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Finding new relationships between hypergeometrifuntions by evaluating Feynman integralsBernd A. Kniehl1�, Oleg V. Tarasov2y1 Kavli Institute for Theoretial Physis, Kohn Hall,University of Santa Barbara, CA 93106, USA2 II. Institut f�ur Theoretishe Physik, Universit�at Hamburg,Luruper Chaussee 149, 22761 Hamburg, GermanyAbstratSeveral new relationships between hypergeometri funtions are found by om-paring results for Feynman integrals alulated using di�erent methods. A newexpression for the one-loop propagator-type integral with arbitrary masses and ar-bitrary powers of propagators is derived in terms of only one Appell hypergeometrifuntion F1. From the omparison of this expression with a previously known one,a new relation between the Appell funtions F1 and F4 is found. By omparingthis new expression for the ase of equal masses with another known result, a newformula for reduing the F1 funtion with partiular arguments to the hypergeomet-ri funtion 3F2 is derived. By omparing results for a partiular one-loop vertexintegral obtained using di�erent methods, a new relationship between F1 funtionsorresponding to a quadrati transformation of the arguments is established. An-other redution formula for the F1 funtion is found by analysing the imaginarypart of the two-loop self-energy integral on the ut. An expliit formula relating theF1 funtion and the Gaussian hypergeometri funtion 2F1 whose argument is theratio of polynomials of degree six is presented.PACS numbers: 02.30.Gp, 12.15.Lk, 12.20.Ds, 12.38.BxKeywords: Feynman integrals, Appell hypergeometri funtion, quadrati transfor-mation
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1 IntrodutionRadiative orretions to di�erent physial quantities needed for the omparison of theo-retial preditions with experimental data to be olleted with the CERN Large HadronCollider (LHC) and, in future, with an International Linear Collider (ILC) and other ol-liders are expressed in terms of ompliated Feynman integrals. In many ases, radiativeorretions must be evaluated analytially to ahieve reliable auraies in the alula-tions. The diÆulties in alulating Feynman integrals are usually related to the fat thatthey depend on several kinematial sales, i.e. they are funtions of several variables.Nowadays, one of the most frequently used methods for alulating Feyman integralsis based on the Mellin-Barnes integral representation [1,2,3℄. In many ases, however, thismethod leads to ompliated expressions in terms of hypergeometri funtions with manyvariables. In order to alulate analytially integrals with several kinematial variablesand masses, new e�etive methods are to be developed. Rather promising methods foranalyti alulations of Feynman integrals are based on reurrene relations. These anbe reurrene relations with respet to the exponent of a propagator of the integral [4℄ orthe parameter of the spae-time dimension [5,6,7℄. As was already observed in the one-loop ase, the solutions of dimensional reurrenes are ombinations of hypergeometrifuntions [5,6,8℄. This is also true at the two-loop level [7℄.As was realized many years ago in Ref. [9℄, Feynman integrals are generalized hyperge-ometri funtions. This onjeture was on�rmed through the evaluations of spei� Feyn-man integrals. Some results for Feynman integrals expressed in terms of hypergeometrifuntions may be found in Refs. [1,2,3,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24℄. Theseresults were obtained using rather di�erent methods, e.g. by diretly evaluating the inte-grals from their Feynman parameter representations, by applying Mellin-Barnes integralrepresentations, by solving reurrene relations, by making use of the negative-dimensionapproah [25℄, or by using spetral representations.As a method for �nding relations between hypergeometri funtions, the authors ofRef. [26℄ advoated the evaluation of integrals reduible to hypergeometri funtions byseveral di�erent methods and the omparison of the results thus obtained. In this respet,the evaluation of Feynman integrals may be onsidered as a rih soure for �nding rela-tions between hypergeometri funtions. New transformation and redution formulae forhypergeometri funtions were derived by alulating Feynman integrals already a longtime ago [12℄. Several new redution relations for the Appell hypergeometri funtionsF1 and F4 obtained by omparing di�erent results for the same Feynman integral werepresented in Ref. [27℄.The analyti evaluation of Feynman integrals o�ers us a unique possibility to �nd re-lations between hypergeometri funtions whih an be useful in many other appliations,far away from high-energy physis. On the other hand, the problems emerging whenevaluating Feynman integrals may beome interesting for mathematiians, and their par-tiipation in the solution of these problems may lead to essential progress in the evaluationof Feynman integrals.Our paper organized as follows. In setion 2, we present a new result for a one-loop2



