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Abstra
tWe show that the supersymmetri
 extension of the Standard Model modi�es the stru
tureof the low lying BFKL dis
rete pomeron states (DPS) whi
h give a sizable 
ontribution tothe gluon stru
ture fun
tion in the HERA x and Q2 region. The 
omparison of the gluondensity, determined within DPS with N=1 SUSY, with data favours a supersymmetry s
aleof the order of 10 TeV. The DPS method des
ribed here 
ould open a new window to thephysi
s beyond the Standard Model.
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1 Introdu
tionIn our previous paper [1℄ we have shown that HERA F2 data, at low x, 
an be very welldes
ribed by the gluon density 
onstru
ted from the dis
rete spe
trum of eigenfun
tions ofthe BFKL kernel, i.e. from the pomeron wave fun
tions. This �rst su

essful 
onfrontationof the BFKL formalism [3℄ with data led to the unexpe
ted question as to whether the HERAdata are sensitive to the Beyond Standard Model (BSM) e�e
ts. These e�e
ts, although onlypresent at s
ales that are mu
h higher than the region of HERA data, 
an nevertheless a�e
tthe quality of the �ts to data be
ause the shape of many of the 
ontributing eigenfun
tionshas an apparent sensitivity to the BSM e�e
ts. This apparent sensitivity is due to the fa
tthat the support of eigenfun
tions extends to very high transverse momenta where BSMe�e
ts have to be present. Sin
e the eigenfun
tions are 
onstru
ted in a global way, i.e.the behaviour of the eigenfun
tions at energies way above the threshold feeds into theirbehaviour at low energies, these eigenfun
tions will be sensitive to any BSM physi
s.In this paper we investigate whether this possible sensitivity to BSM e�e
ts indeed exist,as it also depends on an adequate treatment of the infrared boundary 
ondition. As apopular example of BSM e�e
ts we have 
hosen the N=1 supersymmetry. For this purpose wemodi�ed the beta fun
tion and the kernel of the BFKL equation to in
lude the 
ontributionsfrom the superpartners and 
onfronted the modi�ed gluon density with data.The paper is organized as follows; in Se
tion 2 we give a brief summary of the proper-ties of the dis
rete pomeron solution to the BFKL equation. In Se
tion 3 we des
ribe the
onstru
tion of the infrared boundary 
ondition and the 
hanges introdu
ed by the two-looprunning of the 
oupling. In Se
tion 4 we dis
uss the e�e
ts of the supersymmetri
 
hangesof the �-fun
tion and of the eigenfun
tions of the BFKL kernel. In Se
tion 5 we present anddis
uss the results and in Se
tion 6 we des
ribe the properties of the determined infraredboundary. In Se
tion 7 we give a summary.2 The Dis
rete Pomeron Solution to the BFKL Equa-tionIn this se
tion we give a brief summary of the properties of the dis
rete pomeron solution tothe BFKL equation, des
ribed in detail in [1℄.The BFKL amplitude for the s
attering of high-energy gluons with transverse momentak and k0, is a Green fun
tion 
onstru
ted from the dis
rete eigenfun
tions of the BFKLkernel, i.e. the solutions fn(k) to the equationZ d2k0K �k;k0; �s(k2)� fn(k0) = !nfn(k0): (2.1)where �s(k2) is the strong 
oupling whi
h runs with the magnitude, k, of the transversemomentum of one of the gluons. This running leads to an os
illatory eigenfun
tion, fn, whosefrequen
y, �n, in the semi
lassi
al approximation, depends on the transverse momentum, k,2



so that the eigenvalues, !n, are given in terms of the LO and NLO 
hara
teristi
 fun
tionsof the os
illation frequen
y �,! = ��s(k2)CA� ��0(�) + ��s(k2)CA� �2 �1(�) + � � � ; (2.2)where for the moment we have ignored the resummation of 
ollinear divergen
es in the NLO
hara
teristi
 fun
tion [5℄. The frequen
y depends on ! and de
reases as k in
reases, rea
hinga 
riti
al point k
rit at �(k
rit) = 0 where it 
hanges from real to imaginary values. Belowk
rit the eigenfun
tion has an os
illatory behaviour but above k
rit it de
reases exponentiallywith ln k. The mat
