
*∣
∣0
8.
6∣
82
*

Revised Version DESY 11-147
 MCnet-11-20

ar
X

iv
:1

10
8.

61
82

v2
 [

he
p-

ph
]

 1
9

M
ar

 2
01

2

DESY 11-147MCnet-11-20
ExSample { A Library for Sampling Sudakov-Type DistributionsSimon Pl�atzerDESY, Notkestrasse 85, D-22607 Hamburg, GermanyMar
h 20, 2012Abstra
t. Sudakov-type distributions are at the heart of generating radiation in parton showers as well as
ontemporary NLO mat
hing algorithms along the lines of the POWHEG algorithm. In this paper, theC++ library ExSample is introdu
ed, whi
h implements adaptive sampling of Sudakov-type distributionsfor splitting kernels whi
h are in general only known numeri
ally. Besides the evolution variable, thesplitting kernels
an depend on an arbitrary number of other degrees of freedom to be sampled, and anynumber of further parameters whi
h are �xed on an event-by-event basis.PACS. 02.70.Tt Monte Carlo methods { 12.38.Bx Perturbative QCD
al
ulations { 12.38.Cy Summationof QCD perturbation theory1 Introdu
tionParton shower Monte Carlo simulations as implementedin [1{3℄, just to name few of the re
ently developed
odes,require a way to draw random variates from a probabilitydensitydSP (�; qjQ; z; �)dq dnz = �P (�jQ; �)Æ(q � �)+�(Q� q)�(q � �)P (q; z; �)�P (qjQ; �) (1)when evolving from a hard s
ale Q to a soft s
ale q in thepresen
e of an infrared
uto� �, below whi
h no radiationo

urs. Here, �P (qjQ; �) is the Sudakov form fa
tor,�P (qjQ; �) = exp � Z Qq Z P (k; z; �)dnz dk! (2)and P (q; z; �) � 0 is the splitting kernel des
ribing thedynami
s of radiation at a s
ale q, along with n otherkinemati
 parameters z = (z1; :::; zn) and in dependen
eon any further parameters � = (�1; :::; �m). Examples ofthese parameters are momentum fra
tions of in
omingpartons or invariant masses of the partoni

on�gurationfrom whi
h the next emission is to be generated. The most
ompli
ated information in terms of additional parame-ters is
ertainly given by the full information on a phasespa
e point of a Born-type event from whi
h real emis-sion is to be generated in the
ontext of matrix element
orre
tions [4{8℄ or NLO mat
hing using the POWHEGmethod whi
h is originally des
ribed in [9℄. We refer to theprobability density de�ned in eq. 1 as the Sudakov-typedistribution asso
iated to P .Drawing random variates from dSP by standard meth-ods is in general not feasible, as the integral entering the

Sudakov form fa
tor would have to be evaluated numeri-
ally, and interpolated. Though this is indeed being donefor example in the FORTRAN version of HERWIG [10℄,this method
eases to be appli
able if the number of ad-ditional degrees of freedom or in parti
ular the number ofadditional parameters be
ome large.To this extent,
urrent parton shower implementationsreside on the Sudakov veto algorithm whi
h, e.g. has beendis
ussed in [4, 11{13℄. The Sudakov veto algorithm re-quires an overestimate R to the splitting kernel of interestP , R(q; z; �) � P (q; z; �), and is de�ned byQstart Qloopsolve rnd= �R(qjQstart; �)�(q � �) for qdraw z from R(q; z; �)if q = � thenreturn (�; z)elsereturn (q; z) with probability P (q; z; �)=R(q; z; �)end ifQstart qend loopwhere rnd denotes a sour
e of random numbers uniformlydistributed on [0; 1℄. Obviously, R needs to be of a simpleform in su
h a way that the �rst step in the loop
an easilybe implemented.Finding su
h an R has up to now always requiredknowledge of properties of the target kernel P , making ageneral-purpose implementation of the algorithm impos-sible. Espe
ially towards more
ompli
ated splitting ker-nels, this manual pro
edure of determining R from theproperties of P may not be possible at all: even analyti
expressions may not be known, P being available only nu-

