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AbstratWe show that the supersymmetri extension of the Standard Model modi�es the strutureof the low lying BFKL disrete pomeron states (DPS) whih give a sizable ontribution tothe gluon struture funtion in the HERA x and Q2 region. The omparison of the gluondensity, determined within DPS with N=1 SUSY, with data favours a supersymmetry saleof the order of 10 TeV. The DPS method desribed here ould open a new window to thephysis beyond the Standard Model.
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1 IntrodutionIn our previous paper [1℄ we have shown that HERA F2 data, at low x, an be very welldesribed by the gluon density onstruted from the disrete spetrum of eigenfuntions ofthe BFKL kernel, i.e. from the pomeron wave funtions. This �rst suessful onfrontationof the BFKL formalism [3℄ with data led to the unexpeted question as to whether the HERAdata are sensitive to the Beyond Standard Model (BSM) e�ets. These e�ets, although onlypresent at sales that are muh higher than the region of HERA data, an nevertheless a�etthe quality of the �ts to data beause the shape of many of the ontributing eigenfuntionshas an apparent sensitivity to the BSM e�ets. This apparent sensitivity is due to the fatthat the support of eigenfuntions extends to very high transverse momenta where BSMe�ets have to be present. Sine the eigenfuntions are onstruted in a global way, i.e.the behaviour of the eigenfuntions at energies way above the threshold feeds into theirbehaviour at low energies, these eigenfuntions will be sensitive to any BSM physis.In this paper we investigate whether this possible sensitivity to BSM e�ets indeed exist,as it also depends on an adequate treatment of the infrared boundary ondition. As apopular example of BSM e�ets we have hosen the N=1 supersymmetry. For this purpose wemodi�ed the beta funtion and the kernel of the BFKL equation to inlude the ontributionsfrom the superpartners and onfronted the modi�ed gluon density with data.The paper is organized as follows; in Setion 2 we give a brief summary of the proper-ties of the disrete pomeron solution to the BFKL equation. In Setion 3 we desribe theonstrution of the infrared boundary ondition and the hanges introdued by the two-looprunning of the oupling. In Setion 4 we disuss the e�ets of the supersymmetri hangesof the �-funtion and of the eigenfuntions of the BFKL kernel. In Setion 5 we present anddisuss the results and in Setion 6 we desribe the properties of the determined infraredboundary. In Setion 7 we give a summary.2 The Disrete Pomeron Solution to the BFKL Equa-tionIn this setion we give a brief summary of the properties of the disrete pomeron solution tothe BFKL equation, desribed in detail in [1℄.The BFKL amplitude for the sattering of high-energy gluons with transverse momentak and k0, is a Green funtion onstruted from the disrete eigenfuntions of the BFKLkernel, i.e. the solutions fn(k) to the equationZ d2k0K �k;k0; �s(k2)� fn(k0) = !nfn(k0): (2.1)where �s(k2) is the strong oupling whih runs with the magnitude, k, of the transversemomentum of one of the gluons. This running leads to an osillatory eigenfuntion, fn, whosefrequeny, �n, in the semilassial approximation, depends on the transverse momentum, k,2



so that the eigenvalues, !n, are given in terms of the LO and NLO harateristi funtionsof the osillation frequeny �,! = ��s(k2)CA� ��0(�) + ��s(k2)CA� �2 �1(�) + � � � ; (2.2)where for the moment we have ignored the resummation of ollinear divergenes in the NLOharateristi funtion [5℄. The frequeny depends on ! and dereases as k inreases, reahinga ritial point krit at �(krit) = 0 where it hanges from real to imaginary values. Belowkrit the eigenfuntion has an osillatory behaviour but above krit it dereases exponentiallywith ln k. The mathing of the phases immediately below and above the ritial point �xesthe phase of the osillations at krit to be ��=4 (this being the phase of the Airy funtion,whih was shown in ref. [1,6,7℄ to provide a very good approximation to the eigenfuntions).This phase, �(k), at any lower value of k is then determined by integrating the k-dependentfrequeny from krit to k, namely�(k) = ��4 + 2 Z kritk �(k)d ln(k): (2.3)For a given value of ! the phase, � �, of the osillation at some infrared transversemomentum, k0, is determined from the perturbative BFKL dynamis (with running ou-pling), through eqs.