are in case G1, and we are
done. Otherwise B goes to M1. At this moment the loads are L′1 = B2

and

L′2 = L2 + A = (b−B4) + 2B4 = (T3 −B2) + B4

= (B3 + D3)−B2 + B4 = B3 + (B2 −B4)−B2 + B4 = B3,

using T3 = B3 + D3 and D3 = B2 −B4 (by Lemma 4.4). Hence we are in
case G2, and we are done.

Case RM6. Suppose L1 = e and L2 = c, and s is bigger regular.

Let the next job be A = T4 − e. This job is nonnegative by Lemma
12.4, A ≥ d − e, and d = e + f ≥ e by Lemma 7.1. Suppose A is
assigned to M1. Then L′1 = T4 and L′2 = c, thus case RM3 holds, and
so we are done. Otherwise, A goes to M2. Let the next job be B =
B2 − e. (This job is positive, since B2 > T4 from Lemma 5.2, and by the
observation T4 ≥ e above.) If B goes to M2, then the load of M2 will be
L′2 = c + (T4 − e) + (B2 − e) = c + B2 + T4 − 2e ≥ T3 by Lemma 14.1.
Then L′1 + L′2 = c + B2 + T4 − e. This is smaller than 1 by Lemma 14.3.
Thus we are in case G1, and we are done. Otherwise B goes to M1. At this
moment, the loads are L′1 = B2 and L′2 = c+T4−e ≤ B3 by Lemma 14.2.
Hence we are in case G2, and we are done again.

Case RM7. Suppose L1 = L2 + a ≤ B4.

Let the next job be A = T4 − L1. This is positive as L1 ≤ B4 and
B4 < T4 (by Lemma 5.2). Suppose A is assigned to M1. Since L′1 + L′2 ≤
T4 + B4 − a = T4 + B4 − (T4 − B3) = B3 + B4 ≤ s − 1 holds by the
definition of a and Lemma 12.11, we are in case RM1, and we are done.
Now suppose A goes to M2. Then let the next job be B = B2 −L1, which
is positive by Lemma 5.2. If B goes to M2, then the load of M2 will be L′2 =

28

(L1−a)+(T4−L1)+(B2−L1) = B2+T4−a−L1 ≥ B2+T4−(T4−B3)−B4 =
(B2−B4)+B3 = D3+B3 = T3, by the definition of a and Lemma 4.4. On
the other hand, L′1 +L′2 = B2 +T4−a = B2 +T4− (T4−B3) = B2 +B3 <
B2 + T3 = 1, by the definition of a and Lemma 5.2. Thus we are in case
G1, and we are done. Otherwise B goes to M1. At this moment the loads
are L′1 = B2 and L′2 = (L1−a)+(T4−L1) = T4−a = T4−(T4−B3) = B3

by the definition of a. Thus we meet case G2, and we are done again.

Case RM8. Suppose L1 = 0, and b ≤ L2 ≤ B3.

Let the next job be A = B2. If A goes to M2, then the increased load of M2
will be L′2 = L2 +B2 ≥ b+B2 = (T3−B2) +B2 = T3 (by the definition of
b), and L′1+L′2 ≤ B2+B3 < B2+T3 = 1 (by Lemma 5.1 and Lemma 4.5),
thus case G1 is satisfied, and we are done. Otherwise, A is assigned to M1.
We then meet case G2, and we are also done.

4.3 The Construction

Similarly to the construction for small s in Section 3.3, we construct a sequence
of jobs such that any semi-online algorithm knowing s and OPT will assign in
such way that the competitive ratio is at least r(s), where s is between 5

3 and
q7. Again, the sequence of jobs belongs to JOPT, and the total size of the jobs
is SUM = s + 1.

First, the adversary chooses the job J1 = c. If J1 goes to M1, then case RM2
is satisfied, and we are done. We conclude that J1 goes to M2.

We divide the further construction into two main cases, depending on the
value of s.

Case 1: s is smaller regular, smaller medium, or bigger regular.

Case 1.1: s is smaller regular or smaller medium.

The second job is J2 = d. If J2 goes to M1, then case RM4 is satisfied,
and we are done. Thus we conclude that J2 goes to M2. At this point
L1 = 0 and L2 = d + c = (d − e) + (c + e) = f + g = b − B4. We
continue the construction after case 1.2.

Case 1.2: s is bigger regular.