hing of the phases immediately below and above the 
riti
al point �xesthe phase of the os
illations at k
rit to be ��=4 (this being the phase of the Airy fun
tion,whi
h was shown in ref. [1,6,7℄ to provide a very good approximation to the eigenfun
tions).This phase, �(k), at any lower value of k is then determined by integrating the k-dependentfrequen
y from k
rit to k, namely�(k) = ��4 + 2 Z k
ritk �(k)d ln(k): (2.3)For a given value of ! the phase, � �, of the os
illation at some infrared transversemomentum, k0, is determined from the perturbative BFKL dynami
s (with running 
ou-pling), through eqs.(2.1,2.2). We make a very general assumption that the infrared (non-perturbative) properties of QCD impose some phase at k0, de�ned up to an ambiguity ofn�, whi
h 
an also depend on !. We �nd then that we 
an only mat
h this phase to thatdetermined from eq.(2.3) for one value of !, for ea
h integer n, where n 
orresponds tothe number of turning points of the eigenfun
tions. This leads to the quantization of thespe
trum (i.e. dis
rete pomeron poles), in keeping with the predi
tions of Regge theory.Before a 
omparison 
an be made with the measured stru
ture fun
tion, F2, it is ne
essaryto 
onvolute this Green fun
tion with the impa
t fa
tors for the virtual photon at one endand for the proton at the other, (see Se
tion 6 of ref. [1℄). The impa
t fa
tor for the virtualphoton is 
al
ulable in perturbative QCD and has support, whi
h is peaked at transversemomenta of the order of the Q2 argument of the stru
ture fun
tion, whereas the protonimpa
t fa
tor 
annot be so 
al
ulated and is assumed to have a simple form with supportup to O(1) GeV.One of the main results of ref. [1℄ was that a very good quality �t to HERA-F2 data [2℄(with Q2 above 8GeV2) is obtained taking a very simple form for the dependen
e of theabove-mentioned (non-perturbative) infrared phase, �n, on eigenfun
tion index n. It wasfound that in order to obtain this good des
ription of data, it was ne
essary to take around120 eigenfun
tions of the BFKL kernel.Although the os
illation frequen
y varies with transverse momentum, k, the period, �,of os
illation (in ln(k)) de�ned by2 Z ln(k)+�ln(k) �(k0)d ln(k0) = 2� (2.4)3
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ross a threshold for N=1 SUSY at 10 TeVturns out to be roughly 
onstant (� � 8), beyond the �rst two turning points. This meansthat the main di�eren
e between the nth and (n+1)th (for n > 2) eigenfun
tion is that thelatter has one more half period, whi
h leads to a rapid in
rease in the 
riti
al momentum,k
rit with eigenfun
tion index n k
rit � 
 � e4n; (2.5)where 
 is a 
onstant of the order of �QCD. For the �rst eigenfun
tion the value of k
rit isO(10GeV). It therefore follows that k
rit rapidly ex
eeds the threshold for most postulatedtheories beyond the Standard Model. On the other hand, if a threshold for new physi
sdoes indeed exist, the os
illation frequen
y is a�e
ted above this threshold and 
onsequentlythe os
illation phase at all lower transverse momenta will be altered thereby a�e
ting themat
hing of the phase to the phase imposed by the infrared dynami
s of QCD. This in turnmodi�es the pomeron spe
trum, !n. It is in this sense that a modi�
ation of the high-energybehaviour of the eigenfun
tions \feeds" into the low-energy behaviour.This immediately posed the question as to what the e�e
ts would be on the quality ofthe �t, if there were some new physi
s far above the energy s
ale of HERA.3 The Infrared BoundaryIn ref. [1℄, we de�ned the infrared boundary as a phase 
ondition at the lowest possiblevalue of the transverse momentum, k = k0, whi
h 
an be safely rea
hed by the perturbative
al
ulation. To make this value as 
lose as possible to �QCD we 
onsidered only the one-looprunning of the 
oupling. This gave a value of k0 = 0:3 GeV, whi
h 
orresponds to �s � 0:7.The reason for running the 
oupling at one-loop only was that in prin