http://arxiv.org/abs/1108.6182v2

2 Simon Pl�atzer: ExSample { A Library for Sampling Sudakov-Type Distributionsmeri
ally. A general implementation may also further en-han
e
exibility when
hanging parton distribution fun
-tions in the parton shower ba
kward evolution and thusthe respe
tive splitting kernels.The purpose of ExSample (a shorthand for ExponentialSampler) is to provide su
h a general purpose implementa-tion, by adaptively obtaining an overestimate to the targetsplitting kernel in su
h a way as to optimize the algo-rithm's overall performan
e.2 Generation of Adapting OverestimatesExSample is very mu
h inspired by the ACDC and FOAMalgorithms implemented in [14, 15℄. By the same reason-ing, ExSample makes use of `
ells', whi
h represent a sub-hyper
ube of the volume spanned by the evolution vari-able q, the additional degrees of freedom z and externalparameters �. Cells are organized in a binary tree, ea
h
ell having either two or no
hildren, in the latter
aseterminating the tree at this bran
h. The union of the twohyper
ubes Ub and U
 represented by the two
hildren
ells
b;
 always equals the hyper
ube U(b
) represented by theparent
ell
(b
). Ea
h
ell

ontains the maximum of thetarget splitting kernel P en
ountered by a presamplingas its value w
. The leaf
ells of the tree,
onstituting a
ertain fra
tal-type partition of the sampling volume intohyper
ubes, de�ne the overestimate fun
tion,R(q; z; �) = Xleaf
ells
w
 � ((q; z; �) 2 U
) : (3)Ea
h parent
ell keeps tra
k of the integrals of its
hildren
ells, I
;b = w
;bvolume(Ub;
). This allows for an eÆ
ientsampling of the overestimate fun
tion, by sele
ting eitherof the
hildren
ells a

ording to their integral, biased by
onstraints imposed due to the sele
ted evolution variable,the externally �xed parameter point and the need to
om-pensate for newly en
ountered maxima.The next value of the evolution variable is easily gen-erated by keeping tra
k of proje
tions of the overestimatekernel onto the evolution variable dimension in depen-den
e on the externally �xed parameter point. In order tokeep tra
k of the dependen
e on the additional parameters� as well as the starting value of the evolution variable Q,ExSample provides a me
hanism to
al
ulate unique hashvalues identifying the sub tree of the
ell stru
ture whi
hshould be
onsidered for a given parameter point. All in-formation needed to sample events, i.e. in parti
ular pro-je
tions of the overestimate kernel R and the number of`missing' events per
ell, to be dis
ussed in se
tion 3,
anbe a

essed in dependen
e on these hash values. The basi
stru
ture of the sampling is sket
hed in �gure 1.The root
ell of the tree spans the whole sampling vol-ume and is the only
ell present at the initial stage ofthe algorithm. Children
ells are produ
ed in an adaptionstep, iteratively building up the
ell tree through splittinga
ell into two
hildren
ells. This pro
edure aims at im-proving the algorithm's eÆ
ien
y along with gaining more

Fig. 1. A sket
h of the algorithm for an evolution variable q,one additional variable z, and no further parameters �. Thetop of the �gure shows how the leaf
ells (in the third planefrom the top, shown here after two
ell splits) are organizedin a binary tree stru
ture starting from the root
ell U((12)3).The bottom of the �gure sket
hes the overestimate R. To theleft of the overestimate, the Sudakov exponent
orrespondingto R, F (q) = � ln�R(qj1) is shown. Here we assume that theabsolute upper bound on the evolution variable is q < 1, thusthe �rst step to draw an event starting from a s
ale Q is to solves(Q) = � ln rnd+F (Q) = F (q) for q (indi
ated by the dashedblue line). A z value is then sampled in the
ells
ontaining theq value just
hosen: The
ell integrals over z are
omputed toonly re
e
t the subtree
onsisting of the bla
k arrows, and thetree stru
ture is traversed only along the
orresponding paths,sele
ting either of the
hildren
ells with weight given by therespe
tive integral. Within the boundaries of a leaf
ell sele
tedby this pro
edure, a z value is drawn
at. This
orresponds todrawing a z value from the distribution sket
hed by the solidblue line, the overestimate R at �xed q.detailed information on the target splitting kernel, i.e. amore �ne-grained overestimate
loser to it.In order to a
hieve this, ea
h
ell always monitors itseÆ
ien
y, whi
h is de�ned as the ratio of the number ofa

