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The Sudakov Veto Algorithm ReloadedSimon Pl�atzer1 and Malin Sj�odahl21 DESY, Notkestrasse 85, D-22607 Hamburg, Germany2 Institut f�ur Theoretis
he Physik, KIT, D-76128 Karlsruhe, GermanyMar
h 20, 2012Abstra
t. We perform a 
areful analysis of the main Monte Carlo algorithm used in parton shower sim-ulations, the Sudakov veto algorithm. We prove a general version of the algorithm, dire
tly in
luding thedependen
e on the infrared 
uto�. Taking this as a starting point, we then 
onsider non-positive de�nitesplitting kernels, as en
ountered when dealing with sub-leading 
olour 
orrelations or splitting kernelsbeyond leading order. New algorithms suited for these situations are developed.PACS. 02.70.Tt Monte Carlo methods { 12.38.Cy Summation of QCD perturbation theory1 Introdu
tionParton shower Monte Carlo simulations as implementedin for example [1{3℄, are indispensable tools for analyzingand predi
ting realisti
 �nal states en
ountered in 
olliderexperiments. Matrix element 
orre
tions, as dis
ussed in[4{8℄, the te
hni
ally similar mat
hing to NLO 
al
ula-tions employing the POWHEG method [9℄, or s
hemes to
ombine parton showers and multijet tree-level matrix el-ements [10{14℄, all rely dire
tly or indire
tly on the samemethod for generating subsequent parton shower emis-sions in Monte Carlo simulations.With the notable ex
eption of the FORTRAN versionof HERWIG, nowadays most parton shower implementa-tions use the Sudakov veto algorithm to fa
ilitate this task,as the splitting kernels normally are too 
ompli
ated to al-low eÆ
ient integration.A justi�
ation of the Sudakov veto algorithm is givenin [4℄, stating that for upper bounds R on splitting kernelsP , R(q) � P (q) for all q, algorithm (1) will draw randomvariables with densitydTP (qjQ) = �(Q� q)P (q)�P (qjQ)dq ; (1)where the Sudakov form fa
tor is given by�P (qjQ) = exp � Z Qq P (t)dt! : (2)We note here, however, that the algorithm has to bemore 
arefully de�ned. Most obviously if, in algorithm (1),P (q) = 0 but R(q) 6= 0 for all q � q
 and some q
, thealgorithm will potentially enter an in�nite loop. We shalltherefore assume that R(q) is suitably restri
ted to avoidthis situation, making the algorithm well-de�ned in thesense that it will never hit a state in whi
h it will notterminate with probability one.

Algorithm 1 The Sudakov veto algorithm as quoted inthe literature.Q0  QloopDraw q with density�(Q0 � q)R(q)�R(qjQ0)dq :return q with probability P (q)=R(q)Q0  qend loopLiterally implementing the algorithmas presented abovewill not generate the desired density owing to the fa
t thatdTP is not a probability density,Z Qq dTP (tjQ)dt dt = 1��P (qjQ) 6= 1 : (3)At best the algorithm will approximate the target den-sity if, for the lowest possible q, �P (qjQ)� 1. In pra
ti
e,however, a vanishing�P will never be en
ountered in par-ton shower simulations, due to the fa
t that an infrared
uto� � � 0 is always present. Thus the typi
ally diver-gent part of the splitting kernel at q = 0 is never rea
hed,and the no-emission probability remains, �P (�jQ) > 0.Similarly, the 
ompeting pro
esses algorithmDraw fqi; :::; qng from dTPi(qijQ), i = 1; :::; nreturn max(fqi; :::; qng)targeting at drawing random variables with density dTP ,P = Pi Pi, will not produ
e the desired result for thesame reason.
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2 Simon Pl�atzer, Malin Sj�odahl: The Sudakov Veto Algorithm Reloaded2 The Complete AlgorithmThe failure of the simple algorithm presented in the pre-vious se
tion has been argued to originate from the fa
tthat the density 
onsidered is not a probability density.However, the density 
onsidered in the previous se
tionis also not what is typi
ally aimed at in a parton showerimplementation. (See e.g. [15℄ for a 
on
ise treatment.)This 
an be seen by the fa
t that a lower 
uto� s
ale �has not been spe
i�ed, nor is a virtual no-emission 
ontri-bution present. Owing to the fa
t that a parton shower isto preserve the total in
lusive 
ross se
tion, the 
ombineddensity, in
luding both emission and no-emission, has tobe a probability density. As the probability to not emitbetween two s
ales is determined by the Sudakov formfa
tor, the probability density whi
h we are interested inis dSP (�; qjQ)dq = �P (�jQ)Æ(q � �)+�(Q� q)�(q � �)P (q)�P (qjQ) ; (4)whi
h relates to the previously introdu
ed density asdSP (�; qjQ)dq =�P (�jQ)Æ(q � �) + �(q � �)dTP (qjQ) : (5)Using sampling by inversion, 1Z q0 dSP (�; tjQ)dt dt = �P (qjQ)�(q � �) = rnd ; (6)we �nd the equation to be solved for the next s
ale q.This is similar to what one would expe
t by viewing theSudakov form fa
tor�P (qjQ) as a no-emission probabilitybetween two s
alesQ and q, but now expli
itly taking intoa