(2.1,2.2). We make a very general assumption that the infrared (non-perturbative) properties of QCD impose some phase at k0, de�ned up to an ambiguity ofn�, whih an also depend on !. We �nd then that we an only math this phase to thatdetermined from eq.(2.3) for one value of !, for eah integer n, where n orresponds tothe number of turning points of the eigenfuntions. This leads to the quantization of thespetrum (i.e. disrete pomeron poles), in keeping with the preditions of Regge theory.Before a omparison an be made with the measured struture funtion, F2, it is neessaryto onvolute this Green funtion with the impat fators for the virtual photon at one endand for the proton at the other, (see Setion 6 of ref. [1℄). The impat fator for the virtualphoton is alulable in perturbative QCD and has support, whih is peaked at transversemomenta of the order of the Q2 argument of the struture funtion, whereas the protonimpat fator annot be so alulated and is assumed to have a simple form with supportup to O(1) GeV.One of the main results of ref. [1℄ was that a very good quality �t to HERA-F2 data [2℄(with Q2 above 8GeV2) is obtained taking a very simple form for the dependene of theabove-mentioned (non-perturbative) infrared phase, �n, on eigenfuntion index n. It wasfound that in order to obtain this good desription of data, it was neessary to take around120 eigenfuntions of the BFKL kernel.Although the osillation frequeny varies with transverse momentum, k, the period, �,of osillation (in ln(k)) de�ned by2 Z ln(k)+�ln(k) �(k0)d ln(k0) = 2� (2.4)3
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k (GeV)Figure 1: The running of �s aross a threshold for N=1 SUSY at 10 TeVturns out to be roughly onstant (� � 8), beyond the �rst two turning points. This meansthat the main di�erene between the nth and (n+1)th (for n > 2) eigenfuntion is that thelatter has one more half period, whih leads to a rapid inrease in the ritial momentum,krit with eigenfuntion index n krit �  � e4n; (2.5)where  is a onstant of the order of �QCD. For the �rst eigenfuntion the value of krit isO(10GeV). It therefore follows that krit rapidly exeeds the threshold for most postulatedtheories beyond the Standard Model. On the other hand, if a threshold for new physisdoes indeed exist, the osillation frequeny is a�eted above this threshold and onsequentlythe osillation phase at all lower transverse momenta will be altered thereby a�eting themathing of the phase to the phase imposed by the infrared dynamis of QCD. This in turnmodi�es the pomeron spetrum, !n. It is in this sense that a modi�ation of the high-energybehaviour of the eigenfuntions \feeds" into the low-energy behaviour.This immediately posed the question as to what the e�ets would be on the quality ofthe �t, if there were some new physis far above the energy sale of HERA.3 The Infrared BoundaryIn ref. [1℄, we de�ned the infrared boundary as a phase ondition at the lowest possiblevalue of the transverse momentum, k = k0, whih an be safely reahed by the perturbativealulation. To make this value as lose as possible to �QCD we onsidered only the one-looprunning of the oupling. This gave a value of k0 = 0:3 GeV, whih orresponds to �s � 0:7.The reason for running the oupling at one-loop only was that in priniple this is the sameorder of perturbation theory as the NLO harateristi funtion, �1 [4℄.However, given that we modify eq.(2.1) by resumming all the large orretions in �1using the tehnique of ref. [5℄, it is more appropriate to take the �-funtion to two-loop orderwhih is what we use in this paper. 4



