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The Sudakov Veto Algorithm ReloadedSimon Pl�atzer1 and Malin Sj�odahl21 DESY, Notkestrasse 85, D-22607 Hamburg, Germany2 Institut f�ur Theoretishe Physik, KIT, D-76128 Karlsruhe, GermanyMarh 20, 2012Abstrat. We perform a areful analysis of the main Monte Carlo algorithm used in parton shower sim-ulations, the Sudakov veto algorithm. We prove a general version of the algorithm, diretly inluding thedependene on the infrared uto�. Taking this as a starting point, we then onsider non-positive de�nitesplitting kernels, as enountered when dealing with sub-leading olour orrelations or splitting kernelsbeyond leading order. New algorithms suited for these situations are developed.PACS. 02.70.Tt Monte Carlo methods { 12.38.Cy Summation of QCD perturbation theory1 IntrodutionParton shower Monte Carlo simulations as implementedin for example [1{3℄, are indispensable tools for analyzingand prediting realisti �nal states enountered in olliderexperiments. Matrix element orretions, as disussed in[4{8℄, the tehnially similar mathing to NLO alula-tions employing the POWHEG method [9℄, or shemes toombine parton showers and multijet tree-level matrix el-ements [10{14℄, all rely diretly or indiretly on the samemethod for generating subsequent parton shower emis-sions in Monte Carlo simulations.With the notable exeption of the FORTRAN versionof HERWIG, nowadays most parton shower implementa-tions use the Sudakov veto algorithm to failitate this task,as the splitting kernels normally are too ompliated to al-low eÆient integration.A justi�ation of the Sudakov veto algorithm is givenin [4℄, stating that for upper bounds R on splitting kernelsP , R(q) � P (q) for all q, algorithm (1) will draw randomvariables with densitydTP (qjQ) = �(Q� q)P (q)�P (qjQ)dq ; (1)where the Sudakov form fator is given by�P (qjQ) = exp � Z Qq P (t)dt! : (2)We note here, however, that the algorithm has to bemore arefully de�ned. Most obviously if, in algorithm (1),P (q) = 0 but R(q) 6= 0 for all q � q and some q, thealgorithm will potentially enter an in�nite loop. We shalltherefore assume that R(q) is suitably restrited to avoidthis situation, making the algorithm well-de�ned in thesense that it will never hit a state in whih it will notterminate with probability one.

Algorithm 1 The Sudakov veto algorithm as quoted inthe literature.Q0  QloopDraw q with density�(Q0 � q)R(q)�R(qjQ0)dq :return q with probability P (q)=R(q)Q0  qend loopLiterally implementing the algorithmas presented abovewill not generate the desired density owing to the fat thatdTP is not a probability density,Z Qq dTP (tjQ)dt dt = 1��P (qjQ) 6= 1 : (3)At best the algorithm will approximate the target den-sity if, for the lowest possible q, �P (qjQ)� 1. In pratie,however, a vanishing�P will never be enountered in par-ton shower simulations, due to the fat that an infrareduto� � � 0 is always present. Thus the typially diver-gent part of the splitting kernel at q = 0 is never reahed,and the no-emission probability remains, �P (�jQ) > 0.Similarly, the ompeting proesses algorithmDraw fqi; :::; qng from dTPi(qijQ), i = 1; :::; nreturn max(fqi; :::; qng)targeting at drawing random variables with density dTP ,P = Pi Pi, will not produe the desired result for thesame reason.