ount the dependen
e on the infrared 
uto� �.As the splitting kernel, P , is not normally easily inte-grated, what is used in a
tual implementations is insteadtypi
ally a version of the Sudakov veto algorithm where�R(qjQ) = rnd is solved for some easily integrable fun
-tion R(q) > P (q), and the radiation is kept only with aprobability of P (q)=R(q). The issue of how to deal withthe fa
t that the Sudakov fa
tor �R(�jQ) 6= 0, however,remains.In the typi
ally en
ountered 
ase that P (q) is divergentat an absolute lower bound (whi
h we take to be q = 0),the problem with the non-vanishing Sudakov fa
tor at thelowest physi
ally 
onsidered bound (q = �) 
an be 
ir
um-vented by integrating down to q = 0. Events whi
h onlyhave emissions below the lowest physi
al bound (�) arethen regarded as no-emission events [16,17℄. This is guar-anteed to work as for su
h splitting kernels �P (0jQ) = 0.However, for splittings of massive parti
les it is the
ase, that - even if the splitting kernel is integrated down1 In this paper rnd denotes a sour
e of uniformly distributedrandom numbers on [0; 1).

to 0 - the 
orresponding Sudakov fa
tor is not vanishing,�P (0jQ) 6= 0. This situation 
an be dealt with by usingan overestimation fun
tion R(q) whi
h does 
orrespondto �R(0jQ) = 0. The approximation of a non-divergentsplitting kernel with a divergent one is, however, likely tolead to a severe overestimate, i.e. R(q)� P (q), whi
h sig-ni�
antly in
uen
es the eÆ
ien
y of the algorithm. Alter-natively, we here suggest that algorithm (2) 
an be used,both for divergent and non-divergent splitting kernels.Algorithm 2 The alternative Sudakov veto algorithm.Q0  Qloopsolve rnd= �R(qjQ0)�(q � �) for qif q = � thenreturn �elsereturn q with probability P (q)=R(q)end ifQ0  qend loopWe 
laim that this algorithm will 
orre
tly produ
edSP (�; qjQ) for all 
hosen boundaries � � q < Q. Toprove it, we �rst prove theorem (1).Theorem 1 The q-density produ
ed by the Sudakov vetoalgorithm after n reje
tion steps and a �nal a

eptan
estep is given bydS(n)veto(�; qjQ)dq = �R(�jQ)Æ(q � �)�(n)P�R(�jQ)+�(Q� q)�(q � �)P (q)�R(qjQ)�(n)P�R(qjQ) (7)where�(n)P�R(qjQ) = 1n!  � Z Qq (P (k)�R(k)) dk!n : (8)From this the 
orre
tness of the algorithm follows uponsumming over any number of reje
tion steps n = 0 to 1,and the usage of �R(qjQ)�P�R(qjQ) = �P (qjQ). Notethat theorem (1) does in
lude the density of non-radiatingevents, and that ea
h time the loop in algorithm (2) isentered, an event q is drawn from dSR by virtue of eq. (6).We will show theorem (1) using indu
tion and there-fore start by noting that the probability to a

ept anevent, starting at an intermediate s
ale k, is given bydSa

ept(�; qjk) = �R(�jk)Æ(q � �)+�(k � q)�(q � �)P (q)�R(qjk) ; (9)where the �rst term re
e
ts the fa
t that proposal eventsat the infrared 
uto� are always a

epted, while the se
-ond term a

ounts for proposal events above the 
uto�being a

epted with probability P (q)=R(q). For n = 0 theintermediate s
ale k equals the starting s
ale Q, i.e.dS(0)veto(�; qjQ) = dSa

ept(�; qjQ) ; (10)



