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ExSample { A Library for Sampling Sudakov-Type DistributionsSimon Pl�atzerDESY, Notkestrasse 85, D-22607 Hamburg, GermanyMarh 20, 2012Abstrat. Sudakov-type distributions are at the heart of generating radiation in parton showers as well asontemporary NLO mathing algorithms along the lines of the POWHEG algorithm. In this paper, theC++ library ExSample is introdued, whih implements adaptive sampling of Sudakov-type distributionsfor splitting kernels whih are in general only known numerially. Besides the evolution variable, thesplitting kernels an depend on an arbitrary number of other degrees of freedom to be sampled, and anynumber of further parameters whih are �xed on an event-by-event basis.PACS. 02.70.Tt Monte Carlo methods { 12.38.Bx Perturbative QCD alulations { 12.38.Cy Summationof QCD perturbation theory1 IntrodutionParton shower Monte Carlo simulations as implementedin [1{3℄, just to name few of the reently developed odes,require a way to draw random variates from a probabilitydensitydSP (�; qjQ; z; �)dq dnz = �P (�jQ; �)Æ(q � �)+�(Q� q)�(q � �)P (q; z; �)�P (qjQ; �) (1)when evolving from a hard sale Q to a soft sale q in thepresene of an infrared uto� �, below whih no radiationours. Here, �P (qjQ; �) is the Sudakov form fator,�P (qjQ; �) = exp � Z Qq Z P (k; z; �)dnz dk! (2)and P (q; z; �) � 0 is the splitting kernel desribing thedynamis of radiation at a sale q, along with n otherkinemati parameters z = (z1; :::; zn) and in dependeneon any further parameters � = (�1; :::; �m). Examples ofthese parameters are momentum frations of inomingpartons or invariant masses of the partoni on�gurationfrom whih the next emission is to be generated. The mostompliated information in terms of additional parame-ters is ertainly given by the full information on a phasespae point of a Born-type event from whih real emis-sion is to be generated in the ontext of matrix elementorretions [4{8℄ or NLO mathing using the POWHEGmethod whih is originally desribed in [9℄. We refer to theprobability density de�ned in eq. 1 as the Sudakov-typedistribution assoiated to P .Drawing random variates from dSP by standard meth-ods is in general not feasible, as the integral entering the

Sudakov form fator would have to be evaluated numeri-ally, and interpolated. Though this is indeed being donefor example in the FORTRAN version of HERWIG [10℄,this method eases to be appliable if the number of ad-ditional degrees of freedom or in partiular the number ofadditional parameters beome large.To this extent, urrent parton shower implementationsreside on the Sudakov veto algorithm whih, e.g. has beendisussed in [4, 11{13℄. The Sudakov veto algorithm re-quires an overestimate R to the splitting kernel of interestP , R(q; z; �) � P (q; z; �), and is de�ned byQstart  Qloopsolve rnd= �R(qjQstart; �)�(q � �) for qdraw z from R(q; z; �)if q = � thenreturn (�; z)elsereturn (q; z) with probability P (q; z; �)=R(q; z; �)end ifQstart  qend loopwhere rnd denotes a soure of random numbers uniformlydistributed on [0; 1℄. Obviously, R needs to be of a simpleform in suh a way that the �rst step in the loop an easilybe implemented.Finding suh an R has up to now always requiredknowledge of properties of the target kernel P , making ageneral-purpose implementation of the algorithm impos-sible. Espeially towards more ompliated splitting ker-nels, this manual proedure of determining R from theproperties of P may not be possible at all: even analytiexpressions may not be known, P being available only nu-
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2 Simon Pl�atzer: ExSample { A Library for Sampling Sudakov-Type Distributionsmerially. A general implementation may also further en-hane exibility when hanging parton distribution fun-tions in the parton shower bakward evolution and thusthe respetive splitting kernels.The purpose of ExSample (a shorthand for ExponentialSampler) is to provide suh a general purpose implementa-tion, by adaptively obtaining an overestimate to the targetsplitting kernel in suh a way as to optimize the algo-rithm's overall performane.2 Generation of Adapting OverestimatesExSample is very muh inspired by the ACDC and FOAMalgorithms implemented in [14, 15℄. By the same reason-ing, ExSample makes use of `ells', whih represent a sub-hyperube of the volume spanned by the evolution vari-able q, the additional degrees of freedom z and externalparameters �. Cells are organized in a binary tree, eahell having either two or no hildren, in the latter aseterminating the tree at this branh. The union of the twohyperubes Ub and U represented by the two hildren ellsb; always equals the hyperube U(b) represented by theparent ell (b). Eah ell  ontains the maximum of thetarget splitting kernel P enountered by a presamplingas its value w. The leaf ells of the tree, onstituting aertain fratal-type partition of the sampling volume intohyperubes, de�ne the overestimate funtion,R(q; z; �) = Xleaf ells w � ((q; z; �) 2 U) : (3)Eah parent ell keeps trak of the integrals of its hildrenells, I;b = w;bvolume(Ub;). This allows for an eÆientsampling of the overestimate funtion, by seleting eitherof the hildren ells aording to their integral, biased byonstraints imposed due to the seleted evolution variable,the externally �xed parameter point and the need to om-pensate for newly enountered maxima.The next value of the evolution variable is easily gen-erated by keeping trak of projetions of the overestimatekernel onto the evolution variable dimension in depen-dene on the externally �xed parameter point. In order tokeep trak of the dependene on the additional parameters� as well as the starting value of the evolution variable Q,ExSample provides a mehanism to alulate unique hashvalues identifying the sub tree of the ell struture whihshould be onsidered for a given parameter point. All in-formation needed to sample events, i.e. in partiular pro-jetions of the overestimate kernel R and the number of`missing' events per ell, to be disussed in setion 3, anbe aessed in dependene on these hash values. The basistruture of the sampling is skethed in �gure 1.The root ell of the tree spans the whole sampling vol-ume and is the only ell present at the initial stage ofthe algorithm. Children ells are produed in an adaptionstep, iteratively building up the ell tree through splittinga ell into two hildren ells. This proedure aims at im-proving the algorithm's eÆieny along with gaining more

Fig. 1. A sketh of the algorithm for an evolution variable q,one additional variable z, and no further parameters �. Thetop of the �gure shows how the leaf ells (in the third planefrom the top, shown here after two ell splits) are organizedin a binary tree struture starting from the root ell U((12)3).The bottom of the �gure skethes the overestimate R. To theleft of the overestimate, the Sudakov exponent orrespondingto R, F (q) = � ln�R(qj1) is shown. Here we assume that theabsolute upper bound on the evolution variable is q < 1, thusthe �rst step to draw an event starting from a sale Q is to solves(Q) = � ln rnd+F (Q) = F (q) for q (indiated by the dashedblue line). A z value is then sampled in the ells ontaining theq value just hosen: The ell integrals over z are omputed toonly reet the subtree onsisting of the blak arrows, and thetree struture is traversed only along the orresponding paths,seleting either of the hildren ells with weight given by therespetive integral. Within the boundaries of a leaf ell seletedby this proedure, a z value is drawn at. This orresponds todrawing a z value from the distribution skethed by the solidblue line, the overestimate R at �xed q.detailed information on the target splitting kernel, i.e. amore �ne-grained overestimate loser to it.In order to ahieve this, eah ell always monitors itseÆieny, whih is de�ned as the ratio of the number ofaepted points divided by the number of proposed pointsand thus gives a measure of the overall performane ofthe Sudakov veto algorithm. If this eÆieny drops be-low a user-supplied threshold, the ell is onsidered `bad'.With a frequeny dereasing as the eÆieny of the algo-rithm inreases, and on enounter of a bad ell, a potentialsplitting of the ell is determined to further inrease theeÆieny of the algorithm.To obtain an optimal hyper-plane along whih the ellshould be split, eah ell histograms projetions of the av-



