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1 Introduction

There has been much interest recently in the possibility that there exists a hidden sector containing
a dark matter particle coupled to a hidden U(1) gauge boson (a “Dark Force”) having a mass of
the order of a GeV that kinetically mixes with the photon [1–5]. Such a scenario could explain
many astrophysical puzzles, such as the positron excess observed by PAMELA [6], ATIC [7], and
Fermi [8], or the direct detection and annual modulation signals of DAMA [9], CoGeNT [10, 11]
and CRESST [12] (if one ignores the disputed [13, 14] contradiction due to XENON100 [15] and
CDMS [16]). Following from the work of [17–19], elegantly simple supersymmetric models in the
latter category were constructed in [20] and further examined in [21] (see also [22]). However, these
works emphasized that, in order to obtain such a light hidden sector, supersymmetry breaking
effects in the visible sector would necessarily be dominated by gauge mediation, in order that
the masses should be acceptably small. Thus it is natural to ask whether confirmation of these
observations would be in contradiction with gravity mediation; in other words, whether it is also
possible to have a gravity-mediated spectrum of particles that can yield similar phenomenology.
This is also linked to the interesting question as to whether these models can be embedded into
string theory: such hidden sectors appear very naturally there – see, e.g., [23–31] – but the problem
of finding gauge mediation dominance over gravity mediation is notoriously difficult to achieve in
globally consistent models.

Beyond the dark matter motivation, it is also useful to ask what hidden sector models of
this form coming from string theory are allowed or excluded by current observations. This is
because, even if the hidden sector does not comprise (all) the dark matter, there is a wealth
of experiments capable of probing Dark Forces over a very wide range of hidden gauge boson
mass and kinetic mixing values. Kinetic mixing was considered in the context of the heterotic
string in [26, 32–35]. It has been examined in type II strings in [23–25, 36–40]; in [25, 29], both
masses and mixings were considered, and it was argued that the Dark Forces scenario could be
accommodated provided that there is additional sequestering. In this work, we shall consider
hidden sector models with the particle content and similar couplings to those in [20], but argue
that when we have gravity mediation domination, these can still give interesting phenomenological
predictions under certain mild assumptions, without requiring additional sequestering relative to
the visible sector. Although we will discuss the possible explanation of the signals found by
DAMA and CoGeNT, these will therefore not be our primary motivation: rather, we wish to
explore how simple supersymmetric hidden dark sectors with a hidden U(1) can be constrained
by observations.

The paper is organised as follows. In section 2, we describe the model of a supersymmetric dark
sector that we shall be examining. This is followed by a summary of constraints upon hidden U(1)s
with hidden matter charged under them in section 3. There we also include the reach of future
fixed target experiments and illustrate these with an investigation of a simple toy model. Section 4
then contains the meat of the paper: the results of the parameter search over our supersymmetric
dark sector model. We include additional technical details in the appendix: the hidden sector
renormalisation group equations (RGEs) in appendix A; the spectrum of the model in appendix B
(including the mass mixing matrix with the visible neutralino in B.2); a review of kinetic and
mass mixing of a massive hidden gauge boson with the hypercharge and Z in appendix C; and
a description of the Goldstone boson mixing in appendix D. In addition, in appendix E, we
discuss the supersymmetry-induced Higgs portal term and the mixing of the hidden and minimal
supersymmetric standard model (MSSM) Higgs fields; we believe that although the existence of
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the term has been known in the literature (see, e.g., [41] in non-SUSY models and [42] in the
SUSY context) the effect of the mixing terms for direct detection have not been given elsewhere.
Included is a calculation of the induced coupling of the hidden dark matter Majorana fermion to
nucleons.