propagator-type integral with arbitrary exponents of propagators and arbitrary masses.In setion 3, a new formula for the redution of the Appell funtion F4 to the funtion F1is derived. Setting the masses in the result derived in setion 2 to be equal and omparingthe outome with a known result, a new formula for the redution of the Appell funtionF1 to the hypergeometri funtion 3F2 is obtained. In setion 4, from the results for theone-loop vertex-type integral, a quadrati transformation formula for the Appell funtionF1 is derived. In setion 5, from the omparison of results for the imaginary part of atwo-loop self-energy integral obtained using di�erent methods, a formula for the redutionof the F1 funtion to the Gauss hypergeometri funtion with a ompliated argument isobtained. In setion 6, we present a short summary of our results.2 New analyti expression for the one-loop propagator-type integral
k1

k1 − p1

p1

Figure 1: Feynman diagram orresponding to the integral I(d)�1�2.In this setion, we onsider the evaluation of the one-loop propagator type integralwith arbitrary masses and arbitrary powers of propagators,I(d)�1�2(m21; m22; s12) = Z ddqi�d=2 1[(q � p1)2 �m21℄�1[(q � p2)2 �m22℄�2 : (1)Here and below, it is understood that the usual ausal presription of the propagators isused, i.e. 1=[k2 �m2℄ $ 1=[k2 �m2 + i0℄. The Feynman diagram orresponding to thisintegral is presented in Figure 1. By using the formula1a�1b�2 = �(�1 + �2)�(�1)�(�2) Z 10 dx x�1�1(1� x)�2�1[ax + b(1� x)℄�1+�2 ; (2)the produt of the propagator fators an be transformed to an integral over Feynmanparameters. Changing the integration momentum as q = t+ p2+x(p1� p2) and applyingthe formula Z ddti�d=2 1(t2 �M2)� = (�1)� � �� � d2�(M2)�� d2�(�) ; (3)3



we obtain the following representation for the integral of Eq. (1):I(d)�1�2(m21; m22; s12) = (�1)�1+�2� ��1 + �2 � d2��(�1)�(�2) Z 10 dx x�1�1(1� x)�2�1[s12x2 + x(m21 �m22 � s12) +m22℄�1+�2� d2 :(4)Representing the quadrati polynomial in the denominator ass12x2 + x(m21 �m22 � s12) +m22 = m22(1� x1x)(1� x2x); (5)and then omparing our integral with the integral representation for the Appell funtion[28℄, F1(a; b; b0; ; w; z) = �()�(a)�(� a) Z 10 du ua�1(1� u)�a�1(1� uw)b(1� uz)b0 ; (6)the following result follows:I(d)�1�2(m21; m22; s12) = (�1)�1+�2� ��1 + �2 � d2��(�1 + �2)(m22)�1+�2�d=2� F1 ��1; �1 + �2 � d2 ; �1 + �2 � d2; �1 + �2; x�; x+� ; (7)where x� = 1 + x� y �p�(1; x; y)2 ;x = s12m22 ; y = m21m22 ; (8)with �(x; y; z) = (x� y � z)2 � 4yz: (9)For the partiular ase �1 = �2 = 1, an expression for the propagator-type integral interms of the Appell funtion F1 was given in Refs. [11,27,29℄.The integral I(d)�1�2(m21; m22; s12) is symmetri with respet to the hange �1; m21 $�2; m22. To understand this symmetry, we �rst observe that, under the hange m21 $ m22,the arguments of the Appell funtion F1 in Eq. (7) transform asx� ! x�x� � 1 ; x+ ! x+x+ � 1 ; (10)and then, applying the formula (see, for example, Refs. [28,30,31℄)F1��; �; � 0; ; w; z�= (1� w)��(1� z)��0F1� � �; �; � 0; ; ww � 1 ; zz � 1�; (11)we return to the initial expression on the right-hand side of Eq. (7).4