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2 Simon Pl�atzer, Malin Sj�odahl: The Sudakov Veto Algorithm Reloaded2 The Complete AlgorithmThe failure of the simple algorithm presented in the pre-vious setion has been argued to originate from the fatthat the density onsidered is not a probability density.However, the density onsidered in the previous setionis also not what is typially aimed at in a parton showerimplementation. (See e.g. [15℄ for a onise treatment.)This an be seen by the fat that a lower uto� sale �has not been spei�ed, nor is a virtual no-emission ontri-bution present. Owing to the fat that a parton shower isto preserve the total inlusive ross setion, the ombineddensity, inluding both emission and no-emission, has tobe a probability density. As the probability to not emitbetween two sales is determined by the Sudakov formfator, the probability density whih we are interested inis dSP (�; qjQ)dq = �P (�jQ)Æ(q � �)+�(Q� q)�(q � �)P (q)�P (qjQ) ; (4)whih relates to the previously introdued density asdSP (�; qjQ)dq =�P (�jQ)Æ(q � �) + �(q � �)dTP (qjQ) : (5)Using sampling by inversion, 1Z q0 dSP (�; tjQ)dt dt = �P (qjQ)�(q � �) = rnd ; (6)we �nd the equation to be solved for the next sale q.This is similar to what one would expet by viewing theSudakov form fator�P (qjQ) as a no-emission probabilitybetween two salesQ and q, but now expliitly taking intoaount the dependene on the infrared uto� �.As the splitting kernel, P , is not normally easily inte-grated, what is used in atual implementations is insteadtypially a version of the Sudakov veto algorithm where�R(qjQ) = rnd is solved for some easily integrable fun-tion R(q) > P (q), and the radiation is kept only with aprobability of P (q)=R(q). The issue of how to deal withthe fat that the Sudakov fator �R(�jQ) 6= 0, however,remains.In the typially enountered ase that P (q) is divergentat an absolute lower bound (whih we take to be q = 0),the problem with the non-vanishing Sudakov fator at thelowest physially onsidered bound (q = �) an be irum-vented by integrating down to q = 0. Events whih onlyhave emissions below the lowest physial bound (�) arethen regarded as no-emission events [16,17℄. This is guar-anteed to work as for suh splitting kernels �P (0jQ) = 0.However, for splittings of massive partiles it is thease, that - even if the splitting kernel is integrated down1 In this paper rnd denotes a soure of uniformly distributedrandom numbers on [0; 1).

to 0 - the orresponding Sudakov fator is not vanishing,�P (0jQ) 6= 0. This situation an be dealt with by usingan overestimation funtion R(q) whih does orrespondto �R(0jQ) = 0. The approximation of a non-divergentsplitting kernel with a divergent one is, however, likely tolead to a severe overestimate, i.e. R(q)� P (q), whih sig-ni�antly inuenes the eÆieny of the algorithm. Alter-natively, we here suggest that algorithm (2) an be used,both for divergent and non-divergent splitting kernels.Algorithm 2 The alternative Sudakov veto algorithm.Q0  Qloopsolve rnd= �R(qjQ0)�(q � �) for qif q = � thenreturn �elsereturn q with probability P (q)=R(q)end ifQ0  qend loopWe laim that this algorithm will orretly produedSP (�; qjQ) for all hosen boundaries � � q < Q. Toprove it, we �rst prove theorem (1).Theorem 1 The q-density produed by the Sudakov vetoalgorithm after n rejetion steps and a �nal aeptanestep is given bydS(n)veto(�; qjQ)dq = �R(�jQ)Æ(q � �)�(n)P�R(�jQ)+�(Q� q)�(q � �)P (q)�R(qjQ)�(n)P�R(qjQ) (7)where�(n)P�R(qjQ) = 1n!  � Z Qq (P (k)�R(k)) dk!n : (8)From this the orretness of the algorithm follows uponsumming over any number of rejetion steps n = 0 to 1,and the usage of �R(qjQ)�P�R(qjQ) = �P (qjQ). Notethat theorem (1) does inlude the density of non-radiatingevents, and that eah time the loop in algorithm (2) isentered, an event q is drawn from dSR by virtue of eq. (6).We will show theorem (1) using indution and there-fore start by noting that the probability to aept anevent, starting at an intermediate sale k, is given bydSaept(�; qjk) = �R(�jk)Æ(q � �)+�(k � q)�(q � �)P (q)�R(qjk) ; (9)where the �rst term reets the fat that proposal eventsat the infrared uto� are always aepted, while the se-ond term aounts for proposal events above the uto�being aepted with probability P (q)=R(q). For n = 0 theintermediate sale k equals the starting sale Q, i.e.dS(0)veto(�; qjQ) = dSaept(�; qjQ) ; (10)