2 Supersymmetric dark sectors

2.1 Supersymmetric kinetic mixing

We shall consider models that interact with the visible sector primarily through kinetic mixing of
a hidden U(1) gauge field with the hypercharge. Hence, we have a holomorphic kinetic mixing χh
between hypercharge Bα with coupling gY (and gaugino the Bino, b) and hidden gauge superfield
Xα with coupling gh (and gaugino written as λ) appearing in the Lagrangian density

L ⊃
∫

d2θ

(

1

4g2Y
BαBα +

1

4g2h
XαXα − χh

2
BαXα

)

. (2.1)

The physical kinetic mixing in the canonical basis [25,39] is then given by

χ = gY ghRe(χh). (2.2)

We shall assume no matter charged under both hidden and visible gauge groups, so this relation-
ship is valid at all energy scales. Since we are considering string-inspired models with a “hidden”
U(1), that is, without matter charged under both the visible and hidden gauge groups, we shall
take the value of the holomorphic kinetic mixing parameter to be of the order of a loop factor [25]:

χh ≡ κ

16π2
. (2.3)

Here, κ is a number that must, in principle, be derived from the high-energy model; in a field
theory model, it is generated by integrating out some heavy linking fields (charged under visible
and hidden sectors) at one loop, whereas in string models, it can be understood as arising from
Kaluza-Klein modes of closed strings. In all cases, it depends only logarithmically upon mass
splittings of the spectrum, and we shall therefore either take it to be equal to one or to vary by
at most an order of magnitude from unity [25,28,29]1. We thus have

χ = gY gh
κ

16π2
; (2.4)

the most commonly taken value for χ is thus of the order of 10−3, but smaller values correspond
to decreasing the hidden gauge coupling which may be extremely small in the case of hyperweak
groups [25,29,44]. Henceforth, we shall always use the physical mixing χ.

As befits a well-studied subject, there are a variety of notations. In addition to using χ, we

1Our results only depend on the absolute value of the mixing parameter. Effects that are sensitive to the different
signs have been studied in [43].
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shall also adopt the notation used in [45]:2

χ ≡− sin ǫ ≡ −sǫ
cos ǫ ≡ cǫ ≡

√

1− χ2, tan ǫ ≡ tǫ = − χ
√

1− χ2
. (2.5)

However, a crucial novelty in this work is the application of relation (2.4) to parameter scans
rather than allowing for independent χ and gh, which we shall see in section 3.4 will lead to
qualitatively different results for the cross sections.

2.2 Hidden matter fields

The model that we shall consider is the simplest possible without adding dimensionful supersym-
metric quantities. There are three chiral superfields S,H+, H− with H+ andH− charged under the
hidden U(1) with charges ±1. These appear in a superpotential with dimensionless coupling λS

W ⊃ λSSH+H−. (2.6)

This is inspired by D-brane models where the singlet is essentially the adjoint of the gauge group:
the superpotential above arises due to the N = 2-like structure, and there is no renormalisable
singlet potential due to this; alternatively, there may be N = 2 supersymmetry of the couplings
at some scale, although we shall not enforce this. Such hidden sectors from string theory were
considered in, e.g., [27, 31], and the above model was studied with gauge mediation in [20] where
it was termed a “hidden sector NMSSM,” although we have set the cubic singlet term in the
superpotential to zero. There then exists a global U(1) symmetry under which S and H− are
charged; string theory will not respect this, and we consider that it shall either be broken at
higher order in the superpotential or through non-perturbative effects – but we shall assure that
it will play no role in the following.

Once we include soft supersymmetry-breaking terms, we have the approximate potential for
the hidden sector,

V =|λS |2(|SH+|2 + |SH−|2 + |H+H−|2)

+
g2h
2
(|H+|2 − |H−|2 − ξ)2

+m2
+|H+|2 +m2

−|H−|2 +m2
S |S|2

+ (λSASSH+H− +
1

2
Mλλλ+ c.c.), (2.7)

where ξ = − χ
gh
ξY = χ(gY /gh)gY

v2

4 cos 2β. The approximation lies in the D-term potential; the
full form is found in appendix E.

A crucial difference for the phenomenology of the model once we consider gravity mediation is,
however, that the gravitino is not the lightest supersymmetric particle (LSP), and therefore the
dark matter can consist of stable hidden sector particles. We can thus perform a full analysis of
the model, including the visible sector and its couplings, using micrOMEGAs [51–55] to determine
the relic abundance and direct detection cross sections.