iple this is the sameorder of perturbation theory as the NLO 
hara
teristi
 fun
tion, �1 [4℄.However, given that we modify eq.(2.1) by resumming all the large 
orre
tions in �1using the te
hnique of ref. [5℄, it is more appropriate to take the �-fun
tion to two-loop orderwhi
h is what we use in this paper. 4



When we do this, we are fa
ed with a problem - namely that we 
annot run the 
ouplingbelow an \infrared" s
ale k0 = 0:6 GeV, whi
h 
orresponds to �s � 0:7 (at the two looplevel), without approa
hing the Landau pole too 
losely. On the other hand, the infraredboundary 
onditions are to be imposed at a transverse momentum of order �QCD. Moreoverwe need to know the eigenfun
tions below k0 in order to perform a 
onvolution with theproton impa
t fa
tor, whi
h has support mainly below the k0 value. Therefore, guided bythe behaviour of the eigenfun
tions in perturbative QCD, we 
ontinue them down to a lowermomentum ~k0, whi
h should be of order �QCD, using the extrapolation of the phase �n(k)�n(~k0) = �n(k0)� 2�0n ln�k0~k0� ; (3.1)where for ea
h eigenfun
tion, with index n, �0n is the frequen
y of the os
illations neark = k0 [1℄. We have assumed that this frequen
y is 
onstant below k0, an assumption whi
his 
orre
t for suÆ
iently small k0, at least for the leading order BFKL kernel (see [7℄). Anydeviation from 
onstant frequen
y should have a negligible e�e
t as we are only extrapolatingover a small range in gluon transverse momentum. The numeri
al values of �0n are obtainedby inverting the eigenvalue equation (2.2), modi�ed a

ording to [5℄.4 N=1 Supersymmetry at various ThresholdsThe \new physi
s" that we investigate in this paper is the popular N = 1 supersymmetri
extension of the Standard model above a given threshold kT , whi
h for simpli
ity we assumeto be a 
ommon mass threshold for all superpartners. Below this threshold the running ofthe 
oupling is governed by the �-fun
tion to two-loop order�< = ��2s4� �11CA3 � 23nf�� �3s(4�)2 �34C2A3 + �10CA3 + 2CF�nf� ; (4.1)where for the 
ase of QCD, CA = 3; CF = 4=3 and nf is the number of a
tive 
avours.Above the threshold, the beta fun
tion is given by�> = ��2s4� (3CA � nf)� �3s(4�)2 �6C2A + ��2CA3 + 2CF�nf� : (4.2)This leads to a \kink" (dis
ontinuity in the derivative) in the running of �s at the thresholdfor N=1 SUSY, whi
h 
an be seen in Fig.1.The fa
t that the 
oupling runs more slowly above the SUSY threshold means thatthe os
illation frequen
y varies more slowly with k and therefore the 
riti
al transversemomentum, k
rit (where � = 0), is pushed out further away. Thus, for example, in the
ase of a SUSY threshold at 10 TeV, if we assume that the phase of the os
illations iszero at k0 = 0:6 GeV 1, the �rst two eigenfun
tions are identi
al as the 
riti
al momentum1This phase is merely an example designed to illustrate the di�eren
e in the behaviour of the eigenfun
tionsfor the Standard model and the N=1 SUSY model. In pra
ti
e these phases are determined from the �t todata and are di�erent for the two models. 5
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illation frequen
ies as a fun
tion of gluon transverse momentum for variouseigenfun
tions. The left-hand pane is the 
ase of the Standard Model and the right-hand paneis the 
ase of N=1 SUSY above a threshold of 10 TeV. For the purpose of this 
omparisonit has been assumed that the infrared phases are the same in both 
ases.is below the threshold, whereas for the third eigenfun
tion the 
riti
al momentum is atk
rit = 1:2�105GeV in the 
ase of the SM but at k
rit = 1:3�106GeV in the 
ase of SUSY.This 
an be seen from Fig.2.Furthermore the NLO 
hara
teristi
 fun
tion, �1(�) a
quires an additional 
ontribution[9℄ of Æf�1(�) = �232 sinh(��)�(1 + �2) 
osh2(��) �114 + 3�2� (4.3)from the o
tet of Majorana fermions (gluinos), andÆs�1(�) = ��232 nfC3A sinh(��)�(1 + �2) 
osh2(��) �54 + �2� (4.4)from the squarks. Note that it is this dis
ontinuity in �1 at the SUSY threshold whi