Simon Pl�atzer, Malin Sj�odahl: The Sudakov Veto Algorithm Reloaded 3proving eq. (7) for n = 0. If the algorithm had performedone rejetion step, events ould only have been proposedabove the infrared uto� (otherwise the algorithm wouldhave terminated), and we havedS(1)veto(�; qjQ) =Z Q� dSaept(�; qjk) (R(k)� P (k))�R(kjQ)dk =Z Q� dS(0)veto(�; qjk) (R(k)� P (k))�R(kjQ)dk : (11)Here, the fator of R(k) � P (k) originates from the vetoprobability, 1 � P (q)=R(q), times the kernel R(q) whihhad been used for the proposed event.To arrive at the desired density in eq. (7) we use the`hain' property of the Sudakov form fators,�R(qjk)�R(kjQ) = �R(qjQ) ; (12)and the relation�(1)P�R(qjQ) = Z Qq (R(k)� P (k)) dk : (13)This proves eq. (7) for n = 1. In general,dS(n+1)veto (�; qjQ) =Z Q� dS(n)veto(�; qjk) (R(k)� P (k))�R(kjQ)dk (14)reeting an initially proposed event k below Q, whihinitiated a sequene of n veto steps and a �nal aeptanestep. Thus, if the theorem was orret for some n > 0, wereadily obtain the laimed result for n+ 1 upon using1n! Z Qq  Z kq f(k0)dk0!n f(k)dk =1(n+ 1)!  Z Qq f(k)dk!n+1 : (15)The ompeting proesses algorithm in turn readsDraw fqi; :::; qng from dSPi(qijQ), i = 1; :::; nreturn max(fqi; :::; qng)whih is easily proven as dSPi(qijQ) now is a true proba-bility density.3 Towards Splitting Kernels of Inde�nite SignFor the remainder of this note we shall be onerned withseeking solutions to the ase of non-positive de�nite split-ting kernels. For potentially negative-valued `densities'D(x),a Monte Carlo implementation is still sensible by sam-pling events x aording to jD(x)j and afterwards assign-ing weights +1 or �1, depending on whether D(x) > 0

or D(x) < 0, however, the generalization of the Sudakovveto algorithm is not obvious.In this setion we will outline an algorithm, algorithm (3),whih is able to deal with the general ase of non-positivede�nite splitting kernels, but is limited to onsidering dis-tributions at �xed starting sale Q. That this is a limita-tion an be seen from the fat the the generated densitywill multiply a Q-dependent normalization fator smallerthan one. As long as only one starting sale is onsidered,this sale dependene an trivially be normalized away.However, in the ase of varying sales, one would have tointrodue sale dependent event weights larger than one.For the ase of an unlimited number of emissions driven bysubsequently sampling the density at varying sales, thereis learly no upper bound for the ombined size of theseweights. The algorithm presented here ould, however, beof pratial interest for ases where splitting kernels Pof inde�nite sign are present only for a limited numberof emissions. Suh senarios would indeed give rise to anupper bound on the expeted event weight; partiularlyone ould onsider matrix element orretions inorporat-ing higher order orretions with the need for appropriatesubtrations to regularize infrared divergenes.To be preise, we deompose the non-positive de�nitekernel P (q) as P+(q)� P�(q), whereP�(q) = ��P (q) : P (q) ? 00 : otherwise (16)and utilize algorithm (3).Algorithm 3 The algorithm for splitting kernels of indef-inite sign. See text for the de�nition of P�.loopDraw q+ from dSP+(�; qjQ)Draw q� from dSP�(�; qjQ)q  max(q+; q�)if q = � thenreturn � with weight +1end ifDraw t from dS2P�(�; tjq)if t = � thenif max(q+; q�) = q+ thenreturn q with weight +1elsereturn q with weight �1end ifend ifend loopNote that all random variables needed from Sudakov-type distributions are readily generated using the veto al-gorithm as outlined above. We laim that the algorithmwill generate dSP (�; qjQ)��2P�(�jQ) :