2Note, however, that this differs from the expressions in [20], which defines χ = −ǫ̃ ≡ −tǫ̃, sǫ̃ ≡ − χ√
1−χ2

, cǫ̃ ≡
1√

1−χ2
, although there they write ǫ instead of ǫ̃ (we added the tilde to avoid confusion with the above). On the

other hand, [43, 46–50] define δ ≡ −χ.
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2.3 Symmetry breaking through running

Just as in the MSSM, the top Yukawa coupling can, through running from the grand unified
theory (GUT) scale, induce electroweak symmetry breaking, so in the model we are considering,
the Yukawa coupling λS can induce breaking of the hidden gauge symmetry. By choosing the soft
masses and couplings at the MSSM GUT scale we can then find models at the low-energy scale
with hidden gauge symmetry breaking. A priori the independent supersymmetric parameters
are χ, gh, λS and the soft masses mH± ,mS , AS and Mλ (the hidden gaugino mass) which we can
choose at the high-energy scale and run down.

Via (2.4), we are asserting a relation between χ and gh. Thus, if we take κ = 1, we reduce
the number of free parameters in the model by one. However, as described above, we shall in
certain plots (figures 3,5 right,6 right,7,8 right,9,10 right and 11) allow an order of magnitude
variation in κ; hence, although this does not strictly reduce the number of parameters in the
model, it does rather constrain them with important consequences. Finally, we shall make one
further assumption about the parameters: we shall take mH+

= mH− at the high-energy scale.
This is motivated by the fields H± being a non-chiral pair (note that we are taking no explicit
Fayet-Iliopoulos term for the hidden U(1) which would introduce a mass splitting). Otherwise,
we shall scan over the remaining parameters to find interesting models.

The two-loop RGEs for the model are given in appendix A. By taking mS > mH± at the high-
energy scale, the RGEs naturally drive the soft masses for m2

H±
to be negative at low energies,

triggering hidden symmetry breaking.3 The visible sector coupling via the kinetic mixing then
determines which field (H+ or H−) condenses; without loss of generality, we take χ to be negative,

and thus H+ condenses. Defining ∆ ≡
√

λ2Sξ −m2
+λ

2
S/g

2
h, we have the conditions for a stable

minimum with 〈H+〉 = ∆/λS and all other expectation values zero:

0 ≤∆2

0 ≤m2
− +m2

+ +m2
S + 2∆2

0 ≤(m2
− +m2

+ +∆2)(m2
S +∆2)− |AS |2∆2. (2.8)

This is reviewed in appendix B. The hidden gauge boson mass is then given by

mγ′ = (
√
2gh/λS)∆. (2.9)

We give two examples of the values obtained scanning over mS and αS ≡ λ2S
4π in figure 1.

2.4 Symmetry breaking induced by the visible sector

The mechanism for hidden gauge symmetry breaking promoted in work such as [20] is via the
effective Fayet-Iliopoulos term induced in the hidden sector by the kinetic mixing with the visible
Higgs D-term. In such a case, the mass-squareds m2

+,m
2
− may be positive provided they are small

enough that ∆2 > 0.
One motivation for this work is that such a case is more difficult to justify in the case of gravity

mediation, but it is not implausible, since it can be achieved, for example, through sequestering

3We ignore the effect on the running of the kinetic mixing, since such terms always enter suppressed by O(χ2) [20]
with an additional loop factor – and are thus equivalent to three-loop order. Of course, it would be interesting to
include all of these effects, where then the hidden sector running would then be (extremely weakly) dependent upon
the visible sector parameters, and we leave this to future work.
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Figure 1: Hidden photon massmγ′ induced by radiative hidden gauge symmetry breaking, scanned

over mS and αS ≡ λ2S
4π . In both, mH = AS = 100 GeV, αh = 0.0417. Left: Mλ = 71 GeV, right:

Mλ = 50 GeV. All values given at 1016 GeV. The black region shows no stable symmetry breaking.

of the hidden sector. In section 4, we shall examine this case, which is a qualitatively different
scenario to that considered in [20], which considered gauge mediation. In the case of sequestering,
we shall assume the gravitino to be much heavier than the hidden sector, but, importantly, that
the singlet mass-squared m2

S > 0 and the hidden gaugino mass-squared M2
λ are of a similar order

of magnitude to the hidden Higgs soft terms m2
+,m

2
−, while the hidden AS term remains small.

