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ExSample { A Library for Sampling Sudakov-Type DistributionsSimon Pl�atzerDESY, Notkestrasse 85, D-22607 Hamburg, GermanyMar
h 20, 2012Abstra
t. Sudakov-type distributions are at the heart of generating radiation in parton showers as well as
ontemporary NLO mat
hing algorithms along the lines of the POWHEG algorithm. In this paper, theC++ library ExSample is introdu
ed, whi
h implements adaptive sampling of Sudakov-type distributionsfor splitting kernels whi
h are in general only known numeri
ally. Besides the evolution variable, thesplitting kernels 
an depend on an arbitrary number of other degrees of freedom to be sampled, and anynumber of further parameters whi
h are �xed on an event-by-event basis.PACS. 02.70.Tt Monte Carlo methods { 12.38.Bx Perturbative QCD 
al
ulations { 12.38.Cy Summationof QCD perturbation theory1 Introdu
tionParton shower Monte Carlo simulations as implementedin [1{3℄, just to name few of the re
ently developed 
odes,require a way to draw random variates from a probabilitydensitydSP (�; qjQ; z; �)dq dnz = �P (�jQ; �)Æ(q � �)+�(Q� q)�(q � �)P (q; z; �)�P (qjQ; �) (1)when evolving from a hard s
ale Q to a soft s
ale q in thepresen
e of an infrared 
uto� �, below whi
h no radiationo

urs. Here, �P (qjQ; �) is the Sudakov form fa
tor,�P (qjQ; �) = exp � Z Qq Z P (k; z; �)dnz dk! (2)and P (q; z; �) � 0 is the splitting kernel des
ribing thedynami
s of radiation at a s
ale q, along with n otherkinemati
 parameters z = (z1; :::; zn) and in dependen
eon any further parameters � = (�1; :::; �m). Examples ofthese parameters are momentum fra
tions of in
omingpartons or invariant masses of the partoni
 
on�gurationfrom whi
h the next emission is to be generated. The most
ompli
ated information in terms of additional parame-ters is 
ertainly given by the full information on a phasespa
e point of a Born-type event from whi
h real emis-sion is to be generated in the 
ontext of matrix element
orre
tions [4{8℄ or NLO mat
hing using the POWHEGmethod whi
h is originally des
ribed in [9℄. We refer to theprobability density de�ned in eq. 1 as the Sudakov-typedistribution asso
iated to P .Drawing random variates from dSP by standard meth-ods is in general not feasible, as the integral entering the

Sudakov form fa
tor would have to be evaluated numeri-
ally, and interpolated. Though this is indeed being donefor example in the FORTRAN version of HERWIG [10℄,this method 
eases to be appli
able if the number of ad-ditional degrees of freedom or in parti
ular the number ofadditional parameters be
ome large.To this extent, 
urrent parton shower implementationsreside on the Sudakov veto algorithm whi
h, e.g. has beendis
ussed in [4, 11{13℄. The Sudakov veto algorithm re-quires an overestimate R to the splitting kernel of interestP , R(q; z; �) � P (q; z; �), and is de�ned byQstart  Qloopsolve rnd= �R(qjQstart; �)�(q � �) for qdraw z from R(q; z; �)if q = � thenreturn (�; z)elsereturn (q; z) with probability P (q; z; �)=R(q; z; �)end ifQstart  qend loopwhere rnd denotes a sour
e of random numbers uniformlydistributed on [0; 1℄. Obviously, R needs to be of a simpleform in su
h a way that the �rst step in the loop 
an easilybe implemented.Finding su
h an R has up to now always requiredknowledge of properties of the target kernel P , making ageneral-purpose implementation of the algorithm impos-sible. Espe
ially towards more 
ompli
ated splitting ker-nels, this manual pro
edure of determining R from theproperties of P may not be possible at all: even analyti
expressions may not be known, P being available only nu-
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2 Simon Pl�atzer: ExSample { A Library for Sampling Sudakov-Type Distributionsmeri
ally. A general implementation may also further en-han
e 
exibility when 
hanging parton distribution fun
-tions in the parton shower ba
kward evolution and thusthe respe
tive splitting kernels.The purpose of ExSample (a shorthand for ExponentialSampler) is to provide su
h a general purpose implementa-tion, by adaptively obtaining an overestimate to the targetsplitting kernel in su
h a way as to optimize the algo-rithm's overall performan
e.2 Generation of Adapting OverestimatesExSample is very mu
h inspired by the ACDC and FOAMalgorithms implemented in [14, 15℄. By the same reason-ing, ExSample makes use of `
ells', whi
h represent a sub-hyper
ube of the volume spanned by the evolution vari-able q, the additional degrees of freedom z and externalparameters �. Cells are organized in a binary tree, ea
h
ell having either two or no 
hildren, in the latter 
aseterminating the tree at this bran
h. The union of the twohyper
ubes Ub and U
 represented by the two 
hildren 
ells
b;
 always equals the hyper
ube U(b
) represented by theparent 
ell 
(b
). Ea
h 
ell 
 