his responsible for the dis
ontinuities in the frequen
ies at threshold and not the 
hange inthe rate of running of the 
oupling, whi
h remains a 
ontinuous fun
tion2. The 
hange infrequen
y thus 
ompensates for the 
hange in the 
hara
teristi
 fun
tion in order to ensurethat the eigenvalues, !n remain un
hanged as one passes through the threshold 3.The 
ontribution, Æ�1, of these additional terms to �1 is shown as a fun
tion of frequen
yin Fig. 3 where it 
an be seen that this is a rapidly de
reasing fun
tion, whi
h explains whythe dis
ontinuities in frequen
y at threshold are mu
h larger for the lower eigenfun
tions forwhi
h the frequen
y at threshold is lower.2 A similar smaller dis
ontinuity 
an be seen at around 3 GeV. This 
orresponds to the 
-quark threshold.There are analogous, even smaller, dis
ontinuities at the b-quark and t-quarks thresholds3The dis
ontinuous 
hanges in frequen
y are due to the fa
t that the 
hange in 
hara
teristi
 fun
tion isimposed at a threshold in its entirety. A determination of the NLO 
hara
teristi
 fun
tion whi
h a

ountedfor the mass of internal parti
les would smooth out these dis
ontinuities.6
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The di�eren
es in frequen
ies also a�e
t the magnitude of the eigenvalues, beyond the�rst two, as 
an be seen in Fig. 4. The simplest way to understand this is to 
onsiderthe value of �s at k
rit for the two models. Although k
rit is an order of magnitude largerfor the SUSY model, the fa
t that the 
oupling runs more slowly a
tually means that thevalue of the 
oupling at k
rit is slightly larger for the SUSY model. Moreover the NLO
hara
teristi
 fun
tion is larger in the SUSY model. These two e�e
ts 
ombine to produ
esomewhat larger eigenvalues - in the 
ase of the third eigenvalue the di�eren
e is about0.01. For the higher eigenfun
tions, for whi
h k
rit is suÆ
iently large, eq.(2.2) is a validapproximation (at k
rit) without 
ollinear resummation, we may approximate the di�eren
e,Æ!12, in eigenvalue between the two models in terms of the di�eren
e of the running 
ouplings,�s(k
rit 1) � �s(k
rit 2), at the value of k
rit for ea
h model (where the frequen
y vanishes),namely Æ!12 � (�s(k
rit 1)� �s(k
rit 2)) CA� �0(0) + ��s(k
rit 1)CA� �2 Æ�1(0); (4.5)whi
h gives numeri
al results in agreement with those seen in Fig. 4 for n > 10.In Fig. 5 we show a representative subset of eigenfun
tions in the Standard Model andthe SUSY model in the transverse momentum region relevant for a �t to HERA data. Theeigenfun
tions are 
omputed at the same value of � = 0 to display SUSY e�e
ts only (in the �tthe eigenfun
tions with the same n have in general somewhat di�erent �'s). As expe
ted, the�rst two eigenfun
tions are identi
al sin
e their values of k
rit are below the SUSY threshold.The third and higher eigenfun
tions display signi�
ant di�eren
es whi
h a�e
t the qualityof the �ts to data. Remarkably, these di�eren
es diminish for higher eigenfun
tions and forn = 41 the two eigenfun
tions almost overlap in this region. The reason for this 
an be seenfrom Fig. 2, whi
h shows that for the relatively low transverse momenta the di�eren
es inthe frequen
ies between the two models de
reases with in
reasing eigenvalue number, so thatif the infrared phases are equal, the fun
tions will be almost identi
al in this region.5 ResultsOne of the main results of the previous paper [1℄ was that we found a simple power depen-den
e between the infrared phase �n(k0) and the eigenfun
tion number n. In this paper weuse the same fun
tional dependen
e, de�ned for �n(~k0), where ~k0 denotes an infrared s
aleat whi
h the phase of the leading eigenfun
tion vanishes. The relation between the � phaseat ~k0 and k0 is given by eq.(3.1), where the value of ~k0 should be 
lose to �QCD. Thus wetake the parameterization �n(~k0) = �0� (n� 1)(nmax � 1)�� ; (5.1)where nmax is the number of eigenfun