epted points divided by the number of proposed pointsand thus gives a measure of the overall performan
e ofthe Sudakov veto algorithm. If this eÆ
ien
y drops be-low a user-supplied threshold, the
ell is
onsidered `bad'.With a frequen
y de
reasing as the eÆ
ien
y of the algo-rithm in
reases, and on en
ounter of a bad
ell, a potentialsplitting of the
ell is determined to further in
rease theeÆ
ien
y of the algorithm.To obtain an optimal hyper-plane along whi
h the
ellshould be split, ea
h
ell histograms proje
tions of the av-

Simon Pl�atzer: ExSample { A Library for Sampling Sudakov-Type Distributions 3erage target kernel value onto ea
h variable dimension k,hP ik(xk). The dimension k (whi
h here may refer to ei-ther the evolution variable, one of the additional degrees offreedom or any of the external parameters) orthogonal tothis hyperplane, and the split point xk (out of a number ofpossible split points well inside the
ell's boundaries) de-�ned by the interse
tion of the hyperplane and this dire
-tion are determined to maximize a `gain' measure, de�nedas gaink(xk) = ���R xkx�k hP ik(x)dx � R x+kxk hP ik(x)dx���R x+kx�k hP ik(x)dx : (4)Here, x�k denote the
ell's boundaries in the variable xk.For reasons of performan
e and simpli
ity, the
urrent im-plementation uses a two-bin histogram per dimension, andxk = (x�k + x+k)=2, leaving only the
hoi
e of dimensionto maximize the gain measure: If the behaviour of P israther
at when proje
ted on one dimension k, this di-mension will re
eive a small gain measure, and proje
tionsshowing more varian
e in P are more likely to be splitalong. Again, a user-supplied parameter
an steer the be-haviour of the adaption by
onsidering only those splitsto be worth performed, if the gain ex
eeds some value.Out of the two
hildren
ells the target density is beingpresampled in that
ell whi
h did not
ontain the maxi-mum point used before to get a new estimate of the max-imum. The number of presampling points per
ell is an-other user-de�ned parameter. The
hoi
e of this param-eter has to be
arried out in view of the
ompensationpro
edure to be de�ned in the next se
tion with a trade-o� between the time needed for presampling and the timelost by the number of events to be vetoed by the
ompen-sation pro
edure. There is no general rule on how it is tobe determined. Experien
e gained so far shows that fewthousand presampling points are an a

eptable
ompro-mise.3 Compensating for New MaximaSin
e the true maximum of the target kernel
an neverbe determined with probability one from the presamplingpro
edure,
are has to be taken on what
onstraints needto be imposed on the sampling pro
edure on
e a point hasbeen en
ountered ex
eeding the
urrently used maximum.For a suÆ
iently large number of presampling points onemay reside on the statement that these points are rareand generated distributions will not show any e�e
t onthe erroneous overestimate. Thinking about the overalleÆ
ien
y of the algorithm in performing its fun
tion ofa
ting as a
ontinuous sour
e of unweighted events withthe smallest possible overhead, this is
ertainly not a
ri-terion to base an implementation on.To de�ne the method of
ompensation, we �rst intro-du
e the notion of missing events in a given
ell. As forthe
ell's integral, ea
h parent
ell
arries the sum of themissing events of its
hildren
ells. The number of missing