When we do this, we are faed with a problem - namely that we annot run the ouplingbelow an \infrared" sale k0 = 0:6 GeV, whih orresponds to �s � 0:7 (at the two looplevel), without approahing the Landau pole too losely. On the other hand, the infraredboundary onditions are to be imposed at a transverse momentum of order �QCD. Moreoverwe need to know the eigenfuntions below k0 in order to perform a onvolution with theproton impat fator, whih has support mainly below the k0 value. Therefore, guided bythe behaviour of the eigenfuntions in perturbative QCD, we ontinue them down to a lowermomentum ~k0, whih should be of order �QCD, using the extrapolation of the phase �n(k)�n(~k0) = �n(k0)� 2�0n ln�k0~k0� ; (3.1)where for eah eigenfuntion, with index n, �0n is the frequeny of the osillations neark = k0 [1℄. We have assumed that this frequeny is onstant below k0, an assumption whihis orret for suÆiently small k0, at least for the leading order BFKL kernel (see [7℄). Anydeviation from onstant frequeny should have a negligible e�et as we are only extrapolatingover a small range in gluon transverse momentum. The numerial values of �0n are obtainedby inverting the eigenvalue equation (2.2), modi�ed aording to [5℄.4 N=1 Supersymmetry at various ThresholdsThe \new physis" that we investigate in this paper is the popular N = 1 supersymmetriextension of the Standard model above a given threshold kT , whih for simpliity we assumeto be a ommon mass threshold for all superpartners. Below this threshold the running ofthe oupling is governed by the �-funtion to two-loop order�< = ��2s4� �11CA3 � 23nf�� �3s(4�)2 �34C2A3 + �10CA3 + 2CF�nf� ; (4.1)where for the ase of QCD, CA = 3; CF = 4=3 and nf is the number of ative avours.Above the threshold, the beta funtion is given by�> = ��2s4� (3CA � nf)� �3s(4�)2 �6C2A + ��2CA3 + 2CF�nf� : (4.2)This leads to a \kink" (disontinuity in the derivative) in the running of �s at the thresholdfor N=1 SUSY, whih an be seen in Fig.1.The fat that the oupling runs more slowly above the SUSY threshold means thatthe osillation frequeny varies more slowly with k and therefore the ritial transversemomentum, krit (where � = 0), is pushed out further away. Thus, for example, in thease of a SUSY threshold at 10 TeV, if we assume that the phase of the osillations iszero at k0 = 0:6 GeV 1, the �rst two eigenfuntions are idential as the ritial momentum1This phase is merely an example designed to illustrate the di�erene in the behaviour of the eigenfuntionsfor the Standard model and the N=1 SUSY model. In pratie these phases are determined from the �t todata and are di�erent for the two models. 5
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The di�erenes in frequenies also a�et the magnitude of the eigenvalues, beyond the�rst two, as an be seen in Fig. 4. The simplest way to understand this is to onsiderthe value of �s at krit for the two models. Although krit is an order of magnitude largerfor the SUSY model, the fat that the oupling runs more slowly atually means that thevalue of the oupling at krit is slightly larger for the SUSY model. Moreover the NLOharateristi funtion is larger in the SUSY model. These two e�ets ombine to produesomewhat larger eigenvalues - in the ase of the third eigenvalue the di�erene is about0.01. For the higher eigenfuntions, for whih krit is suÆiently large, eq.(2.2) is a validapproximation (at krit) without ollinear resummation, we may approximate the di�erene,Æ!12, in eigenvalue between the two models in terms of the di�erene of the running ouplings,�s(krit 1) � �s(krit 2), at the value of krit for eah model (where the frequeny vanishes),namely Æ!12 � (�s(krit 1)� �s(krit 2)) CA� �0(0) + ��s(krit 1)CA� �2 Æ�1(0); (4.5)whih gives numerial results in agreement with those seen in Fig. 4 for n > 10.In Fig. 5 we show a representative subset of eigenfuntions in the Standard Model andthe SUSY model in the transverse momentum region relevant for a �t to HERA data. Theeigenfuntions are omputed at the same value of � = 0 to display SUSY e�ets only (in the �tthe eigenfuntions with the same n have in general somewhat di�erent �'s). As expeted, the�rst two eigenfuntions are idential sine their values of krit are below the SUSY threshold.The third and higher eigenfuntions