tions we use for the �t and �0 represents the totalrange (in units of �) of infrared phases that are used for the �t. The value of the parameters~k0, � and �0 are determined in the �t. 8
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As explained in [1℄, sin
e the eigenvalue tends to zero for large n, the form of the phasegiven by eq.(5.1) means that as a fun
tion of eigenvalue, !, the phase has a 
ut singularityat ! = 0, i.e. �(!) = � a!�� + b+ 
! + d!2 + � � � (5.2)This allows the generalization of eq.(5.1) by treating all the 
onstants a; b; 
; d; � � � in eq.(5.2)as free parameters. We have tested these parameterizations but �nd no improvement in thequality of the �t although we introdu
ed more parameters; we therefore used the simpleversion of the phase 
ondition, eq.(5.1), in all of our �ts. In ref. [1℄ we �xed the value of theparameter �0, whi
h represents a total range of the � variation. In the present evaluation,sin
e we have to perform many more �ts, we prefer to treat it as a free parameter, to assurea bias free evaluation of all 
ases. Therefore we use in the �ts the 3 parameters of eq.(5.1)and the 2 parameters from the proton impa
t fa
tor. For the impa
t fa
tor we take theparameterization �p(k) = Ak2e�bk2 ; (5.3)as in ref. [1℄. The �ts were performed using the HERA data [2℄ with x < 0:01 and Q2 >8 GeV2 or Q2 > 4 GeV2.As in [1℄ we �nd that there is an signi�
ant improvement of �2=Ndf in the Q2 > 8 GeV2region due to various higher order e�e
ts, su
h as the NLO 
ontribution to the photon impa
tfa
tor and possibly also the proximity of the saturation region. In this region we have a totalof 108 data points and a total of 5 parameters - so the number of degrees of freedom isNdf = 103. We therefore 
onsider the Q2 > 8 GeV2 region as our main investigation regionand use the Q2 > 4 GeV2 as a 
ross 
he
k.We investigated the �t quality as a fun
tion of the maximal number of eigenfun
tions,nmax. In 
ontrast to the result of the analysis des
ribed in [1℄, we found that in the su-persymmetri
 analysis the best �t 
an be obtained with a somewhat smaller number ofeigenfun
tions; only 100 (rather than 120) eigenfun
tions are required to obtain the best �2.For the Standard Model the best �t is obtained with nmax = 120, but only with a smalldi�eren
e in the �t quality, �2 = 122:5(100) and �2 = 120:1(120).In Table 1 we show our �ts for various SUSY thresholds as well as the Standard Model.Let us �rst note that the ~k0 values obtained in the unbiased �t, ~k0 � 275 MeV, are 
lose to�QCD. At the same time the value of b implies that the proton impa
t fa
tor peaks around�QCD, as it should be in the self 
onsistent des
ription. This together with the relativelylow �2's of all �ts 
on�rms the su

ess of our 
onstru
tion of the infrared boundary.The quality of the �ts shows a 
lear preferen
e of the evaluation with SUSY e�e
ts; the�t for the Standard model is worse than the �ts with SUSY thresholds larger than 3 TeV.A SUSY threshold of 3 TeV, whi
h is 
lose to the rea
h of LHC also gives a worse �t. Onthe other hand for a SUSY threshold in the region of 10 - 15 TeV, the quality of the �t isthe best, but that for signi�
antly larger SUSY thresholds the �t quality worsens again.Although the overal quality of the �t for all data with Q2 > 4GeV2 is signi�
antlyworse, for reasons outlined above, the preferen
e for N=1 SUSY with the threshold region of10-15 TeV is also seen from a �t to the Q2 > 4 GeV2 data. In this Q2 region there are 12810



SUSY S
ale(TeV) �2 � ~k0 (GeV ) �0 A b3 125.7 0.555 0.288 -0.87 201.2 10.66 114.1 0.575 0.279 -0.880 464.8 15.010 109.9 0.565 0.275 -0.860 720.1 17.715 110.1 0.555 0.279 -0.860 882.2 18.630 117.8 0.582 0.278 -0.870 561.6 16.250 114.9 0.580 0.279 -0.870 627.4 16.890 114.8 0.580 0.279 -0.870 700.2 17.51 122.5 0.600 0.274 -0.800 813.1 17.5Table 1: Fits for N=1 SUSY at di�erent s
ales. The bottom row 
orresponds to the StandardModel. All �ts are performed with nmax = 100.