3 Relations between the F1 funtion and other hy-pergeometri funtionsIn Ref. [1℄, by exploiting the Mellin-Barnes integral representation, the following analytiexpression for the onsidered integral was derived:I(d)�1�2(m21; m22; s12) = (�1)�1+�2(m22)�1+�2�d=2 (� �d2 � �1�� ��1 + �2 � d2�� �d2��(�2)� F4 ��1; �1 + �2 � d2; d2 ; �1 � d2 + 1; s12m22 ; m21m22�+�m21m22� d2��1 � ��1 � d2��(�1) F4��2; d2; d2 ; d2 � �1 + 1; s12m22 ; m21m22�) : (12)A hypergeometri representation in terms of Lauriella funtions for the one-loop integralsorresponding to diagrams with an arbitrary number of external legs was presented inRefs. [2,3℄.Comparing Eqs. (7) and (12), we arrive at the following relation:F1 ��1; �1 + �2 � d2 ; �1 + �2 � d2; �1 + �2; x�; x+� =� �d2 � �1��(�1 + �2)� �d2��(�2) F4��1; �1 + �2 � d2; d2 ; �1 � d2 + 1; x; y�+y d2��1 � ��1 � d2��(�1 + �2)�(�1)� ��1 + �2 � d2�F4��2; d2; d2 ; d2 � �1 + 1; x; y� : (13)Here, x� are given by Eq. (8). With the help of the relation given in Ref. [32℄ (see p. 102),F4��; �; ; �; �x(1� x)(1� y) ; �y(1� x)(1� y)� = [(1�x)(1�y)℄�F1(�; ��; 1+��; ; x; xy);(14)the seond Appell funtions F4 on the right-hand side of Eq. (13) may be expressed interms of the Appell funtion F1. Therefore, the following relation holds:F4(�; �; � 0; �� � 0 + 1; x; y)= �(� 0)�(� � � + � 0)�(� 0 � �)�(� + � 0)F1(�; �; �; � + � 0; x�; x+)� �(� 0)�(� � � + � 0)�(�� � 0)�(�)�(�)�(� 0 � �) y�0�� (x+ � x)�����0� F1 �� � � + � 0; 1� �; �; � 0 � �+ 1; x� x�x ; x� x�x� x+� : (15)5



In Ref. [3℄, an expression for the integral I(d)�1�2(m21; m22; s12) in terms of the Kamp�e deF�eriet funtion was derived:I(d)�1�2(m21; m22; s12) = (�1)�1+�2(m22) d2��1��2 � ��1 + �2 � d2��(�1 + �2)� F 2;1;01;0;0 �(�1 + �2 � d=2 : 1; 1); (�1 : 1; 1) : (�2 : 1)(�1 + �2 : 2; 1) ����s12m22 ; 1� m21m22 � : (16)Comparing this relation with Eq. (7), we obtain the following redution formula:F 2;1;01;0;0 "(� : 1; 1); (�1 : 1; 1) : (�2 : 1)(�1 + �2 : 2; 1) �����x; y# = F1(�1; �; �; �1 + �2; z�; z+); (17)where z� = x + y �p(x + y)2 � 4x2 : (18)For the ase of equal masses m22 = m21 = m2, the following expression was derived inRef.[1℄: I(d)�1�2(m2; m2; s12) = (�1)�1+�2(m2)d=2��1��2� � ��1 + �2 � d2��(�1 + �2) 3F2��1; �2; �1 + �2 � d2 ;�1+�22 ; �1+�2+12 ; p24m2� : (19)Comparing this formula with Eq. (7) taken at m21 = m22 = m2, we obtain:F1 ��; �; �; ; x�px2 � 2x; x+px2 � 2x � = 3F2��;  � �; � ;2 ; +12 ; x2� ; (20)whih may be rewritten as:F1��; �; �; ; x; xx� 1 � = 3F2��;  � �; � ;2 ; +12 ; x24(x� 1)� : (21)We veri�ed numerially the orretness of this relation setting � = 1=2, � = 2,  = 3=2,and x = �1=2, and keeping 600 valid digits in the alulations performed using theomputer algebra system Maple.To the best of our knowledge, there is no suh a relation in the mathematial literature,i.e. Eq. (21) extends the number of known redution formulas for the Appell funtion F1.In Ref. [33℄, a relation between F1 with the same arguments and the Gauss hypergeometrifuntion 2F1 is given. That relation orresponds to a partiular ase of our Eq. (21), takenat  = 2�. We would like to reall that the only known transformation of the Appellfuntion F1 to the hypergeometri funtion 3F2 was known for the ase when x = �y.For the Appell hypergeometri funtion F1, the following relation holds:F1(�; �; �; ; x;�x) = 3F2� �2 ; �+12 ; � ;2 ; +12 ; x2� : (22)6