This is in contrast to gauge mediation where m2
S ∼M2

λ ∼ 0.

2.5 Dark matter candidates

The model above contains essentially two different dark matter candidates: a Majorana fermion
and a Dirac one.4 Neglecting the effect of kinetic mixing with the visible neutralino, the fermion
mass matrix in the basis (λ̃, h̃+, h̃−, s̃) corresponding to hidden gaugino, hidden Higgsinos and
hidden singlino is given by

Mf =









Mλ mγ′ 0 0
mγ′ 0 0 0
0 0 0 ∆
0 0 ∆ 0









. (2.10)

4We are ignoring the possibility of scalar dark matter since, although the model as we have written it contains
stable scalars, we expect the symmetries protecting them to be broken at some higher order in the potential allowing
them to ultimately decay.
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The Majorana particle is formed from diagonalising the λ̃, h̃+ states; in the case of a large Mλ,
this leads to a see-saw effect and a low mass. We shall refer to this state as “õ1”, micrOMEGAs
notation for the lightest odd particle. Clearly, there will therefore always be a fermion lighter
than the hidden gauge boson (to avoid this fate, we would need to add a mass for the hidden
singlino). In order for the Dirac fermion formed from h̃−, s̃ to be the lightest state, we would need
λS <

√
2gh and for the Majorana mass Mλ to be rather small at the high-energy scale (this could

happen, for example, in a string model where the modulus corresponding to the gauge coupling
does not obtain an F -term), although it is somewhat suppressed in running down to the low scale.
Hence, the Dirac fermion scenario is not compatible with radiative-breaking models, but presents
an attractive candidate for the visible sector induced breaking. We shall refer to this state as “õ7”.
Note that this would not be a good candidate in gauge mediation, as there the singlet scalar would
necessarily be lighter than the fermion [20].

In a complete analysis including the couplings and annihilation cross sections, it is necessary
to take the mixing with the visible neutralino into account; this we do in appendix B.2.

Finally, we comment on the (lack of) effect of breaking the residual global symmetry on
the above analysis. This could occur via terms in the super- or Kähler potential of the form
Sn suppressed by an appropriate power of a mass scale, such as the string or Planck scale; for
example, in string theory, it would be natural to expect terms of the form Sne−aT where T is
some modulus charged under a (broken) gauge symmetry from which the residual global symmetry
descends – the effect could thus be exponentially suppressed by the expectation value of T , and so
can, in principle, be naturally arbitrarily small. Since these are small effects, they will not affect
the hidden gauge symmetry breaking (the singlet field would obtain a very small expectation
value due to the radiative generation of a tadpole term in the potential, which would no longer be
prohibited by the symmetry, but of course could be made arbitrarily small), but they will split the
Dirac fermion into two Majorana ones with a potentially undetectable mass splitting. However,
the lightest of these states, when it is the LSP, will be protected from decay by R-parity. This is
important when considering the constraints of Big Bang Nucleosynthesis (BBN, and is in contrast
to the cases considered in, e.g., [19]): in principle, any unstable relic with a lifetime greater than
O(100) seconds must obey strict constraints on its density during BBN; see, e.g., [56]. On the
other hand, the model does possess heavy scalars whose decays are protected by this symmetry,
and also the heavier component of the Dirac fermion would then decay; however, since the effect
can be arbitrarily small, we may simply assume that the lifetimes are many times that of the
Universe, and so we can to all intents and purposes treat the symmetry as exact. This is our
favoured perspective, but we can alternatively make the breaking strong enough that the scalars
and heavier components can decay fast enough; for example, a coupling of the form W ⊃ λS3 will
induce decays of S with Γ ∼ 10−2λ2mS , so λ & 10−11 would suffice; similarly, a mass splitting

of the fermions of ∆m2
∆ will allow decays with Γ ∼ 10−2|ghχ|2m∆

∆m2
∆

m2
∆

which, for the values of

the couplings considered in this paper, will suffice if
∆m2

∆

m2
∆

& 10−11. We will comment more upon

BBN constraints in section 3.2.