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Figure 6: The eigenvalues and infrared phases for the Standard Model and N=1 SUSY at10 TeV, as determined at k = ~k0.
points and the �2 's of the best �ts are 184.3 (3TeV), 164.5 (6TeV), 155.6 (10TeV), 152.6(15TeV), 169.7 (30TeV), 164.7 (50TeV), 164.3 (90TeV). The best �2 for Standard Model is169.7. The values of the �t parameters are similar to the values shown in Table 1, for theQ2 > 8 GeV2 region.The 
onsisten
y of the �t results and a 
lear �2 preferen
e of the SUSY �ts (with a s
aleabove 3 TeV) over that for the Standard Model indi
ates that supersymmetry improves thedata des
ription and suggests that some new physi
s similar to N = 1 SUSY is present inthe 10 - 15 TeV region. 11



6 Infrared Boundary: � � ! relationThe infrared boundary 
ondition that leads to a dis
rete spe
trum 
an be expressed as theansatz that the phase at some infrared transverse momentum, ~k0, is a �xed fun
tion, �(!) ofthe eigenvalue !, of the form given by eq.(5.2), imposed by the infrared properties of QCD.The dis
rete pomeron spe
trum is driven by this fun
tion. Therefore, in Fig. 6 we show thevalues of the eigenvalues !n and the infrared phases �n (in units of �) both for the StandardModel and N = 1 SUSY at a threshold of 10 TeV. The numeri
al values of the parameterson the RHS of eq.(5.2) turn out to be substantially di�erent in the two 
ases. This fun
tion
onstitutes the infrared boundary 
onditions on the eigenvalues of the BFKL kernel. Asexplained above the eigenvalues are somewhat larger for the SUSY model, but both of thesefun
tions have a 
ut at ! = 0, the order of the 
ut singularity being a little less in the 
aseof the SUSY model (the dip is not so steep).As was dis
ussed in ref. [1℄ the appearan
e of the singularity in the ��! relation indi
atesthat some important 
ontribution to the perturbative expansion at very large transversemomenta is missing. Therefore it is interesting to observe that the introdu
tion of SUSYsoftens somewhat the observed singularity (� is redu
ed from 0.6 to 0.56) and at the sametime redu
es the number of eigenfun
tions required - it is a step towards a des
ription ofdata using only few dis
rete pomerons. This 
ould also indi
ate that there exist other, evenstronger symmetries at very high energies, whi
h are missing in the present evaluation, andwhi
h are responsible for the remaining singularity of the phase �(!).7 SummaryIn our previous paper [1℄ we have shown that DPS gives a very good des
ription of thelow-x HERA data and it was suggested that this �t may have sensitivity to BSM physi
s.This proposed sensitivity emerged from the fa
t that the higher eigenfun
tions have supportover a very large range (see eq. (2.5)), extending from the infrared region to way above thethreshold for any new physi
s and that through the required phase-mat
hing pro
ess, thelow energy behaviour of these eigenfun
tions depends on their high-energy behaviour.In this paper, we have shown that this is indeed the 
ase. The introdu
tion of N=1 SUSYat some threshold alters the value of the �-fun
tion and hen
e the rate of the running ofthe 
oupling. Furthermore there are 
ontributions to the NLO 
hara
teristi
 fun
tion of theBFKL equation from the SUSY partners. Sin
e the properties of the dis
rete pomeron aredetermined from a 
ombination of the running 
oupling and the 
hara
teristi
 fun
tion, theeigenfun
tions of the BFKL kernel are signi�
antly a�e
ted by the introdu
tion of SUSY.Notwithstanding the fa
t that the proposed SUSY s
ale is 
onsiderably above the s
aleprobed at HERA, the altered high-energy behaviour of the eigenfun
tions feeds into thelow-energy, as well as generating a somewhat di�erent spe