display signi�ant di�erenes whih a�et the qualityof the �ts to data. Remarkably, these di�erenes diminish for higher eigenfuntions and forn = 41 the two eigenfuntions almost overlap in this region. The reason for this an be seenfrom Fig. 2, whih shows that for the relatively low transverse momenta the di�erenes inthe frequenies between the two models dereases with inreasing eigenvalue number, so thatif the infrared phases are equal, the funtions will be almost idential in this region.5 ResultsOne of the main results of the previous paper [1℄ was that we found a simple power depen-dene between the infrared phase �n(k0) and the eigenfuntion number n. In this paper weuse the same funtional dependene, de�ned for �n(~k0), where ~k0 denotes an infrared saleat whih the phase of the leading eigenfuntion vanishes. The relation between the � phaseat ~k0 and k0 is given by eq.(3.1), where the value of ~k0 should be lose to �QCD. Thus wetake the parameterization �n(~k0) = �0� (n� 1)(nmax � 1)�� ; (5.1)where nmax is the number of eigenfuntions we use for the �t and �0 represents the totalrange (in units of �) of infrared phases that are used for the �t. The value of the parameters~k0, � and �0 are determined in the �t. 8
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As explained in [1℄, sine the eigenvalue tends to zero for large n, the form of the phasegiven by eq.(5.1) means that as a funtion of eigenvalue, !, the phase has a ut singularityat ! = 0, i.e. �(!) = � a!�� + b+ ! + d!2 + � � � (5.2)This allows the generalization of eq.(5.1) by treating all the onstants a; b; ; d; � � � in eq.(5.2)as free parameters. We have tested these parameterizations but �nd no improvement in thequality of the �t although we introdued more parameters; we therefore used the simpleversion of the phase ondition, eq.(5.1), in all of our �ts. In ref. [1℄ we �xed the value of theparameter �0, whih represents a total range of the � variation. In the present evaluation,sine we have to perform many more �ts, we prefer to treat it as a free parameter, to assurea bias free evaluation of all ases. Therefore we use in the �ts the 3 parameters of eq.(5.1)and the 2 parameters from the proton impat fator. For the impat fator we take theparameterization �p(k) = Ak2e�bk2 ; (5.3)as in ref. [1℄. The �ts were performed using the HERA data [2℄ with x < 0:01 and Q2 >8 GeV2 or Q2 > 4 GeV2.As in [1℄ we �nd that there is an signi�ant improvement of �2=Ndf in the Q2 > 8 GeV2region due to various higher order e�ets, suh as the NLO ontribution to the photon impatfator and possibly also the proximity of the saturation region. In this region we have a totalof 108 data points and a total of 5 parameters - so the number of degrees of freedom isNdf = 103. We therefore onsider the Q2 > 8 GeV2 region as our main investigation regionand use the Q2 > 4 GeV2 as a ross hek.We investigated the �t quality as a funtion of the maximal number of eigenfuntions,nmax. In ontrast to the result of the analysis desribed in [1℄, we found that in the su-persymmetri analysis the best �t an be obtained with a somewhat smaller number ofeigenfuntions; only 100 (rather than 120) eigenfuntions are required to obtain the best �2.For the Standard Model the best �t is obtained with nmax = 120, but only with a smalldi�erene in the �t quality, �2 = 122:5(100) and �2 = 120:1(120).In Table 1 we show our �ts for various SUSY thresholds as well as the Standard Model.Let us �rst note that the ~k0 values obtained in the unbiased �t, ~k0 � 275 MeV, are lose to�QCD. At the same time the value of b implies that the proton impat fator peaks around�QCD, as it should be in the self onsistent desription. This together with the relativelylow �2's of all �ts on�rms the suess of our onstrution of the infrared boundary.The quality of the �ts shows a lear preferene of the evaluation with SUSY e�ets; the�t for the Standard model is worse than the �ts with SUSY thresholds larger than 3 TeV.A SUSY threshold of 3 TeV, whih is lose to the reah of LHC also gives a worse �t. Onthe other hand for a SUSY threshold in the region of 10 - 15 TeV, the quality of the �t isthe best, but that for signi�antly larger SUSY thresholds the �t quality worsens again.Although the overal quality of the �t for all data with Q2 > 4GeV2 is signi�antlyworse, for reasons outlined above, the preferene for N=1 SUSY with the threshold region of10-15 TeV is also seen from a �t to the Q2 > 4 GeV2 data. In this Q2 region there are 12810