ontains the maximum of thetarget splitting kernel P en
ountered by a presamplingas its value w
. The leaf 
ells of the tree, 
onstituting a
ertain fra
tal-type partition of the sampling volume intohyper
ubes, de�ne the overestimate fun
tion,R(q; z; �) = Xleaf 
ells 
w
 � ((q; z; �) 2 U
) : (3)Ea
h parent 
ell keeps tra
k of the integrals of its 
hildren
ells, I
;b = w
;bvolume(Ub;
). This allows for an eÆ
ientsampling of the overestimate fun
tion, by sele
ting eitherof the 
hildren 
ells a

ording to their integral, biased by
onstraints imposed due to the sele
ted evolution variable,the externally �xed parameter point and the need to 
om-pensate for newly en
ountered maxima.The next value of the evolution variable is easily gen-erated by keeping tra
k of proje
tions of the overestimatekernel onto the evolution variable dimension in depen-den
e on the externally �xed parameter point. In order tokeep tra
k of the dependen
e on the additional parameters� as well as the starting value of the evolution variable Q,ExSample provides a me
hanism to 
al
ulate unique hashvalues identifying the sub tree of the 
ell stru
ture whi
hshould be 
onsidered for a given parameter point. All in-formation needed to sample events, i.e. in parti
ular pro-je
tions of the overestimate kernel R and the number of`missing' events per 
ell, to be dis
ussed in se
tion 3, 
anbe a

essed in dependen
e on these hash values. The basi
stru
ture of the sampling is sket
hed in �gure 1.The root 
ell of the tree spans the whole sampling vol-ume and is the only 
ell present at the initial stage ofthe algorithm. Children 
ells are produ
ed in an adaptionstep, iteratively building up the 
ell tree through splittinga 
ell into two 
hildren 
ells. This pro
edure aims at im-proving the algorithm's eÆ
ien
y along with gaining more

Fig. 1. A sket
h of the algorithm for an evolution variable q,one additional variable z, and no further parameters �. Thetop of the �gure shows how the leaf 
ells (in the third planefrom the top, shown here after two 
ell splits) are organizedin a binary tree stru
ture starting from the root 
ell U((12)3).The bottom of the �gure sket
hes the overestimate R. To theleft of the overestimate, the Sudakov exponent 
orrespondingto R, F (q) = � ln�R(qj1) is shown. Here we assume that theabsolute upper bound on the evolution variable is q < 1, thusthe �rst step to draw an event starting from a s
ale Q is to solves(Q) = � ln rnd+F (Q) = F (q) for q (indi
ated by the dashedblue line). A z value is then sampled in the 
ells 
ontaining theq value just 
hosen: The 
ell integrals over z are 
omputed toonly re
e
t the subtree 
onsisting of the bla
k arrows, and thetree stru
ture is traversed only along the 
orresponding paths,sele
ting either of the 
hildren 
ells with weight given by therespe
tive integral. Within the boundaries of a leaf 
ell sele
tedby this pro
edure, a z value is drawn 
at. This 
orresponds todrawing a z value from the distribution sket
hed by the solidblue line, the overestimate R at �xed q.detailed information on the target splitting kernel, i.e. amore �ne-grained overestimate 
loser to it.In order to a
hieve this, ea
h 
ell always monitors itseÆ
ien
y, whi
h is de�ned as the ratio of the number ofa