Fig. 2. A sket
h of the algorithm in a setup similar to �gure 1,now sket
hing the situation upon en
ounter of a new overes-timate. The new overestimate gave rise to di�erent numbersof events expe
ted in ea
h
ell (solid re
tangles in the lowerpart), as
ompared to the number of events expe
ted withthe old overestimate (dotted re
tangles). The di�eren
e be-tween these determines the number of missing events per
ell(see text for more details). In the sket
h given here, the
ellsU2 and U3 would re
eive a positive number of missing events(for
ing sampling in these
ells as indi
ated by the bla
k ar-rows), whereas
ell U1 would
ontain a negative
ount of miss-ing events, triggering vetoes of attempts to sample points inthis
ell (indi
ated by the red arrow).events is not limited to be positive. In
ase it is positive,the
orresponding
ell needs to be oversampled, i.e. thealgorithm is for
ed to sample events in
ells with a pos-itive number of missing events, lowering this number inthe sele
ted
ell if it is larger than zero. Oversampling isimposed on the algorithm as long as there are
ells with apositive
ount of missing events. Conversely, if the missingevent
ount is negative, a
ell needs to be undersampled. Ifsu
h a
ell is sele
ted, its missing event
ount is in
reased,if it is smaller than zero and the sele
tion is vetoed, trig-gering a new
ell sele
tion. The behaviour of the algorithmin a
ompensating state is illustrated in �gure 2.Upon en
ounter of a new maximumw0
 > w
, the num-ber of missing events asso
iated to this
hange is
al
u-lated for ea
h
ell asNmiss
 = N
�p0
p
 � 1� : (5)Here, N
 is the number of proposal events already gen-erated in the
ell, and p
 (p0
) denotes the probability tosele
t
ell
 using the old (new) overestimate value for

4 Simon Pl�atzer: ExSample { A Library for Sampling Sudakov-Type Distributionsevents above the infrared
uto�. p
 is
al
ulated from theknowledge of proje
tions of the overestimate kernel in de-penden
e on the additional parameter point � and thehard s
ale Q asp
 = R
R(q; z; �)�R(qjQ; �)dnz dq1��R(�jQ; �) : (6)Nmiss
 is then added to ea
h
ell's
urrent missing event
ount. Note that undersampling, Nmiss
 < 0 appears inthe
ells not
ontaining the newly en
ountered maximumowing to the
hange in normalization of the overestimatedensity for events above the infrared
uto�. Eq. 5 ensuresthat within the
urrently a

umulated statisti
s proposalevents are always distributed a

ording to the last en
oun-tered maximum, provided the algorithm has been stoppedin a state where it is not anymore for
ed to perform over-or undersamplings. This is evident by rewriting eq. 5 asNmiss
 = N
hNi
 (hN 0i
 � hNi
) (7)where hNi
 = Np
 (hN 0i
 = Np0
) is the number of ex-pe
ted events in
ell
 for the total number of generatedevents, N . The di�eren
e in bra
kets is the number ofmissing events in the absen
e of
u
tuations due to a �-nite number of generated events, and the fa
tor in front ofit takes into a

ount the
urrently a

umulated statisti
s,i.e. how mu
h the population of the
ell di�ers from itsexpe
ted population.4 The Cell Sele
tion AlgorithmIn this se
tion the
omplete algorithm to generate eventsas implemented in ExSample is de�ned. We here skip thoseparts
onne
ted to monitoring the eÆ
ien
y of and split-ting a
ell. Proposal events a

ording to dSR(qjQ; z; �) asrequired by the Sudakov veto algorithm are generated by�rst de
iding, if there has been an event at the infrared
uto� or otherwise sele
ting a proposal
ell a

ording toalgorithm 1.On
e a proposal
ell has been sele
ted, a proposal eventis drawn by sampling the remaining degrees of freedom zin the sele
ted
ell with uniform distribution. Ex
ept forthe
ompensating
ell sele
tion algorithm outlined above,the Sudakov veto algorithm pro
eeds without modi�
a-tion.5 Examples and ValidationExSample has been validated for various `toy' splitting ker-nels and within the realisti
 appli
ation of a parton showerand POWHEG mat
hing implementation. In this se
tionwe present simple examples of distributions obtained byusing ExSample, mainly to illustrate the basi
 fun
tional-ity.Figure 3 shows the results obtained by the adaptive Su-dakov veto algorithm, using a kernel density showing the