The second job is J21 = e. If J21 goes to M1, then the assumption of
case RM6 is satisfied, and we are done. We conclude that J21 goes to
M2. The next job is J22 = f . Suppose J22 goes to M1. Then L1 = f
and L2 = J1 +J21 = c+ e = g. From Lemmas 14.4 and 7.1 it follows
that B4 ≥ d = e + f ≥ f . Since we also have that f − g = a, we
are altogether in case RM7, thus we are done. We conclude that J22
goes to M2. At this point L1 = 0 and L2 = c+e+f = f +g = b−B4.

Now we join the treatments of these subcases, Case 1.1 and Case 1.2, and
finish the construction. In both subcases now L1 = 0 and L2 = b − B4.
Then comes J3 = B4. Suppose J3 goes to M1. Then L1 = B4 and L2 =

29

b−B4. If s is small medium, then we are in case RM5, and we are done.
Otherwise, if s is small regular or bigger regular, then we claim that we are
in case RM7, for which we have to show L2+a = L1 ≤ B4. The inequality
on the right follows already from the construction, and it remains to show
L1 = L2 + a. Thus by the definitions of a and b and Lemma 4.4, we
obtain L1 −L2 − a = B4 − (b−B4)− a = 2B4 − (T3 −B2)− (T4 −B3) =
2B4 + (B2 −D3) − T4 = 2B4 + B4 − T4 = 3B4 − T4 = 0, where the last
equality was shown in Lemma 12.9. Thus we enter case RM7, and we are
done.

We conclude that J3 goes to M2, and at this moment L1 = 0, L2 = b.
We claim that we are in case RM8 then, for which we need to show that
L2 ≤ B3. From Lemma 5.2 we know that B4 > 0. Hence we obtain from
Lemma 4.4 and the definition of D3 that B2 = B4 + D3 > D3 = T3 −B3.
We conclude that B3 > T3 −B2 = b, by the definition of b.

Case 2: s is bigger medium.

The second job is J21 = c + a. If J21 goes to M1, then the assumptions
L1 = L2 + a ≤ B4 of case RM7 are satisfied, because B4 = 4c + 4a >
c + a > 0 by Lemmas 15.1 and 5.2, and we are done. We conclude that
J21 goes to M2. Then comes J22 = 2c + 2a. If J22 goes to M1, then
L1 = 2c+ 2a and L2 = J1 + J21 = 2c+ a. Thus we are again in case RM7
(by repeating the previous arguments), and we are done. We conclude
that J22 goes to M2. At this point L1 = 0 and L2 = 4c + 3a. Then comes
J23 = 4c + 4a. If J23 goes to M1, then L1 = 4c + 4a and L2 = 4c + 3a.
Thus case RM7 is applicable again (by applying Lemma 15.1), and we
are done. We conclude that J23 goes to M2. At this moment L1 = 0 and
L2 = 8c + 7a. By Lemma 15.2 we know that b ≤ 8c + 7a ≤ B3. Hence we
are in case RM8, and we are done.

Again, it is possible to sketch the above assignment steps in a decision tree, as
explained at the end of Section 3.3. The depth of this tree depends on the value
of s. For smaller regular and smaller medium s, we have a depth of 7 jobs, and
for bigger medium and bigger regular s, we have a depth of 8 jobs.

5 Main Theorem

The following theorem summarizes the work done above.

Theorem 16 The function r(s) (defined in Section 2.1) is a lower bound on the
optimal competitive ratio for the two uniform machine semi-online scheduling
problem with known optimal offline objective function value.

Together with the algorithms from Ng et al. [20], we then obtain:

Corollary 17 The lower bound given by r(s) is tight for [q1, q2] ≈ [1.3956, 1.443],
moreover for [53 , q3] ≈ [1.6666, 1.6934], and also for [q5, q6] ≈ [1.6963, 1.7103].

30

6 Conclusions and Outlook

Starting with the work of Epstein [11] on the semi-online two uniform machines
scheduling problem with known optimum, researchers have continued to close
the gap between lower and upper bounds. As one can deduce from Figure 1,
this goal has been achieved for large portions of the line [1,∞). We contributed
to this ultimate goal by giving new lower bounds and thus showing that some
already existing algorithms (of Ng et al. [20]) are in fact best possible, so our
bounds are tight. Our new results give insight into the difficulty of the problem:
Why is it so hard to give the tight competitive ratio for this model? In part,
an answer lies in the fact that a single algebraic function cannot describe the
tight lower bound. From what is known by now, at least six different piecewise-
defined algebraic functions are necessary. And still, the question of the optimal
competitive ratio is open on certain parts of the “right” interval, namely in
(q2,

5
3), (q3, q5), and (q6,

√
3). The latter two we called the narrow interval and

wide interval, respectively. Regarding the wide interval, in the continuation [7]
of this paper we prove that our lower bound presented here or the “old” lower
bound due to Epstein [11] is in fact tight.