Simon Pl�atzer: ExSample { A Library for Sampling Sudakov-Type Distributions 3erage target kernel value onto eah variable dimension k,hP ik(xk). The dimension k (whih here may refer to ei-ther the evolution variable, one of the additional degrees offreedom or any of the external parameters) orthogonal tothis hyperplane, and the split point xk (out of a number ofpossible split points well inside the ell's boundaries) de-�ned by the intersetion of the hyperplane and this dire-tion are determined to maximize a `gain' measure, de�nedas gaink(xk) = ���R xkx�k hP ik(x)dx � R x+kxk hP ik(x)dx���R x+kx�k hP ik(x)dx : (4)Here, x�k denote the ell's boundaries in the variable xk.For reasons of performane and simpliity, the urrent im-plementation uses a two-bin histogram per dimension, andxk = (x�k + x+k )=2, leaving only the hoie of dimensionto maximize the gain measure: If the behaviour of P israther at when projeted on one dimension k, this di-mension will reeive a small gain measure, and projetionsshowing more variane in P are more likely to be splitalong. Again, a user-supplied parameter an steer the be-haviour of the adaption by onsidering only those splitsto be worth performed, if the gain exeeds some value.Out of the two hildren ells the target density is beingpresampled in that ell whih did not ontain the maxi-mum point used before to get a new estimate of the max-imum. The number of presampling points per ell is an-other user-de�ned parameter. The hoie of this param-eter has to be arried out in view of the ompensationproedure to be de�ned in the next setion with a trade-o� between the time needed for presampling and the timelost by the number of events to be vetoed by the ompen-sation proedure. There is no general rule on how it is tobe determined. Experiene gained so far shows that fewthousand presampling points are an aeptable ompro-mise.3 Compensating for New MaximaSine the true maximum of the target kernel an neverbe determined with probability one from the presamplingproedure, are has to be taken on what onstraints needto be imposed on the sampling proedure one a point hasbeen enountered exeeding the urrently used maximum.For a suÆiently large number of presampling points onemay reside on the statement that these points are rareand generated distributions will not show any e�et onthe erroneous overestimate. Thinking about the overalleÆieny of the algorithm in performing its funtion ofating as a ontinuous soure of unweighted events withthe smallest possible overhead, this is ertainly not a ri-terion to base an implementation on.To de�ne the method of ompensation, we �rst intro-due the notion of missing events in a given ell. As forthe ell's integral, eah parent ell arries the sum of themissing events of its hildren ells. The number of missing

Fig. 2. A sketh of the algorithm in a setup similar to �gure 1,now skething the situation upon enounter of a new overes-timate. The new overestimate gave rise to di�erent numbersof events expeted in eah ell (solid retangles in the lowerpart), as ompared to the number of events expeted withthe old overestimate (dotted retangles). The di�erene be-tween these determines the number of missing events per ell(see text for more details). In the sketh given here, the ellsU2 and U3 would reeive a positive number of missing events(foring sampling in these ells as indiated by the blak ar-rows), whereas ell U1 would ontain a negative ount of miss-ing events, triggering vetoes of attempts to sample points inthis ell (indiated by the red arrow).events is not limited to be positive. In ase it is positive,the orresponding ell needs to be oversampled, i.e. thealgorithm is fored to sample events in ells with a pos-itive number of missing events, lowering this number inthe seleted ell if it is larger than zero. Oversampling isimposed on the algorithm as long as there are ells with apositive ount of missing events. Conversely, if the missingevent ount is negative, a ell needs to be undersampled. Ifsuh a ell is seleted, its missing event ount is inreased,if it is smaller than zero and the seletion is vetoed, trig-gering a new ell seletion. The behaviour of the algorithmin a ompensating state is illustrated in �gure 2.Upon enounter of a new maximumw0 > w, the num-ber of missing events assoiated to this hange is alu-lated for eah ell asNmiss = N�p0p � 1� : (5)Here, N is the number of proposal events already gen-erated in the ell, and p (p0) denotes the probability toselet ell  using the old (new) overestimate value for