Simon Pl�atzer, Malin Sj�odahl: The Sudakov Veto Algorithm Reloaded 3proving eq. (7) for n = 0. If the algorithm had performedone reje
tion step, events 
ould only have been proposedabove the infrared 
uto� (otherwise the algorithm wouldhave terminated), and we havedS(1)veto(�; qjQ) =Z Q� dSa

ept(�; qjk) (R(k)� P (k))�R(kjQ)dk =Z Q� dS(0)veto(�; qjk) (R(k)� P (k))�R(kjQ)dk : (11)Here, the fa
tor of R(k) � P (k) originates from the vetoprobability, 1 � P (q)=R(q), times the kernel R(q) whi
hhad been used for the proposed event.To arrive at the desired density in eq. (7) we use the`
hain' property of the Sudakov form fa
tors,�R(qjk)�R(kjQ) = �R(qjQ) ; (12)and the relation�(1)P�R(qjQ) = Z Qq (R(k)� P (k)) dk : (13)This proves eq. (7) for n = 1. In general,dS(n+1)veto (�; qjQ) =Z Q� dS(n)veto(�; qjk) (R(k)� P (k))�R(kjQ)dk (14)re
e
ting an initially proposed event k below Q, whi
hinitiated a sequen
e of n veto steps and a �nal a

eptan
estep. Thus, if the theorem was 
orre
t for some n > 0, wereadily obtain the 
laimed result for n+ 1 upon using1n! Z Qq  Z kq f(k0)dk0!n f(k)dk =1(n+ 1)!  Z Qq f(k)dk!n+1 : (15)The 
ompeting pro
esses algorithm in turn readsDraw fqi; :::; qng from dSPi(qijQ), i = 1; :::; nreturn max(fqi; :::; qng)whi
h is easily proven as dSPi(qijQ) now is a true proba-bility density.3 Towards Splitting Kernels of Inde�nite SignFor the remainder of this note we shall be 
on
erned withseeking solutions to the 
ase of non-positive de�nite split-ting kernels. For potentially negative-valued `densities'D(x),a Monte Carlo implementation is still sensible by sam-pling events x a

ording to jD(x)j and afterwards assign-ing weights +1 or �1, depending on whether D(x) > 0

or D(x) < 0, however, the generalization of the Sudakovveto algorithm is not obvious.In this se
tion we will outline an algorithm, algorithm (3),whi
h is able to deal with the general 
ase of non-positivede�nite splitting kernels, but is limited to 
onsidering dis-tributions at �xed starting s
ale Q. That this is a limita-tion 
an be seen from the fa
t the the generated densitywill multiply a Q-dependent normalization fa
tor smallerthan one. As long as only one starting s
ale is 
onsidered,this s
ale dependen
e 
an trivially be normalized away.However, in the 
ase of varying s
ales, one would have tointrodu
e s
ale dependent event weights larger than one.For the 
ase of an unlimited number of emissions driven bysubsequently sampling the density at varying s
ales, thereis 
learly no upper bound for the 
ombined size of theseweights. The algorithm presented here 
ould, however, beof pra
ti
al interest for 
ases where splitting kernels Pof inde�nite sign are present only for a limited numberof emissions. Su
h s
enarios would indeed give rise to anupper bound on the expe
ted event weight; parti
ularlyone 
ould 
onsider matrix element 
orre
tions in
orporat-ing higher order 
orre
tions with the need for appropriatesubtra
tions to regularize infrared divergen
es.To be pre
ise, we de
ompose the non-positive de�nitekernel P (q) as P+(q)� P�(q), whereP�(q) = ��P (q) : P (q) ? 00 : otherwise (16)and utilize algorithm (3).Algorithm 3 The algorithm for splitting kernels of indef-inite sign. See text for the de�nition of P�.loopDraw q+ from dSP+(�; qjQ)Draw q� from dSP�(�; qjQ)q  max(q+; q�)if q = � thenreturn � with weight +1end ifDraw t from dS2P�(�; tjq)if t = � thenif max(q+; q�) = q+ thenreturn q with weight +1elsereturn q with weight �1end ifend ifend loopNote that all random variables needed from Sudakov-type distributions are readily generated using the veto al-gorithm as outlined above. We 
laim that the algorithmwill generate dSP (�; qjQ)��2P�(�jQ) :