In the ase when s12 = m21 � m22, the relation x+ = �x� holds. Therefore, the integralI(d)�1�2(m21; m22; s12) may be expressed in terms of the hypergeometri funtion 3F2 asI(d)�1�2(m21; m22; s12)��s12=m21�m22= (�1)�1+�2� ��1 + �2 � d2��(�1 + �2)(m22)�1+�2�d=2 3F2� �12 ; �1+12 ; �1 + �2 � d2 ;�1+�22 ; �1+�2+12 ; 1� m21m22� : (23)This formula demonstrates that simpli�ations of Feynman integrals may also take plaefor spei� values of masses or momenta that are more general than just zero or on-shell.4 Quadrati transformation for the Appell funtionF1
q − p1

p31 p23

p12

q − p2

q − p3Figure 2: Feynman diagram orresponding to the integral I(d)3 .In this setion, we �nd relations for the Appell funtion F1 by omparing the resultsof di�erent alulations of the one-loop vertex-type integralI(d)3 (m2j ; m2k; m2l ; pkl; pjl; pjk)=Z ddqi�d=2 1[(q � pj)2�m2j ℄[(q � pk)2�m2k℄[(q � pl)2�m2l ℄ ;(24)orresponding to the Feynman diagram shown in Figure 2. We onsider this integral witha partiular set of arguments, namely I(d)3 (0; m2; 0; 0; s13; s12). In the ase when s12 � m2and s13 � m2, from its representation as an integral over Feynman parameters, we derivethe following analyti expression:I(d)3 (0; m2; 0; 0; s13; s12) = Z 10 Z 10 �dx1dx2 � �3� d2� x1[s13x1 � s13 + x2(m2 + s13 � s12 � x1s13 + x1s12)℄3� d2= 1m2 I(d)11 (0; m2; 0) F1�1; 1; 2� d2 ; d2; s12 � s13m2 ; s12m2�� I(d)11 (0; 0; s13)m2 2F1�1; d�22 ;d� 2 ; s12 � s13m2 � ; (25)7



where F1 is the Appell hypergeometri funtion [28℄ de�ned by the seriesF1(a; b; b0; ;w; z) = 1Xk;l=0 (a)k+l(b)k(b0)l()k+l wkzlk!l! ; (26)and (a)k = �(a + k)=�(a) is the so-alled Pohhammer symbol. In our ase, the Appellfuntion has a rather simple integral representation, viz.F1�1; 1; 2� d2 ; d2; x; y� = (d� 2)2 Z 10 du [(1� u)(1� yu)℄ d2�2(1� xu) : (27)Therefore, by using Eq. (25), one may obtain a result for the integral I(d)3 in terms of theAppell funtion F1. The result in terms of funtion F1, was previously obtained in Ref. [8℄and later on in Ref. [24℄. In d = 4 spae-time dimensions, the result for the integral I(d)3in terms of the funtion F3 was given in Ref. [20℄.The integral I(d)3 (0; m2; 0; 0; s13; s12) may also be evaluated by another method, basedon di�erene equations with respet to the spae-time dimension d. The method of de-riving dimensional reurrenes is desribed in detail in Refs. [5,6℄. In the ase underonsideration here, we haveI(d+2)3 (0; m2; 0; 0; s13; s12) = 2m2s13(s12 �m2 � s13)(s12 � s13)2(d� 2) I(d)3 (0; m2; 0; 0; s13; s12)+ m2(d� 2)(s13 � s12) I(d)11 (0; m2; 0) + s13(s12 � s13 � 2m2)(s12 � s13)2(d� 2) I(d)11 (0; 0; s13)+ (m2s12 +m2s13 + s12s13 � s212)(s12 � s13)2(d� 2) I(d)11 (0; m2; s12): (28)Denoting its non-homogeneous part as R(d), we rewrite Eq. (28) as:I(d+2)3 (0; m2; 0; 0; s13; s12) = 2m2s13(s12 � s13 �m2)(s12 � s13)2(d� 2) I(d)3 (0; m2; 0; 0; s13; s12) +R(d): (29)The solution of this equation readsI(d)3 (0; m2; 0; 0; s13; s12) = � d2� �d�22 �C"(s12; s13)� (d� 2)2� 1Xk=0 �d2�k�2k R(d+2k); (30)where � = m2s13(s12 � s13 �m2)(s12 � s13)2 : (31)
8