Acknowledgements. Krzysztof W ↪esek’s work was partially supported by the
European Union in the framework of European Social Fund through the Warsaw
University of Technology Development Programme, realized by Center for Ad-
vanced Studies. Furthermore, W ↪esek’s work was conducted as a guest researcher
at the Helmut Schmidt University.

References

[1] S. Albers. Better bounds for online scheduling. SIAM Journal of Comput-
ing, 29:459 – 473, 1999.

[2] E. Angelelli, M. G. Speranza, and Z. Tuza. Semi-online scheduling on two
uniform processors. Theoretical Computer Science, 393:211 – 219, 2008.

[3] E. Angelelli, M. G. Speranza, and Zs. Tuza. Semi on-line scheduling on
three processors with known sum of the tasks. Journal of Scheduling, 10:263
– 269, 2007.

[4] Y. Azar and O. Regev. On-line bin-stretching. Theoretical Computer Sci-
ence, 268(1):17 – 41, 2001.

[5] P. Berman, M. Charikar, and M. Karpinski. On-line load balancing for
related machines. Journal of Algorithms, 35:108 – 121, 2000.

[6] T. C. E. Cheng, H. Kellerer, and V. Kotov. Semi-on-line multi-processor
scheduling with given total processing time. Theoretical Computer Science,
337:134 – 146, 2005.

31

[7] Gy. Dósa, A. Fügenschuh, Z. Tan, Zs. Tuza, and K. W ↪esek. Semi-Online
Scheduling on Two Uniform Machines with Known Optimum Part II: Tight
Upper Bounds. Technical report, Applied Mathematics and Optimization
Series AMOS#28, Helmut Schmidt University/University of the Federal
Armed Forces, Hamburg, Germany, 2015.

[8] Gy. Dósa, M. G. Speranza, and Zs. Tuza. Two uniform machines with
nearly equal speeds: unified approach to known sum and known optimum
in semi on-line scheduling. Journal of Combinatorial Optimization, 21:458
– 480, 2011.

[9] T. Ebenlendr and J. Sgall. A lower bound on deterministic online algo-
rithms for scheduling onrelated machines without preemption. In Proceed-
ing of the 9th Workshop on Approximation and Online Algorithms, Lecture
Notes in Computer Science, pages 102 – 108, 2007.

[10] T. Ebenlendr and J. Sgall. Semi-Online Preemptive Scheduling: One Algo-
rithm for All Variants. Theory of Computer Systems, 48:577 – 613, 2011.

[11] L. Epstein. Bin stretching revisited. Acta Informatica, 39:97 – 117, 2003.

[12] U. Faigle, W. Kern, and G. Turán. On the performance of on-line algorithm
for particular problem. Acta cybernetica, 9:107 – 119, 1989.

[13] R. Fleischer and M. Wahl. Online scheduling revisited. Journal of Schedul-
ing, 3:343 – 353, 2000.

[14] T. Gormley, N. Reingold, E. Torng, and J. Westbrook. Generating ad-
versaries for request-answer games. In Proceeding of the 11th ACM-SIAM
Symposium on Discrete Algorithms. ACM, New York/Society for Industrial
and Applied Mathematics, Philadelphia, 2000.

[15] R. L. Graham. Bounds for cer tain multiprocessing anomalies. Bell System
Technical Journal, 45:1563 – 1581, 1966.

[16] R. L. Graham, E. L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Op-
timization and approximation in deterministic sequencing and scheduling:
A survey. Annals of Discrete Mathematics, 5, 1979.

[17] H. Kellerer, V. Kotov, M. G. Speranza, and Zs. Tuza. Semi on-line algo-
rithms for the partition problem. Operations Research Letters, 21:235 –
242, 1997.

[18] K. Lee and K. Lim. Semi-online scheduling problems on a small number of
machines. Journal of Scheduling, 16:461 – 477, 2013.

[19] X. Lu and Z. Liu. Semi-online scheduling problems on two uniform ma-
chines under a grade of service provision. Theoretical Computer Science,
489 – 490:58 – 66, 2013.

32

[20] C. T. Ng, Z. Tan, Y. He, and T. C. E. Cheng. Two semi-online scheduling
problems on two uniform machines. Theoretical Computer Science, 410(8
– 10):776 – 792, 2009.

[21] Z. Tan and A. Zhang. Online and Semi-online Scheduling. In P. M. Parda-
los et al., editor, Handbook of Combinatorial Optimization. Springer Sci-
ence+Business Media New York, 2013.

33