4 Simon Pl�atzer: ExSample { A Library for Sampling Sudakov-Type Distributionsevents above the infrared uto�. p is alulated from theknowledge of projetions of the overestimate kernel in de-pendene on the additional parameter point � and thehard sale Q asp = RR(q; z; �)�R(qjQ; �)dnz dq1��R(�jQ; �) : (6)Nmiss is then added to eah ell's urrent missing eventount. Note that undersampling, Nmiss < 0 appears inthe ells not ontaining the newly enountered maximumowing to the hange in normalization of the overestimatedensity for events above the infrared uto�. Eq. 5 ensuresthat within the urrently aumulated statistis proposalevents are always distributed aording to the last enoun-tered maximum, provided the algorithm has been stoppedin a state where it is not anymore fored to perform over-or undersamplings. This is evident by rewriting eq. 5 asNmiss = NhNi (hN 0i � hNi) (7)where hNi = Np (hN 0i = Np0) is the number of ex-peted events in ell  for the total number of generatedevents, N . The di�erene in brakets is the number ofmissing events in the absene of utuations due to a �-nite number of generated events, and the fator in front ofit takes into aount the urrently aumulated statistis,i.e. how muh the population of the ell di�ers from itsexpeted population.4 The Cell Seletion AlgorithmIn this setion the omplete algorithm to generate eventsas implemented in ExSample is de�ned. We here skip thoseparts onneted to monitoring the eÆieny of and split-ting a ell. Proposal events aording to dSR(qjQ; z; �) asrequired by the Sudakov veto algorithm are generated by�rst deiding, if there has been an event at the infrareduto� or otherwise seleting a proposal ell aording toalgorithm 1.One a proposal ell has been seleted, a proposal eventis drawn by sampling the remaining degrees of freedom zin the seleted ell with uniform distribution. Exept forthe ompensating ell seletion algorithm outlined above,the Sudakov veto algorithm proeeds without modi�a-tion.5 Examples and ValidationExSample has been validated for various `toy' splitting ker-nels and within the realisti appliation of a parton showerand POWHEG mathing implementation. In this setionwe present simple examples of distributions obtained byusing ExSample, mainly to illustrate the basi funtional-ity.Figure 3 shows the results obtained by the adaptive Su-dakov veto algorithm, using a kernel density showing the

Algorithm 1 The ell seletion algorithm.alulate sub tree hash h(Q; �) and ollet projetionsloopsolve rnd= �R(qjQ; �)�(q � �) for qif q = � thenreturn event at infrared uto�end ifollet ell integrals and missing event ountersell  root ellwhile ell is not a leaf doif Nmiss�rstChild(ell) > 0 ^NmissseondChild(ell) � 0 thenell  �rstChild(ell)else if Nmiss�rstChild(ell) � 0 ^NmissseondChild(ell) > 0 thenell  seondChild(ell)elseif rnd < I�rstChild(ell)=Iell thenell  �rstChild(ell)elseell  seondChild(ell)end ifend ifend whileif Nmissell = 0 thenreturn ellelse if Nmissell > 0 thenNmissell  Nmissell � 1return ellelse if Nmissell < 0 thenNmissell  Nmissell + 1end ifend loopgeneri behaviour of a QCD splitting funtion with run-ning �s. Perfet agreement with a numerial integrationis found. In addition, �gure 4 shows the funtionality ofthe ompensation proedure by omparing results for thesame distribution but di�erent numbers of presamplingpoints used in the algorithm, whih are all onsistent witheah other.In �gure 5 the results of sampling a Sudakov-typedistribution in the presene of additional parameters areshown. In this example, a quark splitting funtion mul-tiplied by a power law in x=z has been used, where x isthe additional parameter and z is the momentum fra-tion variable to be sampled. The sampled distributionsin various bins of the additional parameter x have beenompared to a numerial integration. Full agreement hasbeen found here. The presene of adaption splits in theparameter dimension has expliitly been heked for thisexample.We also use this example, whih losely resembles ini-tial state bakward evolution of a parton shower at smallvalues of the momentum fration x, to asses the improve-ments obtained by the adaptive sampling algorithm. Par-tiularly, we ount the number of vetoed points enoun-tered when requiring the same number of events while lim-iting the allowed number of ell splits. This way, a diretomparison of very oarse to inreasingly �ner overesti-mates is performed. The results are presented in �gure 6,
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Fig. 3. A Sudakov-type distribution with a QCD splittingfuntion type kernel density as sampled by ExSample usingthe adaptive Sudakov veto algorithm. The vertial axis orre-sponds to the evolution variable q, the horizontal to a vari-able similar to a momentum fration. Shown are few sampledevents, projetions of the generated distribution versus the re-sult from a numerial integration, and the the ell grid pro-dued.