An arbitrary periodi funtion C"(s12; s13) emerging in the solution may be found fromthe following di�erential equation with respet to the variable s12:��s12 I(d)3 (0; m2; 0; 0; s13; s12) = (d� 2)(s13 � s12 + 2m2)� 2m22(m2 + s13 � s12)(s13 � s12) I(d)3 (0; m2; 0; 0; s13; s12)+ (d� 3)(m2 + s13 � 2s12)(m2 � s12)(m2 + s13 � s12)(s12 � s13) I(d)11 (0; m2; s12)+ (d� 2)2(m2 � s12)(m2 + s13 � s12) I(d)11 (0; m2; 0)� (d� 3)(m2 + s13 � s12)(s12 � s13) I(d)11 (0; 0; s13): (32)Substituting Eq. (30) into Eq. (32), we arrive at the following equation:��s12C"(s12; s13) + (s12 � s13 � 3m2)(s12 � s13 �m2)(s13 � s12)C"(s12; s13) = 0: (33)Taking into aount the boundary ondition of the integral at s12 = 0, the solution of thisequation is C"(s12; s13) = 0:Substituting expliit expressions for the propagator integrals I(d)2 into Eq. (30) leads tothe following expression:I(d)3 (0; m2; 0; 0; s13; s12) =� (m2 � s12)s12 + (m2 + s12)s132s13(s13 � s12 +m2)(s12 �m2) I(d)11 (0; m2; 0) F1�d� 22 ; 12 ; 1; d2; �4m2s12(s12 �m2)2 ;�m2� �+ s13 � s122(s13 � s12 +m2)s13 I(d)11 (0; m2; 0) 2F1�1; d�22 ;d2 ; �m2� �+ (s12 � s13 � 2m2)2m2(s13 � s12 +m2)I(d)11 (0; 0; s13) 2F1�1; d�22 ;d�12 ; s134� � : (34)Comparison of the obtained result with Eq. (25) leads to the relationF1�1; 1; 2� d2 ; d2;!; z� = !2(! � z)(1� !) 2F1�1; d�22 ;d2 ; !2(! � z)(! � 1)�+ (! + z! � 2z)2(! � z)(1� !)(1� z) F1 �d� 22 ; 1; 12 ; d2; !2(! � z)(! � 1) ; �4z(z � 1)2� : (35)The arguments of the funtion F1 on the right-hand side of Eq. (35) are onneted withthe arguments of the F1 funtion on the left-hand side by a quadrati transformation.Therefore, Eq. (35) is the analogue of the quadrati relation for the Gauss hypergeometrifuntion 2F1. To the best of our knowledge, there is no suh a relation in mathematialliterature. 9