trum of eigenvalues.The dis
rete spe
trum depends on the treatment of the infrared boundary 
ondition,whi
h is now more involved due to the fa
t that we are using the two-loop �s running,instead of one-loop, as in [1℄. Constru
ting this boundary we took the most 
onservative12



approa
h of using perturbative QCD as a guideline at every step. Our previous paperwas devoted to the task of �nding the relation between the eigenfun
tion number and thephase of the eigenfun
tion os
illations whi
h is essentially of the non-perturbative origin.Notwithstanding the substantial di�eren
es between the eigenfun
tions with and withoutSUSY, we �nd here that the best �t is obtained using the same form of this dependen
e aswas used in that paper, although other forms for this dependen
e were attempted withoutimproving the �t quality.Together, the di�erent spe
trum of eigenvalues and the di�erent shapes of the eigenfun
-tions in turn a�e
t the parameters of the �t to data and also the quality of the �t. The mainresult of this paper is that if the SUSY threshold is introdu
ed at 10 -15 TeV, the �t wassigni�
antly better than that of the Standard Model (�2 = 110 as 
ompared to �2 = 122 for108 points and 103 degrees of freedom, i.e �2=Ndf = 1:06 vs 1.18). On the other hand, theintrodu
tion of SUSY at the threshold of 3 TeV, just within the rea
h of LHC, generates a�t whi
h is no better than the �t obtained from the Standard Model.It is pertinent to emphasize the qualitative di�eren
e between the �t obtained here andthe usual DGLAP �t [10℄. Over the low-x region, this DGLAP �t obtains a slightly bettervalue of �2 per degree of freedom (�2=Ndf � 0:95). However, the DGLAP parameterizationis designed to 
over the entire range of x, whereas ours is only valid for suÆ
iently low-xwhere an expansion in ln(1=x) is valid. The improved quality of the �t of [10℄ is likely tobe due to the terms with positive powers of x that are present in that �t. The importantqualitative di�eren
e between the two �tting pro
edures is that the parameters obtained inthe DGLAP approa
h are una�e
ted by any new physi
s at high-energy thresholds - theirpredi
tion for the stru
ture fun
tions would remain un
hanged until the threshold (in Q2)for new physi
s were rea
hed. On the other hand, as we have emphasized in this paper, thevalues of our parameters are a�e
ted by new physi
s thresholds and 
onsequently the Q2evolution above the �t region will always be a�e
ted by su
h new physi
s. This 
onsiderablystronger predi
tive power of the BFKL equation is not only due to the fa
t that it is adi�erent type of evolution equation, but also that it des
ribes the dynami
s of the gluon-gluon intera
tion whi
h (after a

ounting for the infrared boundary 
onditions) produ
es thetwo-gluon quasi-bound states with a non trivial spe
trum of singularities in the j-plane.The method des
ribed in this paper opens a new possibility to use high pre
ision experi-ment to sear
h for new physi
s at energy s
ales 
onsiderably larger than the s
ales at whi
hthe experiments are performed. It 
an be applied to any low-x pro
ess whi
h was measuredwith 
omparable a

ura
y to the HERA F2 data, like the Drell-Yan or W and Z produ
tionat LHC. The appli
ation of this method to LHC data 
ould lead to higher sensitivity due tosubstantially higher s
ales involved. The dis
rete pomeron solution provides a unique toolfor su
h an investigation owing to the fa
t that the 
onstru
tion of the eigenfun
tions isbased on the quantum me
hani
al approa
h in whi
h the extremely high energy (up to thePlan
k s
ale) and low energy behaviour of its wave fun
tions are intimately 
onne
ted.A
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