4 Simon Pl�atzer, Malin Sj�odahl: The Sudakov Veto Algorithm ReloadedTo prove this, note that if q+ = q� = � we obtain a
ontributionÆ(q � �)�P+(�jQ)�P�(�jQ) =Æ(q � �)�P (�jQ)�2P�(�jQ) :The probability for t = �, i.e. not to re-enter the loop is
learly given by �2P�(�jq). Then, if q+ > q� (and hen
eq+ > �), we �nd a 
ontribution�(q � �)dTP+(qjQ)�P�(qjQ)�2P�(�jq) =�(q � �)dTP+(qjQ)��P�(qjQ)�2P�(�jQ) :Finally, if q� > q+ (and hen
e q� > �), while in
ludingthe negative weight for these events, the last 
ontributionis � �(q � �)dTP�(qjQ)�P+(qjQ)�2P�(�jq) =�(q � �)dT�P�(qjQ)�P+(qjQ)�2P�(�jQ) ;
ompleting the proof. For the 
ase of several available pro-
esses we 
an always de
omposeP (q) =Xi Pi(q) =Xi P+i (q)�Xi P�i (q) ; (17)su
h that the proposal events q�, as well as the `
ontrolvariate' t may be generated using the 
ompeting pro
essesalgorithm for the individual positive and negative 
ontri-butions, P�(q) =Xi P�i (q) : (18)4 Interleaving Vetoing and CompetitionThe algorithm outlined in the previous se
tion may beused to deal with the 
ase of non-positive de�nite split-ting kernels in full generality provided we are interestedin distributions for a single starting s
ale Q, or are pre-pared to a

ept potentially large weights. For pra
ti
alpurposes, we are, however, interested in 
as
ades at sub-sequent s
ales q1 > q2 > ::: > qn, where qk�1 serves as thestarting s
ale of the distribution for qk. The Q-dependentnormalization �2P� present in the distribution generatedwill thus make it non-ideal in the 
ontext of 
as
ades.Here we 
onsider the typi
ally en
ountered physi
alsetup for whi
h we may assume thatP (q) =Xi Pi(q) > 0 ; (19)still allowing for a probabilisti
 interpretation, though asubset of the splitting kernels are of inde�nite sign. P (q)
an be de
omposed as in eq. (17), and we 
an dire
tlyidentify an overestimate to the desired splitting kernel,P+(q) � P (q) = P+(q)� P�(q) : (20)

Algorithm 4 The interleaved veto/
ompetition algo-rithm.Q0  QloopDraw fqi; :::; qng from dSP+i (qijQ), i = 1; :::; nq  max(fqi; :::; qng)if q = � thenreturn �elsereturn q with probability (P+(q)� P�(q))=P+(q)end ifQ0  qend loopThis suggests a two-step pro
edure of interleaving 
om-peting pro
esses and vetoing, formalized in algorithm (4),whi
h we 
hoose to 
all the `interleaved veto/
ompetitionalgorithm'. Here, the qi may be generated dire
tly, if theP+i allow to. Alternatively the veto algorithmmay be usedwith overestimatesR+i (q) � P+i (q). The 
orre
tness of the
omplete algorithm is seen by the fa
t that the �rst two in-stru
tions in the loop will guarantee that q is distributeda

ording to dSP+ by the 
ompeting pro
ess algorithm.In the following steps, the obtained density P+(q) is 
or-re
ted to P (q) = P+(q)�P�(q) by virtue of the standardveto algorithm. Note that this algorithm will neither re-quire negative weights, or introdu
e a Q-dependent nor-malization.5 Con
lusions and OutlookWe have given a 
areful analysis of the main Monte Carloalgorithm entering 
urrent parton shower simulations, theSudakov veto algorithm. Espe
ially, we have dis
ussed indetail the importan
e of the no emission probability aris-ing as a 
onsequen
e of an infrared 
uto�, and suggestedan alternative formulation, algorithm (2), whi
h dire
tlyin
ludes the dependen
e on the infrared 
uto�. This al-gorithm is argued to be more eÆ
ient in the 
ase of anon-divergent splitting kernel.We also 
onsider possible extensions to the 
ase ofsplitting kernels of inde�nite sign. Su
h splitting kernelsare en
ountered when trying to extend parton showers be-yond the large N
 limit or beyond leading order.First, in algorithm (3) we develop a general algorithmfor a splitting kernel of inde�nite sign. Modulo a nor-malization dependen
e on the starting s
ale of the algo-rithm, this 
ase may indeed be dealt with in full gener-ality. The Q-dependent normalization, however, preventseÆ
ient usage in the 
ontext of 
as
ades using an ordered
hain of s
ales.For the typi
ally en
ountered 
ase, in whi
h splittingkernels of inde�nite sign are present, but the sum over allpossible splitting kernels stays positive, we give, in algo-rithm (4), an algorithm interleaving the 
ompeting pro
essalgorithm with subsequent veto steps.
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