epted points divided by the number of proposed pointsand thus gives a measure of the overall performan
e ofthe Sudakov veto algorithm. If this eÆ
ien
y drops be-low a user-supplied threshold, the 
ell is 
onsidered `bad'.With a frequen
y de
reasing as the eÆ
ien
y of the algo-rithm in
reases, and on en
ounter of a bad 
ell, a potentialsplitting of the 
ell is determined to further in
rease theeÆ
ien
y of the algorithm.To obtain an optimal hyper-plane along whi
h the 
ellshould be split, ea
h 
ell histograms proje
tions of the av-
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h variable dimension k,hP ik(xk). The dimension k (whi
h here may refer to ei-ther the evolution variable, one of the additional degrees offreedom or any of the external parameters) orthogonal tothis hyperplane, and the split point xk (out of a number ofpossible split points well inside the 
ell's boundaries) de-�ned by the interse
tion of the hyperplane and this dire
-tion are determined to maximize a `gain' measure, de�nedas gaink(xk) = ���R xkx�k hP ik(x)dx � R x+kxk hP ik(x)dx���R x+kx�k hP ik(x)dx : (4)Here, x�k denote the 
ell's boundaries in the variable xk.For reasons of performan
e and simpli
ity, the 
urrent im-plementation uses a two-bin histogram per dimension, andxk = (x�k + x+k )=2, leaving only the 
hoi
e of dimensionto maximize the gain measure: If the behaviour of P israther 
at when proje
ted on one dimension k, this di-mension will re
eive a small gain measure, and proje
tionsshowing more varian
e in P are more likely to be splitalong. Again, a user-supplied parameter 
an steer the be-haviour of the adaption by 
onsidering only those splitsto be worth performed, if the gain ex
eeds some value.Out of the two 
hildren 
ells the target density is beingpresampled in that 
ell whi
h did not 
ontain the maxi-mum point used before to get a new estimate of the max-imum. The number of presampling points per 
ell is an-other user-de�ned parameter. The 
hoi
e of this param-eter has to be 
arried out in view of the 
ompensationpro
edure to be de�ned in the next se
tion with a trade-o� between the time needed for presampling and the timelost by the number of events to be vetoed by the 
ompen-sation pro
edure. There is no general rule on how it is tobe determined. Experien
e gained so far shows that fewthousand presampling points are an a

eptable 
ompro-mise.3 Compensating for New MaximaSin
e the true maximum of the target kernel 
an neverbe determined with probability one from the presamplingpro
edure, 
are has to be taken on what 
onstraints needto be imposed on the sampling pro
edure on
e a point hasbeen en
ountered ex
eeding the 
urrently used maximum.For a suÆ
iently large number of presampling points onemay reside on the statement that these points are rareand generated distributions will not show any e�e
t onthe erroneous overestimate. Thinking about the overalleÆ
ien
y of the algorithm in performing its fun
tion ofa
ting as a 
ontinuous sour
e of unweighted events withthe smallest possible overhead, this is 
ertainly not a 
ri-terion to base an implementation on.To de�ne the method of 
ompensation, we �rst intro-du
e the notion of missing events in a given 
ell. As forthe 
ell's integral, ea
h parent 
ell 
arries the sum of themissing events of its 
hildren 
ells. The number of missing

Fig. 2. A sket
h of the algorithm in a setup similar to �gure 1,now sket
hing the situation upon en
ounter of a new overes-timate. The new overestimate gave rise to di�erent numbersof events expe
ted in ea
h 
ell (solid re
tangles in the lowerpart), as 
ompared to the number of events expe
ted withthe old overestimate (dotted re
tangles). The di�eren
e be-tween these determines the number of missing events per 
ell(see text for more details). In the sket
h given here, the 
ellsU2 and U3 would re
eive a positive number of missing events(for
ing sampling in these 
ells as indi
ated by the bla
k ar-rows), whereas 
ell U1 would 
ontain a negative 
ount of miss-ing events, triggering vetoes of attempts to sample points inthis 
ell (indi
ated by the red arrow).events is not limited to be positive. In 
ase it is positive,the 
orresponding 
ell needs to be oversampled, i.e. thealgorithm is for
ed to sample events in 
ells with a pos-itive number of missing events, lowering this number inthe sele
ted 
ell if it is larger than zero. Oversampling isimposed on the algorithm as long as there are 
ells with apositive 
ount of missing events. Conversely, if the missingevent 
ount is negative, a 
ell needs to be undersampled. Ifsu
h a 
ell is sele
ted, its missing event 
ount is in
reased,if it is smaller than zero and the sele
tion is vetoed, trig-gering a new 
ell sele
tion. The behaviour of the algorithmin a 
ompensating state is illustrated in �gure 2.Upon en
ounter of a new maximumw0
 > w
, the num-ber of missing events asso
iated to this 
hange is 
al
u-lated for ea
h 
ell asNmiss
 = N
�p0
p
 � 1� : (5)Here, N
 is the number of proposal events already gen-erated in the 
ell, and p
 (p0
) denotes the probability tosele
t 
ell 
 using the old (new) overestimate value for