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Fig. 4. The same distribution as shown in the upper left panelof �gure 3, now sampled with a di�erent number of presamplingpoints proving funtionality of the ompensation proedure.showing an exponential improvement with the number ofsplits performed.6 ConlusionsThe sampling of Sudakov-type distributions is at the heartof all urrent parton shower and POWHEG NLO math-ing implementations. In this paper we have introdued theC++ library ExSample, whih targets at adaptive sam-pling of these distributions as de�ned from a splitting ker-nel, whih { in general { may only be known through afuntion all.Additional parameters, suh as typially enountereddependenies on inoming parton momentum frations orthe full dependene on a phase spae point governing a
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Fig. 5. Distributions for a Sudakov-type distribution usinga quark splitting funtion, multiplied by a power law in x=z.Shown are the sampled distribution for the evolution variableq and momentum fration z in various bins of the additionalparameter x. The distributions are ompared to a numerialintegration, proving full funtionality of the sampling in pres-ene of additional parameters.hard sattering proess, an be dealt with in full general-ity. ExSample has been validated in `toy' as well as realistisetups, showing full funtionality of the implementation.AknowledgmentsI would like to thank Malin Sj�odahl and Stefan Giesekefor fruitful disussion. This work was supported in partby the European Union Marie Curie Researh TrainingNetwork MCnet under ontrat MRTN-CT-2006-035606and the Helmholtz Alliane \Physis at the Terasale".
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Fig. 6. Performane of the algorithmmeasured as a ratio of thenumber of vetoed points to the number of events requested asa funtion of the number of ell splits allowed. An exponentialimprovement is seen as more and more splits are onsidered.In this example, requesting 500000 events, a maximum of 27splits oured. The very eÆient region from 18 splits onwardwith below three vetoes per generated event has been reahedafter about 40000 generated events.A Availability and InstallationExSample is available fromhttp://www.desy.de/~ platzer/software/exsample-1.0.tar.gzIt is a omplete header based library, depending ad-ditionally only on the presene of boost headers [16℄. Aninstallation proedure is thus not required exept for mak-ing the ExSample headers available to the lient ode dur-ing ompilation by inluding the header �le exsample.h.ExSample is published under the GNU General Publi Li-ense version 2 [17℄ and an thus be freely used and redis-tributed.The distribution ontains extensive doumentation, sev-eral examples of usage, as well as an implementation forstandard sampling and adaptive Monte Carlo integration,of whih ExSample is apable as well.Referenes1. M. B�ahr et al., Eur. Phys. J. C58, 639 (2008), 0803.0883.2. T. Sj�ostrand, S. Mrenna, and P. Skands, Comput. Phys.Commun. 178, 852 (2008), 0710.3820.3. T. Gleisberg et al., JHEP 02, 007 (2009), 0811.4622.4. M. H. Seymour, Comp. Phys. Commun. 90, 95 (1995),hep-ph/9410414.5. M. Bengtsson and T. Sjostrand, Phys. Lett. B185, 435(1987).
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