3 Constraints and discovery potential

There are already a wealth of constraints on the parameter space of models with dark forces and
hidden matter that we must apply in our search over models. However, there are also future
experiments which will have the potential to rule further regions out – or make a discovery. In
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this section, we summarise these current and future constraints and illustrate them by application
to a toy model.

3.1 Limits on the hidden photon

A summary of various constraints on hidden photons from cosmology (including BBN), astro-
physics and laboratory searches for the whole mass and kinetic mixing ranges 10−9 GeV ≤ mγ′ ≤
103 GeV and 10−15 ≤ |χ| ≤ 1 has been presented for example in [57] and references therein. For
the mass range of interest in this work, the constraints from electroweak precision tests (EWPT)
are used as have been presented in [45], where the strongest constraint is provided by the mass of
the Z for most of the parameter space. In the following plots (figures 4,5,6,8 and 9) of χ vs mγ′ ,
this is shown as a long-dashed approximately horizontal blue line excluding roughly χ & 3×10−2.
Another constraint comes from the muon anomalous magnetic moment [58] and is dominant for
mγ′ < 1 GeV: in the above-mentioned plots of χ vs mγ′ , this is a dashed-dotted brown line at
low masses and χ > 10−2. There is also a model-dependent constraint from BaBar searches [45]
that might be the most constraining in the region 0.2 GeV . mγ′ . 10 GeV but only applies if
the γ′ can not decay into hidden sector particles; in the above-mentioned plots of χ vs mγ′ , this
is a dashed dark purple line at low masses below 10 GeV and χ ∼ 2× 10−3. This constraint does
apply for most of the supersymmetric models we are considering, where the mass of the γ′ and
hidden matter are similar – preventing a decay of γ′ to the hidden sector. However, if the hidden
photon can decay to hidden matter, then there is instead a much weaker constraint from the Z
width; we require

Γ(Z → hidden)

Γ(Z → νν)
. 0.008 (3.1)

which for a single hidden Dirac fermion of mass MX < MZ and unit charge under the hidden
U(1) corresponds to (see also [59])

8c2W s
2
W (

sφ
cǫ

)2
(

g2h
e2

)

(1 + 2
M2
X

M2
Z

)

√

1− 4
M2
X

M2
Z

. 0.008 (3.2)

where cW , sW are the usual cosine and sine of the weak mixing angle respectively; sφ is defined
in equation (C.7). For MX ≪ MZ , this simplifies to χgh . 0.04. Clearly, for a small number of
hidden particles (and gh < 1), this is a weaker constraint than the measurement of the Z mass.

For mγ′ below 1 GeV, there are additional constraints which are shown as grey areas in
figure 3. The past electron beam dump experiments E141 [60], E137 [61] and E774 [62] have
been reanalyzed in [63] in terms of hidden photons and were found to place limits on small
masses . 2mµ. In addition, another such limit has been obtained from an electron beam dump
experiment at Orsay [64] in [65]. Recently, two electron fixed target experiments A1 at MAMI in
Mainz [66] and APEX at JLab [67] started, which are both searching for hidden photons behind
a thin target from bremsstrahlung off an electron beam and which where already able to set first
new constraints. Another limit arises in [68] from the reanalysis of data from a proton beam
dump taken at the U70 accelerator at IHEP Serpukhov. At the Frascati DAφNE φ-factory, the
KLOE-2 experiment [69] set further constraints using e+e− collisions. However, not only are there
limits on the kinetic mixing for very light hidden photons, but excitingly there are also dedicated
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experiments planned (and partly already running) that can further probe this parameter space
with real discovery potential. There are two fixed target experiments (A1 [66] and MESA) in Mainz
and three (APEX [67, 70], DarkLight [71] and HPS [72]) at JLab. The estimated sensitivities of
those experiments are shown in figure 3 for the toy model.