5 New relation between Appel funtion F1 and hy-pergeometri funtion 2F1
k1

k1 − k2

k2 − qFigure 3: Feynman diagram orresponding to the integral J (d)3 .In this setion, we �nd a relation between the F1 and 2F1 funtions by omparing theresults evaluated by two di�erent methods for the imaginary part of the integralJ (d)3 � Z Z ddk1ddk2(i�d=2)2 1(k21 �m2)((k1 � k2)2 �m2)((k2 � q)2 �m2) : (36)The Feynman diagram orresponding to this integral is presented in Figure 3. In Ref. [7℄,the di�erene equation with respet to d for the master integral J (d)3 was derived. Fromthis equation, the di�erene equation for the imaginary part of J (d)3 may be obtained. Itreads: 12x2(d+ 1)(d� 1)(3d+ 4)(3d+ 2) ImJ (d+4)3�4m4(x2 � 3)(x4 � 42x2 + 9)(d� 1)d ImJ (d+2)3�4m8(x2 � 1)2(x2 � 9)2 ImJ (d)3 = 0; (37)where x = q=m. The solution of this equation for the imaginary part of J (d)3 was presentedin Ref. [7℄ and reads:ImJ (d)3 = �4 �2p3 m2d�6� (d� 1) (x2 + 3) �(x2 � 9)227 � d�22 2F1� 13 ; 23 ;d2 ; x2(x2 � 9)2(x2 + 3)3 � : (38)An analyti expression for ImJ (d)3 may also be obtained by using another method. InRef. [34℄, a one-fold integral representation for the imaginary part of the two-loop sun-rise integral with arbitrary masses was derived. For our ase, where the masses of allpropagators are the same, the imaginary part on the ut is given in Ref. [34℄ and reads:ImJ (d)3 = ��(q2) d2�1 �2�d�22 ��2�d� 2� Z (q�m)24m2 d�� d2�1 ��(�;m2; m2)�(�; q2; m2)� d�32 ; (39)10



where �(x; y; z) is de�ned in Eq. (9). Changing the integration variable in Eq. (39) as� = 4m2 + (q � 3m)(q +m)� leads to the following expresssion:ImJ (d)3 = ��(q2) d2�1 �2�d�22 ��2�d� 2� (q � 3m)(q +m)2m �(q �m)(q + 3m)(q +m)2(q � 3m)2� d�32� Z 10 d�n�(1� �)�1� (q +m)(q � 3m)(q �m)(q + 3m)��o d�32 1�1 + (q+m)(q�3m)4m2 ��12 : (40)As follows from Eq. (6), the integral on the right-hand side of Eq. (40) is proportional tothe Appell funtion F1. Using Eq. (6) and omparing Eqs. (40) and (38), we arrive at thefollowing relation:F1�d� 12 ; 3� d2 ; 12 ; d� 1; (x + 1)(x� 3)(x� 1)(x + 3) ;�(x + 1)(x� 3)4 �= 2p3(x2 + 3) �1627 x2(x + 3)2(x + 1)2 � d�22 [(x+ 3)(x� 1)℄ 3�d2 2F1� 13 ; 23 ;d2 ; x2(x2 � 9)2(x2 + 3)3 � : (41)It is interesting to note that, at d = 2, the Appell funtion F1 in Eq. (41) may beexpressed in terms of the 2F1 funtion with the help of the equation (see, for example,Ref. [31℄) F1(a; b; b0; b + b0; w; z) = (1� z)�a 2F1� a; b ;b + b0 ; w � z1� z � : (42)This leads to the relation:2F1� 12 ; 12 ;1 ; (x� 3)(x + 1)3(x + 3)(x� 1)3� = p3(x+ 3)(x� 1)3(x2 + 3) 2F1� 13 ; 23 ;1 ; x2(x2 � 9)2(x2 + 3)3 � : (43)The hypergeometri funtion 2F1 on the left-hand side of this equation is proportionalto the omplete ellipti integral of the �rst kind. Relations between hypergeometrifuntions with parameters 1=2; 1=2; 1 and 1=3; 2=3; 1 but with arguments di�erent fromthat in Eq. (43) were �rst derived by Ramanujan in Ref. [35℄.6 ConlusionsIn this setion, we briey summarize the most important results obtained in this paperand point out some topis whih may be of interest for future investigations. Spei�ally,� a new analyti expression for the one-loop propagator-type Feynnman integral wasderived;� a new formula transforming the Appell funtion F1 to the hypergeometri funtion3F2 was presented; 11
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