Algorithm 1 The
ell sele
tion algorithm.
al
ulate sub tree hash h(Q; �) and
olle
t proje
tionsloopsolve rnd= �R(qjQ; �)�(q � �) for qif q = � thenreturn event at infrared
uto�end if
olle
t
ell integrals and missing event
ounters
ell root
ellwhile
ell is not a leaf doif Nmiss�rstChild(
ell) > 0 ^Nmissse
ondChild(
ell) � 0 then
ell �rstChild(
ell)else if Nmiss�rstChild(
ell) � 0 ^Nmissse
ondChild(
ell) > 0 then
ell se
ondChild(
ell)elseif rnd < I�rstChild(
ell)=I
ell then
ell �rstChild(
ell)else
ell se
ondChild(
ell)end ifend ifend whileif Nmiss
ell = 0 thenreturn
ellelse if Nmiss
ell > 0 thenNmiss
ell Nmiss
ell � 1return
ellelse if Nmiss
ell < 0 thenNmiss
ell Nmiss
ell + 1end ifend loopgeneri
 behaviour of a QCD splitting fun
tion with run-ning �s. Perfe
t agreement with a numeri
al integrationis found. In addition, �gure 4 shows the fun
tionality ofthe
ompensation pro
edure by
omparing results for thesame distribution but di�erent numbers of presamplingpoints used in the algorithm, whi
h are all
onsistent withea
h other.In �gure 5 the results of sampling a Sudakov-typedistribution in the presen
e of additional parameters areshown. In this example, a quark splitting fun
tion mul-tiplied by a power law in x=z has been used, where x isthe additional parameter and z is the momentum fra
-tion variable to be sampled. The sampled distributionsin various bins of the additional parameter x have been
ompared to a numeri
al integration. Full agreement hasbeen found here. The presen
e of adaption splits in theparameter dimension has expli
itly been
he
ked for thisexample.We also use this example, whi
h
losely resembles ini-tial state ba
kward evolution of a parton shower at smallvalues of the momentum fra
tion x, to asses the improve-ments obtained by the adaptive sampling algorithm. Par-ti
ularly, we
ount the number of vetoed points en
oun-tered when requiring the same number of events while lim-iting the allowed number of
ell splits. This way, a dire
t
omparison of very
oarse to in
reasingly �ner overesti-mates is performed. The results are presented in �gure 6,

Simon Pl�atzer: ExSample { A Library for Sampling Sudakov-Type Distributions 5

00.5
1

0 0.5 1

samplednumeri
al integration

Fig. 3. A Sudakov-type distribution with a QCD splittingfun
tion type kernel density as sampled by ExSample usingthe adaptive Sudakov veto algorithm. The verti
al axis
orre-sponds to the evolution variable q, the horizontal to a vari-able similar to a momentum fra
tion. Shown are few sampledevents, proje
tions of the generated distribution versus the re-sult from a numeri
al integration, and the the
ell grid pro-du
ed.
0123
4

0 0.2 0.4 0.6 0.8 1N�1 dS P=dq q
npresample = 10npresample = 100npresample = 1000

Fig. 4. The same distribution as shown in the upper left panelof �gure 3, now sampled with a di�erent number of presamplingpoints proving fun
tionality of the
ompensation pro
edure.showing an exponential improvement with the number ofsplits performed.6 Con
lusionsThe sampling of Sudakov-type distributions is at the heartof all
urrent parton shower and POWHEG NLO mat
h-ing implementations. In this paper we have introdu
ed theC++ library ExSample, whi
h targets at adaptive sam-pling of these distributions as de�ned from a splitting ker-nel, whi
h { in general { may only be known through afun
tion
all.Additional parameters, su
h as typi
ally en
ountereddependen
ies on in
oming parton momentum fra
tions orthe full dependen
e on a phase spa
e point governing a