3.2 Constraints from Big Bang Nucleosynthesis

If a model produces too many high-energy photons, they can dissociate nuclei (such as lithium)
and ruin the predictions from nucleosynthesis. The thresholds for these processes are of the order
of a few MeV, and so photons produced with energies above this are potentially dangerous. This
is typically used to constrain long-lived decaying particles where a photon is among the decay
products; due to the rapid interactions of the photons with the plasma, a “zeroth order” spectrum
of energies is produced with a cutoff at m2

e/(22T ) (where me is the electron mass), and so these
reactions only activate for temperatures T below 0.01 MeV, corresponding to times of the order
of 104s. The strongest constraints are for particles with lifetimes of 108s. In models with a
hidden sector, it is then natural to wonder whether visible photons can be produced, for example,
by decays of particles in the hidden sector or the occasional annihilation of the frozen-out dark
matter particles.

For a massless hidden photon, hidden sector matter does acquire a small charge under the
visible photon (they become “millicharges”), in which case the constraints upon their presence
during BBN are summarised in [57]. However, since we are considering a massive hidden photon,
the diagonalisation of the physical states is given in equation (C.2), from which it can be seen
that hidden sector states do not couple to the visible photon (cf. also (C.3)). Moreover, once
a hidden photon is produced, the physical state does not oscillate into visible photons5 (so the
constraints will be very different from, for example, possible sterile neutrinos). It does, however,
couple to visible sector matter and decays with a width of Γ ≃ 1

3Q
2αχ2c2Wmγ′ into each light

species of charge Q, i.e. Γ > 10−2χ2GeV, or a lifetime τγ′ <
(

10−11

χ

)2 (
GeV
mγ′

)

s. In this work, we

shall be considering χ > 10−5, for which the hidden photon will always decay immediately on any
cosmological timescales – and so there will be no relic density of hidden photons present.

From the above, we can see that BBN constraints will not affect our dark matter models
in much the same way that they do not restrict standard weakly interacting massive particles
(WIMPs). However, to be completely strict, let us consider that the annihilation of our dark
matter particle will have some non-zero but small branching ratio into visible-sector photons,
which we denote rγ . One could imagine that this would arise from the plasma-induced mixing

described above, where rγ ∼ χcW
m2
P

m2

γ′
, but given the parameter region we are considering, this will

be dominated by loop effects instead. Since the hidden U(1) is not anomalous, the first diagram

5Recall that equation (C.2) is valid in a vacuum, and during BBN there is a small effect due to the thermal mass
for the photon mP in the plasma. Since we must consider temperatures below 0.01 MeV, below the electron mass,
this is given by m2

P ≃ 4πα ne

me
≃ 4πα

nγ

me
η, where ne, nγ are the densities of electrons and photons, respectively, and

η is the baryon-to-photon ratio. For T = 0.01 MeV, η = 10−9, this gives an upper bound on the mass of mP . 10−8

MeV. The effect of this additional tiny mass is a minuscule orthogonal rotation of the physical states, whereby

the photon and hidden photon mix by an amount χcW
m2

P

m2

γ′

. If there were a relic population of hidden photons, in

principle, a tiny fraction of them could oscillate into visible photons, and we would need to consider their effect
on BBN – but, further, for the range of hidden photon masses and kinetic mixing we are considering here, this is
clearly completely negligible.
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appears at two loops, yielding rγ <
α2

(4π)2
< 10−6.

The rate of annihilations of our dark matter candidate ψ into photons per unit volume (assum-
ing that it annihilates entirely through the hidden photon channel) is Γγ/V = rγn

2
ψ〈σv〉, where

nψ is the relic density. The strongest bounds for BBN arise for particles of lifetime 108s and
constrain [56]:

mψ

nψ
nγ

< 5.0× 10−12 GeV. (3.3)

We can therefore take a rough constraint by requiring that our relic particles never produce more
photons than such a decaying particle; i.e. Γγ/V <

nγ
mψ

× 5.0× 10−12 GeV/108s for temperatures

lower than 0.01 MeV. This yields, roughly,

rγ . 2× 10−3

(

0.01 MeV

Tc

)3( Tf
50 MeV

)

(3.4)

where Tf is the freezeout temperature (typically Tf ∼ mψ/20) and we compare the rates at
temperature Tc < 0.01 MeV. This is an overly conservative bound (since the largest disruptive
effect of a decaying particle occurs at temperatures much below 0.01 MeV) but even so is very
weak and will not affect the rest of our analysis.