4 Simon Pl�atzer: ExSample { A Library for Sampling Sudakov-Type Distributionsevents above the infrared 
uto�. p
 is 
al
ulated from theknowledge of proje
tions of the overestimate kernel in de-penden
e on the additional parameter point � and thehard s
ale Q asp
 = R
R(q; z; �)�R(qjQ; �)dnz dq1��R(�jQ; �) : (6)Nmiss
 is then added to ea
h 
ell's 
urrent missing event
ount. Note that undersampling, Nmiss
 < 0 appears inthe 
ells not 
ontaining the newly en
ountered maximumowing to the 
hange in normalization of the overestimatedensity for events above the infrared 
uto�. Eq. 5 ensuresthat within the 
urrently a

umulated statisti
s proposalevents are always distributed a

ording to the last en
oun-tered maximum, provided the algorithm has been stoppedin a state where it is not anymore for
ed to perform over-or undersamplings. This is evident by rewriting eq. 5 asNmiss
 = N
hNi
 (hN 0i
 � hNi
) (7)where hNi
 = Np
 (hN 0i
 = Np0
) is the number of ex-pe
ted events in 
ell 
 for the total number of generatedevents, N . The di�eren
e in bra
kets is the number ofmissing events in the absen
e of 
u
tuations due to a �-nite number of generated events, and the fa
tor in front ofit takes into a

ount the 
urrently a

umulated statisti
s,i.e. how mu
h the population of the 
ell di�ers from itsexpe
ted population.4 The Cell Sele
tion AlgorithmIn this se
tion the 
omplete algorithm to generate eventsas implemented in ExSample is de�ned. We here skip thoseparts 
onne
ted to monitoring the eÆ
ien
y of and split-ting a 
ell. Proposal events a

ording to dSR(qjQ; z; �) asrequired by the Sudakov veto algorithm are generated by�rst de
iding, if there has been an event at the infrared
uto� or otherwise sele
ting a proposal 
ell a

ording toalgorithm 1.On
e a proposal 
ell has been sele
ted, a proposal eventis drawn by sampling the remaining degrees of freedom zin the sele
ted 
ell with uniform distribution. Ex
ept forthe 
ompensating 
ell sele
tion algorithm outlined above,the Sudakov veto algorithm pro
eeds without modi�
a-tion.5 Examples and ValidationExSample has been validated for various `toy' splitting ker-nels and within the realisti
 appli
ation of a parton showerand POWHEG mat
hing implementation. In this se
tionwe present simple examples of distributions obtained byusing ExSample, mainly to illustrate the basi
 fun
tional-ity.Figure 3 shows the results obtained by the adaptive Su-dakov veto algorithm, using a kernel density showing the

Algorithm 1 The 
ell sele
tion algorithm.
al
ulate sub tree hash h(Q; �) and 
olle
t proje
tionsloopsolve rnd= �R(qjQ; �)�(q � �) for qif q = � thenreturn event at infrared 
uto�end if
olle
t 
ell integrals and missing event 
ounters
ell  root 
ellwhile 
ell is not a leaf doif Nmiss�rstChild(
ell) > 0 ^Nmissse
ondChild(
ell) � 0 then
ell  �rstChild(
ell)else if Nmiss�rstChild(
ell) � 0 ^Nmissse
ondChild(
ell) > 0 then
ell  se
ondChild(
ell)elseif rnd < I�rstChild(
ell)=I
ell then
ell  �rstChild(
ell)else
ell  se
ondChild(
ell)end ifend ifend whileif Nmiss
ell = 0 thenreturn 
ellelse if Nmiss
ell > 0 thenNmiss
ell  Nmiss
ell � 1return 
ellelse if Nmiss
ell < 0 thenNmiss
ell  Nmiss
ell + 1end ifend loopgeneri
 behaviour of a QCD splitting fun
tion with run-ning �s. Perfe
t agreement with a numeri
al integrationis found. In addition, �gure 4 shows the fun
tionality ofthe 
ompensation pro
edure by 
omparing results for thesame distribution but di�erent numbers of presamplingpoints used in the algorithm, whi
h are all 
onsistent withea
h other.In �gure 5 the results of sampling a Sudakov-typedistribution in the presen
e of additional parameters areshown. In this example, a quark splitting fun
tion mul-tiplied by a power law in x=z has been used, where x isthe additional parameter and z is the momentum fra
-tion variable to be sampled. The sampled distributionsin various bins of the additional parameter x have been
ompared to a numeri
al integration. Full agreement hasbeen found here. The presen
e of adaption splits in theparameter dimension has expli
itly been 
he
ked for thisexample.We also use this example, whi
h 
losely resembles ini-tial state ba
kward evolution of a parton shower at smallvalues of the momentum fra
tion x, to asses the improve-ments obtained by the adaptive sampling algorithm. Par-ti
ularly, we 
ount the number of vetoed points en
oun-tered when requiring the same number of events while lim-iting the allowed number of 
ell splits. This way, a dire
t
omparison of very 
oarse to in
reasingly �ner overesti-mates is performed. The results are presented in �gure 6,