SUSY Sale(TeV) �2 � ~k0 (GeV ) �0 A b3 125.7 0.555 0.288 -0.87 201.2 10.66 114.1 0.575 0.279 -0.880 464.8 15.010 109.9 0.565 0.275 -0.860 720.1 17.715 110.1 0.555 0.279 -0.860 882.2 18.630 117.8 0.582 0.278 -0.870 561.6 16.250 114.9 0.580 0.279 -0.870 627.4 16.890 114.8 0.580 0.279 -0.870 700.2 17.51 122.5 0.600 0.274 -0.800 813.1 17.5Table 1: Fits for N=1 SUSY at di�erent sales. The bottom row orresponds to the StandardModel. All �ts are performed with nmax = 100.
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points and the �2 's of the best �ts are 184.3 (3TeV), 164.5 (6TeV), 155.6 (10TeV), 152.6(15TeV), 169.7 (30TeV), 164.7 (50TeV), 164.3 (90TeV). The best �2 for Standard Model is169.7. The values of the �t parameters are similar to the values shown in Table 1, for theQ2 > 8 GeV2 region.The onsisteny of the �t results and a lear �2 preferene of the SUSY �ts (with a saleabove 3 TeV) over that for the Standard Model indiates that supersymmetry improves thedata desription and suggests that some new physis similar to N = 1 SUSY is present inthe 10 - 15 TeV region. 11



6 Infrared Boundary: � � ! relationThe infrared boundary ondition that leads to a disrete spetrum an be expressed as theansatz that the phase at some infrared transverse momentum, ~k0, is a �xed funtion, �(!) ofthe eigenvalue !, of the form given by eq.(5.2), imposed by the infrared properties of QCD.The disrete pomeron spetrum is driven by this funtion. Therefore, in Fig. 6 we show thevalues of the eigenvalues !n and the infrared phases �n (in units of �) both for the StandardModel and N = 1 SUSY at a threshold of 10 TeV. The numerial values of the parameterson the RHS of eq.(5.2) turn out to be substantially di�erent in the two ases. This funtiononstitutes the infrared boundary onditions on the eigenvalues of the BFKL kernel. Asexplained above the eigenvalues are somewhat larger for the SUSY model, but both of thesefuntions have a ut at ! = 0, the order of the ut singularity being a little less in the aseof the SUSY model (the dip is not so steep).As was disussed in ref. [1℄ the appearane of the singularity in the ��! relation indiatesthat some important ontribution to the perturbative expansion at very large transversemomenta is missing. Therefore it is interesting to observe that the introdution of SUSYsoftens somewhat the observed singularity (� is redued from 0.6 to 0.56) and at the sametime redues the number of eigenfuntions required - it is a step towards a desription ofdata using only few disrete pomerons. This ould also indiate that there exist other, evenstronger symmetries at very high energies, whih are missing in the present evaluation, andwhih are responsible for the remaining singularity of the phase �(!).7 SummaryIn our previous paper [1℄ we have shown that DPS gives a very good desription of thelow-x HERA data and it was suggested that this �t may have sensitivity to BSM physis.This proposed sensitivity emerged from the fat that the higher eigenfuntions have supportover a very large range (see eq. (2.5)), extending from the infrared region to way above thethreshold for any new physis and that through the required phase-mathing proess, thelow energy behaviour of these eigenfuntions depends on their high-energy behaviour.In this paper, we have shown that this is indeed the ase. The introdution of N=1 SUSYat some threshold alters the value of the �-funtion and hene the rate of the running ofthe oupling. Furthermore there are ontributions to the NLO harateristi funtion of theBFKL equation from the SUSY partners. Sine the properties of the disrete pomeron aredetermined from a ombination of the running oupling and the harateristi funtion, theeigenfuntions of the BFKL kernel are signi�antly a�eted by the introdution of SUSY.Notwithstanding the fat that the proposed SUSY sale is onsiderably above the saleprobed at HERA, the altered high-energy behaviour of the eigenfuntions feeds into thelow-energy, as well as generating a somewhat di�erent spetrum of eigenvalues.The disrete spetrum depends on the treatment of the infrared boundary ondition,whih is now more involved due to the fat that we are using the two-loop �s running,instead of one-loop, as in [1℄. Construting this boundary we took the most onservative12