3.3 Limits from dark matter

There are further experimental constraints arising on the dark matter particle, its mass and its
interactions. First of all, the dark matter particle should not have a relic abundance in excess of
the one measured by WMAP [73],

ΩDMh
2 = 0.1123± 0.0035. (3.5)

This is a very strict limit and translates to a lower limit on the dark matter (DM) annihilation
cross section. We compute the dark matter relic abundance using micrOMEGAs where we have
implemented our model. However, while there is an upper limit on the relic abundance, there is
no objection to having a dark matter candidate whose abundance is lower than the one measured.
In this case, it would then only be a part of the total dark matter (we shall refer to this as
subdominant DM), and the remaining dark matter density would consist of other particle(s) such
as an axion or axion-like particle whose phenomenology is not the subject of this article – we
shall simply assume in such cases that the direct detection cross sections and interactions with
the hidden sector of the additional dark matter are both negligible. In all of our plots, we show
parameter points that give an abundance in agreement with the WMAP value in dark green and
ones where the DM is subdominant in light green.

Additional constraints apply to the dark matter particle and its scattering cross section on
nuclei. It is necessary to distinguish spin-dependent (SD) and spin-independent (SI) scattering.
Depending on whether the dark matter particle is a Majorana or Dirac fermion, it has either
dominantly SD or SI interactions, respectively. The SI interaction is, moreover, dominated by
γ′ exchange, which couples almost exclusively to the proton, particularly at low hidden photon
masses (where the mixing can be treated as being effectively between the photon and hidden
photon – see appendix C). The SI interaction is therefore strongly isospin-dependent, and we
must rescale limits on the cross sections accordingly (which usually assume equal couplings for
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protons and neutrons). For the SD interactions, however, the isospin dependence is rather weak,
being dominated by Z exchange. Current limits from direct dark matter detection experiments are
strongest for SI scattering cross sections (∼ 10−42 cm2), while SD cross sections both on protons
and on neutrons only start to be excluded at the 10−38 cm2 level.

On the SI side, for the low dark matter masses (∼ 10 GeV) we are interested in, the most
relevant constraints come from XENON and CDMS. However, due to the signal claims from
DAMA and CoGeNT,6 there has been a large debate on the reliability of those constraints,
especially at low dark matter masses close to the energy threshold of the experiments. There
are also large astrophysical (halo model, dark matter velocity and local dark matter density) and
nuclear physics uncertainties that should be taken into account. Even though XENON and CDMS
claim to rule out most of the DAMA and CoGeNT preferred regions, the positive signals remain
and there have been various studies of how to reconcile those different results.7 We adapt the
analysis of [81] which made a systematic scan taking into account the various uncertainties. There
it is found that depending on the halo model, some of the CoGeNT and sometimes even DAMA
preferred region is consistent with the exclusions from XENON and CDMS. For the details of the
different halo models, see [81]; we will mostly use their so-called Standard Model Halo (SMH) and
in a few cases show the differences that arise when changing for example to a Navarro-Frenk-White
(NFW) or an Einasto profile.

We strictly apply the XENON100 and CDMSSi constraints derived in [81] to the SI scattering
cross sections and only show points that are not excluded by any of the two experiments. In the
plots of σSIp

8 vs mDM in section 4 (see figures 7 and 11), the CDMS limit is shown as a dashed
turquoise line, while XENON100 is a dashed-dotted blue line. For most halo models, CDMS is
more constraining at lower masses than XENON100.

In the SD case, there are both for scattering on protons and on neutrons several direct detec-
tion experiments sensitive to the low dark matter masses we are interested in. Different papers
also tried to explain the DAMA signal by spin-dependent scattering either exclusively from neu-
trons [82] or from protons [83]. The former case is, however, not applicable in our models, as the
spin-dependent cross sections of the Majorana fermion are always of the same order of magnitude
both for protons and neutrons. In the latter analysis, it was shown that for scattering on protons,
the DAMA favoured region is ruled out by Super-Kamiokande due to neutrinos from DM annihila-
tion in the Sun almost independently of the annihilation channel. Additionally, the cross sections
required in both scenarios are more than one order of magnitude above the largest ones that can
be obtained in our models. Therefore, if the explanation of the DAMA (and CoGeNT) signals
is confirmed as arising from spin-dependent scattering, it would rule out the models considered
in this paper. Hence, we do not study this in more detail and simply apply the various spin-
dependent scattering direct detection constraints. Until June 2011, PICASSO for the lightest and
COUPP for the slightly larger masses were the most constraining experiments for SD scattering
on protons [84]. Very recently, a new direct detection experiment SIMPLE [85] has published a
limit on the SD scattering cross section on protons which in the low mass range is one order of

6We have not explicitly included the CRESST signal in our search. One of their two signal regions is roughly
compatible with both DAMA and CoGeNT signals, although this is still subject to astrophysical uncertainties.