4 Simon Pl�atzer, Malin Sj�odahl: The Sudakov Veto Algorithm ReloadedTo prove this, note that if q+ = q� = � we obtain aontributionÆ(q � �)�P+(�jQ)�P�(�jQ) =Æ(q � �)�P (�jQ)�2P�(�jQ) :The probability for t = �, i.e. not to re-enter the loop islearly given by �2P�(�jq). Then, if q+ > q� (and heneq+ > �), we �nd a ontribution�(q � �)dTP+(qjQ)�P�(qjQ)�2P�(�jq) =�(q � �)dTP+(qjQ)��P�(qjQ)�2P�(�jQ) :Finally, if q� > q+ (and hene q� > �), while inludingthe negative weight for these events, the last ontributionis � �(q � �)dTP�(qjQ)�P+(qjQ)�2P�(�jq) =�(q � �)dT�P�(qjQ)�P+(qjQ)�2P�(�jQ) ;ompleting the proof. For the ase of several available pro-esses we an always deomposeP (q) =Xi Pi(q) =Xi P+i (q)�Xi P�i (q) ; (17)suh that the proposal events q�, as well as the `ontrolvariate' t may be generated using the ompeting proessesalgorithm for the individual positive and negative ontri-butions, P�(q) =Xi P�i (q) : (18)4 Interleaving Vetoing and CompetitionThe algorithm outlined in the previous setion may beused to deal with the ase of non-positive de�nite split-ting kernels in full generality provided we are interestedin distributions for a single starting sale Q, or are pre-pared to aept potentially large weights. For pratialpurposes, we are, however, interested in asades at sub-sequent sales q1 > q2 > ::: > qn, where qk�1 serves as thestarting sale of the distribution for qk. The Q-dependentnormalization �2P� present in the distribution generatedwill thus make it non-ideal in the ontext of asades.Here we onsider the typially enountered physialsetup for whih we may assume thatP (q) =Xi Pi(q) > 0 ; (19)still allowing for a probabilisti interpretation, though asubset of the splitting kernels are of inde�nite sign. P (q)an be deomposed as in eq. (17), and we an diretlyidentify an overestimate to the desired splitting kernel,P+(q) � P (q) = P+(q)� P�(q) : (20)

Algorithm 4 The interleaved veto/ompetition algo-rithm.Q0  QloopDraw fqi; :::; qng from dSP+i (qijQ), i = 1; :::; nq  max(fqi; :::; qng)if q = � thenreturn �elsereturn q with probability (P+(q)� P�(q))=P+(q)end ifQ0  qend loopThis suggests a two-step proedure of interleaving om-peting proesses and vetoing, formalized in algorithm (4),whih we hoose to all the `interleaved veto/ompetitionalgorithm'. Here, the qi may be generated diretly, if theP+i allow to. Alternatively the veto algorithmmay be usedwith overestimatesR+i (q) � P+i (q). The orretness of theomplete algorithm is seen by the fat that the �rst two in-strutions in the loop will guarantee that q is distributedaording to dSP+ by the ompeting proess algorithm.In the following steps, the obtained density P+(q) is or-reted to P (q) = P+(q)�P�(q) by virtue of the standardveto algorithm. Note that this algorithm will neither re-quire negative weights, or introdue a Q-dependent nor-malization.5 Conlusions and OutlookWe have given a areful analysis of the main Monte Carloalgorithm entering urrent parton shower simulations, theSudakov veto algorithm. Espeially, we have disussed indetail the importane of the no emission probability aris-ing as a onsequene of an infrared uto�, and suggestedan alternative formulation, algorithm (2), whih diretlyinludes the dependene on the infrared uto�. This al-gorithm is argued to be more eÆient in the ase of anon-divergent splitting kernel.We also onsider possible extensions to the ase ofsplitting kernels of inde�nite sign. Suh splitting kernelsare enountered when trying to extend parton showers be-yond the large N limit or beyond leading order.First, in algorithm (3) we develop a general algorithmfor a splitting kernel of inde�nite sign. Modulo a nor-malization dependene on the starting sale of the algo-rithm, this ase may indeed be dealt with in full gener-ality. The Q-dependent normalization, however, preventseÆient usage in the ontext of asades using an orderedhain of sales.For the typially enountered ase, in whih splittingkernels of inde�nite sign are present, but the sum over allpossible splitting kernels stays positive, we give, in algo-rithm (4), an algorithm interleaving the ompeting proessalgorithm with subsequent veto steps.
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