00.51
1.522.5
33.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1N�1 dS P=dqdx
q

samplednumeri
al integration

024
6810
1214

0.7 0.75 0.8 0.85 0.9 0.95 1N�1 dS P=dzdx
z

samplednumeri
al integration

Fig. 5. Distributions for a Sudakov-type distribution usinga quark splitting fun
tion, multiplied by a power law in x=z.Shown are the sampled distribution for the evolution variableq and momentum fra
tion z in various bins of the additionalparameter x. The distributions are
ompared to a numeri
alintegration, proving full fun
tionality of the sampling in pres-en
e of additional parameters.hard s
attering pro
ess,
an be dealt with in full general-ity. ExSample has been validated in `toy' as well as realisti
setups, showing full fun
tionality of the implementation.A
knowledgmentsI would like to thank Malin Sj�odahl and Stefan Giesekefor fruitful dis
ussion. This work was supported in partby the European Union Marie Curie Resear
h TrainingNetwork MCnet under
ontra
t MRTN-CT-2006-035606and the Helmholtz Allian
e \Physi
s at the Teras
ale".

6 Simon Pl�atzer: ExSample { A Library for Sampling Sudakov-Type Distributions

0246
8101214
161820

0 5 10 15 20 25 30#vetoed/#r
equested

splits

measuredexponential �t

Fig. 6. Performan
e of the algorithmmeasured as a ratio of thenumber of vetoed points to the number of events requested asa fun
tion of the number of
ell splits allowed. An exponentialimprovement is seen as more and more splits are
onsidered.In this example, requesting 500000 events, a maximum of 27splits o

ured. The very eÆ
ient region from 18 splits onwardwith below three vetoes per generated event has been rea
hedafter about 40000 generated events.A Availability and InstallationExSample is available fromhttp://www.desy.de/~ platzer/software/exsample-1.0.tar.gzIt is a
omplete header based library, depending ad-ditionally only on the presen
e of boost headers [16℄. Aninstallation pro
edure is thus not required ex
ept for mak-ing the ExSample headers available to the
lient
ode dur-ing
ompilation by in
luding the header �le exsample.h.ExSample is published under the GNU General Publi
 Li-
ense version 2 [17℄ and
an thus be freely used and redis-tributed.The distribution
ontains extensive do
umentation, sev-eral examples of usage, as well as an implementation forstandard sampling and adaptive Monte Carlo integration,of whi
h ExSample is
apable as well.Referen
es1. M. B�ahr et al., Eur. Phys. J. C58, 639 (2008), 0803.0883.2. T. Sj�ostrand, S. Mrenna, and P. Skands, Comput. Phys.Commun. 178, 852 (2008), 0710.3820.3. T. Gleisberg et al., JHEP 02, 007 (2009), 0811.4622.4. M. H. Seymour, Comp. Phys. Commun. 90, 95 (1995),hep-ph/9410414.5. M. Bengtsson and T. Sjostrand, Phys. Lett. B185, 435(1987).

6. M. Bengtsson and T. Sjostrand, Nu
l. Phys. B289, 810(1987).7. E. Norrbin and T. Sj�ostrand, Nu
l. Phys. B603, 297(2001), hep-ph/0010012.8. G. Miu and T. Sjostrand, Phys. Lett. B449, 313 (1999),hep-ph/9812455.9. P. Nason, JHEP 11, 040 (2004), hep-ph/0409146.10. G. Cor
ella et al., (2002), hep-ph/0210213.11. T. Sj�ostrand, S. Mrenna, and P. Skands, JHEP 05, 026(2006), hep-ph/0603175.12. A. Bu
kley et al., Phys. Rept. 504, 145 (2011), 1101.2599.13. S. Platzer and M. Sjodahl, Eur.Phys.J.Plus 127, 26 (2012),1108.6180.14. L. L�onnblad, ACDC { The Auto Compensating Divide-and-Conquer Phase Spa
e Generator.15. S. Jada
h, Comput. Phys. Commun. 152, 55 (2003),physi
s/0203033.16. http://www.boost.org.17. http://www.gnu.org/li
enses/.

	1 Introduction
	2 Generation of Adapting Overestimates
	3 Compensating for New Maxima
	4 The Cell Selection Algorithm
	5 Examples and Validation
	6 Conclusions
	A Availability and Installation