approah of using perturbative QCD as a guideline at every step. Our previous paperwas devoted to the task of �nding the relation between the eigenfuntion number and thephase of the eigenfuntion osillations whih is essentially of the non-perturbative origin.Notwithstanding the substantial di�erenes between the eigenfuntions with and withoutSUSY, we �nd here that the best �t is obtained using the same form of this dependene aswas used in that paper, although other forms for this dependene were attempted withoutimproving the �t quality.Together, the di�erent spetrum of eigenvalues and the di�erent shapes of the eigenfun-tions in turn a�et the parameters of the �t to data and also the quality of the �t. The mainresult of this paper is that if the SUSY threshold is introdued at 10 -15 TeV, the �t wassigni�antly better than that of the Standard Model (�2 = 110 as ompared to �2 = 122 for108 points and 103 degrees of freedom, i.e �2=Ndf = 1:06 vs 1.18). On the other hand, theintrodution of SUSY at the threshold of 3 TeV, just within the reah of LHC, generates a�t whih is no better than the �t obtained from the Standard Model.It is pertinent to emphasize the qualitative di�erene between the �t obtained here andthe usual DGLAP �t [10℄. Over the low-x region, this DGLAP �t obtains a slightly bettervalue of �2 per degree of freedom (�2=Ndf � 0:95). However, the DGLAP parameterizationis designed to over the entire range of x, whereas ours is only valid for suÆiently low-xwhere an expansion in ln(1=x) is valid. The improved quality of the �t of [10℄ is likely tobe due to the terms with positive powers of x that are present in that �t. The importantqualitative di�erene between the two �tting proedures is that the parameters obtained inthe DGLAP approah are una�eted by any new physis at high-energy thresholds - theirpredition for the struture funtions would remain unhanged until the threshold (in Q2)for new physis were reahed. On the other hand, as we have emphasized in this paper, thevalues of our parameters are a�eted by new physis thresholds and onsequently the Q2evolution above the �t region will always be a�eted by suh new physis. This onsiderablystronger preditive power of the BFKL equation is not only due to the fat that it is adi�erent type of evolution equation, but also that it desribes the dynamis of the gluon-gluon interation whih (after aounting for the infrared boundary onditions) produes thetwo-gluon quasi-bound states with a non trivial spetrum of singularities in the j-plane.The method desribed in this paper opens a new possibility to use high preision experi-ment to searh for new physis at energy sales onsiderably larger than the sales at whihthe experiments are performed. It an be applied to any low-x proess whih was measuredwith omparable auray to the HERA F2 data, like the Drell-Yan or W and Z produtionat LHC. The appliation of this method to LHC data ould lead to higher sensitivity due tosubstantially higher sales involved. The disrete pomeron solution provides a unique toolfor suh an investigation owing to the fat that the onstrution of the eigenfuntions isbased on the quantum mehanial approah in whih the extremely high energy (up to thePlank sale) and low energy behaviour of its wave funtions are intimately onneted.Aknowledgements:The authors are grateful to the Marie Curie Foundation for an IRSES grant, LOWXGLUEProjet 22498, whih has failitated this ollaboration. Two of us (HK and DAR) wish to13
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