Simon Pl�atzer: ExSample { A Library for Sampling Sudakov-Type Distributions 5

00.5
1

0 0.5 1

samplednumeri
al integration

Fig. 3. A Sudakov-type distribution with a QCD splittingfun
tion type kernel density as sampled by ExSample usingthe adaptive Sudakov veto algorithm. The verti
al axis 
orre-sponds to the evolution variable q, the horizontal to a vari-able similar to a momentum fra
tion. Shown are few sampledevents, proje
tions of the generated distribution versus the re-sult from a numeri
al integration, and the the 
ell grid pro-du
ed.
0123
4

0 0.2 0.4 0.6 0.8 1N�1 dS P=dq q
npresample = 10npresample = 100npresample = 1000

Fig. 4. The same distribution as shown in the upper left panelof �gure 3, now sampled with a di�erent number of presamplingpoints proving fun
tionality of the 
ompensation pro
edure.showing an exponential improvement with the number ofsplits performed.6 Con
lusionsThe sampling of Sudakov-type distributions is at the heartof all 
urrent parton shower and POWHEG NLO mat
h-ing implementations. In this paper we have introdu
ed theC++ library ExSample, whi
h targets at adaptive sam-pling of these distributions as de�ned from a splitting ker-nel, whi
h { in general { may only be known through afun
tion 
all.Additional parameters, su
h as typi
ally en
ountereddependen
ies on in
oming parton momentum fra
tions orthe full dependen
e on a phase spa
e point governing a

00.51
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Fig. 5. Distributions for a Sudakov-type distribution usinga quark splitting fun
tion, multiplied by a power law in x=z.Shown are the sampled distribution for the evolution variableq and momentum fra
tion z in various bins of the additionalparameter x. The distributions are 
ompared to a numeri
alintegration, proving full fun
tionality of the sampling in pres-en
e of additional parameters.hard s
attering pro
ess, 
an be dealt with in full general-ity. ExSample has been validated in `toy' as well as realisti
setups, showing full fun
tionality of the implementation.A
knowledgmentsI would like to thank Malin Sj�odahl and Stefan Giesekefor fruitful dis
ussion. This work was supported in partby the European Union Marie Curie Resear
h TrainingNetwork MCnet under 
ontra
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Fig. 6. Performan
e of the algorithmmeasured as a ratio of thenumber of vetoed points to the number of events requested asa fun
tion of the number of 
ell splits allowed. An exponentialimprovement is seen as more and more splits are 
onsidered.In this example, requesting 500000 events, a maximum of 27splits o

ured. The very eÆ
ient region from 18 splits onwardwith below three vetoes per generated event has been rea
hedafter about 40000 generated events.A Availability and InstallationExSample is available fromhttp://www.desy.de/~ platzer/software/exsample-1.0.tar.gzIt is a 
omplete header based library, depending ad-ditionally only on the presen
e of boost headers [16℄. Aninstallation pro
edure is thus not required ex
ept for mak-ing the ExSample headers available to the 
lient 
ode dur-ing 
ompilation by in
luding the header �le exsample.h.ExSample is published under the GNU General Publi
 Li-
ense version 2 [17℄ and 
an thus be freely used and redis-tributed.The distribution 
ontains extensive do
umentation, sev-eral examples of usage, as well as an implementation forstandard sampling and adaptive Monte Carlo integration,of whi
h ExSample is 
apable as well.Referen
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