7One interesting possibility is to allow isospin-dependent interactions with just the right behaviour to suppress
the interaction cross section with xenon nuclei [74–80]. We simply note that, although in the case of hidden Dirac
fermions the interaction is almost entirely with protons rather than neutrons, in our models this tuning is not
possible.

8We always show scattering from protons in the plots, hence σSI
p , since the constraints are strongest for these,

and because our Dirac candidate will couple more strongly to protons than neutrons.
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magnitude stronger than previous experiments (for a critique of their limit, see [86] and the col-
laboration’s response [87]). There is also a quite strong limit from Super-K using neutrino fluxes
produced by dark matter annihilation in the Sun which, however, only applies to dark matter
masses above 20 GeV (only neutrino-induced upward through-going muons have been used in this
analysis which leads to a quite high-energy threshold and therefore a sensitivity only to larger DM
masses) [88].9 For SD scattering on neutrons there are limits from XENON10 [90], Zeplin [91]
and CDMS [16,92,93], the strongest of which, set by XENON10 for the mass range of interest in
this paper, is less constraining than the SIMPLE limit.

In the following analysis, we use all constraints from SD scattering both on protons and on
neutrons with the exception of SIMPLE as strict exclusions and show only points consistent with
those limits. As there has been criticism of SIMPLE’s limit, we will not apply this universally
but rather show how our results change when taking it into account. In the plots of σSDp vs
mDM in section 4 (see figures 7 and 10), the exclusion lines for the different experiments are as
follows: SIMPLE short-dashed brown line, Super-K dashed black line, PICASSO long-dashed
orange line, COUPP2011 dashed-dotted turquoise line, COUPP2007 dotted blue line and KIMS
long-dashed green line. The plots of σSDn vs mDM in the same figures show the limits of XENON10
as dashed-dotted blue, Zeplin as dotted pink and CDMS as dashed turquoise lines.

Those constraints on the scattering cross section can strictly only be applied to particles that
actually constitute the entire dark matter density. If the dark matter is subdominant however,
the limits on its scattering cross section have to be rescaled accordingly: the local density ρψ of a
dark matter candidate ψ relates to the local total DM density ρDM as their abundances

ρψ
ρDM

=
Ωψ
ΩDM

(3.6)

and so do the limits that are set by direct detection (DD) experiments. Thus, an experimental
bound on σDD translates into an actual bound on the scattering cross section σψ of ψ as

σψ = σDD
Ωψ
ΩDM

. (3.7)

This means that direct detection constraints on the scattering cross section become less potent
for subdominant DM particles.10

3.4 Application to toy model

To illustrate the above constraints/future experimental reach, and more importantly provide a
comparison to the more complete model of section 2 that we shall investigate in section 4, here
we shall consider a toy model. This is the simplest possible dark sector: a Dirac fermion ψ with
unit charge only under the (massive) hidden U(1). We shall not include any Higgs sector – the
U(1) could, after all, naturally have a GeV scale mass via the Stückelberg mechanism [25,29] – so
we will not consider how the dark matter particle becomes massive. This is essentially the model
considered in [46–50] except that we shall insist on the relation (2.4); the parameters are the dark
matter mass mψ, hidden photon mass mγ′ , kinetic mixing χ and the tuning parameter κ.

9There is another more recent analysis [83] with limits for smaller masses. Application of these limits taking into
account the annihilation details and branching ratios is beyond the scope of this work and left for future works [89].

10This is obviously based on the reasonable assumption that the local DM has the same content of different DM
contributions as averaged over the whole Universe.
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